
Region of interest Deconvolution

Registration

RNA processing
Ubiqui�n ac�vity, GTPase ac�vity,…

Neuropep�de and hormone ac�vity,…

Spatially restricted gene expression changes

Sleep Deprivation

Glutamate receptor binding

Cyclin-dependent protein 
serine/threonine kinase ac�vity

Structural 
cons�tuent of 
postsynapse,…

Ion phosphatase
inhibitor ac�vity, 
adenylate cyclase 
ac�vity,…

Direc�on: Downregulated ; Upregulated ; mixed

Spatial transcriptomics reveals unique gene expression changes in different brain regions after sleep deprivation

Graphical Abstract

Yann Vanrobaeys, Zeru J. Peterson, Emily. N. Walsh, Snehajyoti Chatterjee, Li-Chun Lin, Lisa C. Lyons, Thomas Nickl-Jockschat, Ted Abel

.CC-BY-NC 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.18.524406doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524406
http://creativecommons.org/licenses/by-nc/4.0/


Spatial transcriptomics reveals unique gene expression changes in different 1 

brain regions after sleep deprivation 2 

Yann Vanrobaeys1,2,3, Zeru J. Peterson2,5, Emily. N. Walsh2,3,4, Snehajyoti Chatterjee2,3, Li-Chun 3 

Lin2,3,7, Lisa C. Lyons6, Thomas Nickl-Jockschat2,3,5*, Ted Abel2,3*   4 

1Interdisciplinary Graduate Program in Genetics, University of Iowa, 357 Medical Research 5 

Center Iowa City, IA 52242, USA 6 

2Iowa Neuroscience Institute, Carver College of Medicine, 169 Newton Road, 2312 Pappajohn 7 

Biomedical Discovery Building, University of Iowa, Iowa City, IA 52242, USA 8 

3Department of Neuroscience and Pharmacology, Carver College of Medicine, 51 Newton Road, 9 

2-417B Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA 10 

4Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research 11 

Center, Iowa City, IA 52242, USA 12 

5Department of Psychiatry, University of Iowa, Iowa City, IA, USA 13 

6Program in Neuroscience, Department of Biological Science, Florida State University, 14 

Tallahassee, FL, USA 15 

7Department of Neurology, University of Iowa, Iowa City, IA, USA  16 

* correspondence to ted-abel@uiowa.edu or thomas-nickl-jockschat@uiowa.edu 17 

 18 

 19 

.CC-BY-NC 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.18.524406doi: bioRxiv preprint 

mailto:ted-abel@uiowa.edu
https://doi.org/10.1101/2023.01.18.524406
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Spatial transcriptomic analysis of the impact of sleep loss 

2 

 

Highlights 20 

• Spatial transcriptomics using the Visium platform reveals the transcriptional signature 21 

across the brain, recapitulating the anatomy of the mouse brain 22 

• Sleep deprivation induces transcriptomic changes unique to each brain region  23 

• The hippocampus is the brain region impacted the most by acute sleep deprivation, with 24 

most differentially regulated genes significantly downregulated  25 

• The neocortex exhibits layer-specific changes in gene expression, with most differentially 26 

regulated genes significantly upregulated 27 

• Registration of spatial transcriptomic data to a common anatomical reference space 28 

(Allen Common Coordinate Framework) allows statistical analysis of gene expression 29 

across regions of the brain and for multi-sample analysis 30 

 31 

Abstract 32 

Sleep deprivation has far-reaching consequences on the brain and behavior, impacting memory, 33 

attention, and metabolism. Previous research has focused on gene expression changes in 34 

individual brain regions, such as the hippocampus or cortex. Therefore, it is unclear how 35 

uniformly or heterogeneously sleep loss affects the brain.  Here, we use spatial transcriptomics to 36 

define the impact of a brief period of sleep deprivation across the brain. We find that sleep 37 

deprivation induced pronounced differences in gene expression across the brain, with the greatest 38 

changes in the hippocampus, neocortex, hypothalamus, and thalamus. Both the differentially 39 

expressed genes and the direction of regulation differed markedly across regions. Importantly, 40 

we developed bioinformatic tools to register tissue sections and gene expression data into a 41 
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common anatomical space, allowing a brain-wide comparison of gene expression patterns 42 

between samples. Our results suggest that distinct molecular mechanisms acting in discrete brain 43 

regions underlie the biological effects of sleep deprivation. 44 

Introduction 45 

Sleep deprivation is a growing problem that effects more than one-third of adults in the U.S. and 46 

more than 70% of teenagers and adolescents1
. Loss of sleep affects impacts cognition, attention 47 

and metabolism2–5. These processes are mediated by distinct neural circuits in specific brain 48 

regions—the hippocampus, the cortex, and hypothalamus, respectively. Sleep and circadian 49 

rhythm disorders have also been linked to the increased incidence and accelerated progression of 50 

neurodegenerative diseases, including Alzheimer’s disease6–10. Given the serious consequences 51 

of sleep loss for individuals and the interaction of sleep deprivation with many diseases, it is 52 

important to understand the cellular and molecular consequences of sleep deprivation. To this 53 

end, we have used non-biased spatial transcriptomics to define whether sleep loss has distinct 54 

molecular impacts on specific brain regions. 55 

Sleep deprivation impacts protein synthesis and gene regulation through many mechanisms 56 

including alterations to epigenetic regulation, transcription, and mRNA processing11–19. 57 

Estimates suggest that up to 10% of cortical transcripts are regulated with sleep/wake cycles, 58 

particularly by the length of time awake20–22. In the hippocampus, prolonged wakefulness causes 59 

changes in the expression of genes associated with RNA splicing, cell adhesion, dendritic 60 

localization, the synapse, and the postsynaptic membrane11,13,23,24. However, the brain is a highly 61 

heterogeneous organ and subserves many different functions; as brain regions and circuits differ 62 
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in their roles, they may differ dramatically in their response to sleep loss, and observations from 63 

one brain region may not be generalized to the whole brain. 64 

New technological advances in genome-wide spatial transcriptomics offer enormous potential for 65 

providing detailed molecular maps that overcome limitations associated with single cell or single 66 

nuclear RNA sequencing (sc/snRNA-seq) and microscopy-based spatial transcriptomics 67 

methods25. This approach has been successfully used to generate detailed datasets and cell-type 68 

specific gene expression signatures 26–29, but it has not yet been used to profile changes in gene 69 

expression across multiple brain regions after experience.  A further challenge is that a 70 

significant hurdle remains in terms of finding a strategy to align the brain regions across slices 71 

from multiple subjects or from independent experiments for data integration in multi-sample 72 

analyses. To investigate gene expression changes within the adult mouse brain after sleep 73 

deprivation, we used the 10x Genomics Visium platform, a barcoding-based, transcriptome-wide 74 

approach that generates spatial maps of gene expression. We collected gene expression data from 75 

each major brain region across a coronal brain slice, enabling us to profile multiple brain regions 76 

simulataneously.  Using this technique, we were also able to get detailed, subregion and layer 77 

specific gene expression changes within the hippocampus and cortex. Finally, we present an 78 

alternative to a region-of-interest type of analysis by registering multiple slices into a common 79 

space using the Common Coordinate Framework (CCF) from the Allen Brain Atlas30, thus 80 

adjusting for differences in the alignment of brain tissue sections and allowing for a comparison 81 

between samples. These data and analytical approaches provide a scientific resource for the 82 

neuroscientific community, and they demonstrate the diverse impact of sleep loss on gene 83 

expression across the brain.  84 

 85 
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Results 86 

Using Visium spatial transcriptomics, we profiled spatial gene expression in coronal brain slices 87 

from sleep-deprived (SD) or control (non-sleep deprived (NSD)) adult male mice. Each coronal 88 

section covered between 1736 and 3103 spots on the Visium slides. We sequenced each sample 89 

to a median depth of 2.26E+08 (interquartile range 2.10E+08-2.37E+08), which corresponded to 90 

a mean of 93245 reads and a mean of 5978 genes per spot. We note that these rates are analogous 91 

to snRNA-seq and scRNA-seq data using the 10x Genomics Chromium platform, where a ‘cell’ 92 

barcode on the Chromium platform corresponds to a ‘spatial’ barcode on the Visium platform. 93 

However, unlike snRNA-seq data which contains high numbers of intronic reads that map to 94 

immature transcripts, we found strong enrichment of mature messenger RNAs with high mean 95 

rates of exonic alignments (mean: 88.3%; IQR: 87.7-89.4%).  96 

We first generated region-enriched expression profiles for the samples from each condition (Fig. 97 

1A-C). As expected, this approach predicted brain regions with high reliability (Fig. 1B) and 98 

recapitulated the brain regions from the reference coronal mouse Allen brain atlas (Fig. 1C). 99 

Each brain region was characterized by specific transcriptional signatures and unsupervised 100 

clustering of these region expression profiles revealed distinct clusters (Fig. 1D) and top 101 

biomarkers (Fig. 1E). Together, these results highlight the ability of the Visium platform to 102 

achieve high-resolution spatial expression profiling across the mouse brain. 103 

 104 

Sleep deprivation exerts differential effects on transcriptional activity in each brain region 105 

Sleep deprivation affects different brain functions ranging from cognition and affective 106 

processing that each rely upon distinct neuronal circuits17,22–24,31–34. However, little is known 107 
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about how sleep deprivation alters transcriptomic activity in individual brain regions, as bulk 108 

sequencing approaches inevitably average out regionalized effects. To address this problem, we 109 

performed differential gene expression analysis in each of the brain regions identified in the 110 

coronal sections (Fig. 1). After filtering the number of differentially expressed genes (DEGs; 111 

FDR < 0.001, log2fold-change > |0.2|), we found that the hippocampal region had the greatest 112 

number of significant DEGs affected by sleep loss (592 DEGs), followed by the neocortex (401 113 

DEGs), the hypothalamus (266 DEGs), and the thalamus (113 DEGs) (Fig. 2A). Some of these 114 

DEGs, such as Rbm3, Hspa5 and Srsf5, have been previously shown to be affected after sleep 115 

deprivation in our previous studies of the hippocampus11,35,36 and in studies of other brain 116 

regions13–15,17,21,33,37,38.  117 

The molecular functions of the DEGs showed region-specific differences (Fig. 2B-E). For the 118 

hippocampal region, many molecular functions related to RNA processing were enriched (Fig. 119 

2B). For the neocortex, molecular functions related to protein kinase activity, GTPase activity, 120 

ubiquitin ligase activity, and DNA-binding transcription factor binding were enriched (Fig. 2C). 121 

The DEGs in the hypothalamus were enriched for molecular functions related to neuropeptide 122 

and hormone activity, as well as glutathione transferase and peroxidase activity (Fig. 2D). 123 

Finally, the DEGs in the thalamus were enriched for the Myogenic Regulatory Factor (MRF) 124 

binding molecular function (Fig. 2E). Surprisingly, ~98% of the DEGs in the hippocampal 125 

region were significantly downregulated whereas ~96% of the DEGs in the neocortex were 126 

significantly upregulated (Fig. 2B-C). 127 

We next investigated how many of those total DEGs are uniquely affected in each brain region 128 

by analyzing the degree of overlap between the DEGs in the brain regions that had at least 50 129 

DEGs affected by sleep deprivation (Fig. 2F). Although there were many connections between 130 
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different brain regions, the majority (50-83%) of the DEGs were specifically affected in their 131 

respective brain region.  Of the 592 DEGs found in the hippocampal region, 489 were 132 

exclusively affected in the hippocampal region (489/592 DEGs), 306/401 in the neocortex, 133 

199/266 in the hypothalamus, 56/113 in the thalamus, and 33/66 in the striatum-like amygdalar 134 

nuclei. 135 

 136 

Hippocampal subregions are differentially impacted by sleep deprivation. 137 

As our results here and previous studies have demonstrated, the hippocampus is highly 138 

susceptible to the effects of acute sleep deprivation11,13,24,35,36. This brain region is comprised of 139 

several substructures—CA1, CA2, CA3, and the dentate gyrus (DG)—each with different 140 

functions in learning and memory39–44. We performed a deconvolution of the CA1 pyramidal 141 

layer and the dentate gyrus (DG) granule cell layer using a reference scRNA-seq whole 142 

hippocampus mouse dataset from the Allen Brain Atlas45 (Fig. 3A) and were able to distinguish 143 

the areas CA2 and CA3 pyramidal layers based on spatial topography. Similarly, because the 144 

dendritic layers of CA1 are known to undergo structural changes following sleep deprivation46–145 

48,  we also used spatial topography to define and include the stratum radiatum and oriens layers 146 

of CA1 in our analysis (Fig. 3B). Differential gene expression analysis in each hippocampal 147 

subregion revealed unique gene expression changes and molecular functions enriched that were 148 

specific to a subregion (Fig. 3C). Of the DEGs identified in each region, 51/62 DEGs were 149 

uniquely affected in CA1, 34/41 in DG, 53/61 in stratum radiatum, and 4/4 in stratum oriens. The 150 

CA1 pyramidal layer and stratum radiatum were most impacted by sleep deprivation, with the 151 

most DEGs and unique DEGs of the areas examined. Stratum radiatum had 53 unique DEGs 152 

enough to enrich the cyclin-dependent protein serine/threonine kinase activity, as well as the 153 

.CC-BY-NC 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.18.524406doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524406
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Spatial transcriptomic analysis of the impact of sleep loss 

8 

 

pyramidal CA1 cells with their 51 unique DEGs that enriched the glutamate receptor binding. 154 

Interestingly, there were no genes significantly affected in the combined CA2 and CA3 155 

pyramidal layers after sleep deprivation. This finding supports other observations that CA1 and 156 

the DG are impacted by sleep deprivation while area CA3 is less affected36,48. 157 

 158 

Sleep deprivation causes layer-specific transcriptional changes in the cortex 159 

The neocortex was the second-most impacted by sleep deprivation (Fig. 2A). The cortex 160 

comprises of different layers that each are involved in various functions of receiving, integrating, 161 

and outputting information49. To understand how sleep deprivation differently impacts the layers 162 

of the cortex, we examined the gene expression profiles within each cortical layer. We performed 163 

a deconvolution of the spatial datasets by integrating them with a reference scRNA-seq dataset of 164 

~14,000 adult mouse cortical cell taxonomy from the Allen Institute50. This allowed us to 165 

identify the layers of the neocortex based on the prediction score in each spot (Fig. 4A) and 166 

perform differential gene expression analyses in each layer. Layers 2/3 and 5 are the most 167 

transcriptionally affected after sleep deprivation with 222 and 225 significant DEGs, 168 

respectively. Differential gene expression analysis in each cortical layer revealed distinct gene 169 

expression changes and molecular functions that were uniquely enriched in certain layers (Fig. 170 

4B), which may relate to the differential function of these layers in intracortical processing and 171 

cortical output. Layer 5, which contains neurons that are the main output of the cortex, had 174 172 

unique DEGs that included molecular functions related to sterol binding, cyclic adenosine 173 

monophosphate (cAMP) binding, structural constituent of postsynapse, and ion channel regulator 174 

activity. Layer 2/3, which functions largely in information processing within the cortex, had 149 175 

unique DEGs that included molecular functions related to phosphatase inhibitor activity, 176 
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adenylate cyclase inhibiting G protein-coupled glutamate receptor activity, and ionotropic 177 

glutamate receptor binding. 178 

 179 

Registration of Visium slices to a common anatomical reference space via the Spatial 180 

Transcriptomics Analysis Tool (STAnly) allows the unrestricted analysis of transcriptomic 181 

data across entire brain slices 182 

Our deconvolution approach (used in Fig. 1-4) subdivides a given brain slice into different larger 183 

brain regions based on their transcriptomic activity. Although this is a powerful tool to analyze 184 

spatial gene expression changes, it inevitably comes at the price of a loss of spatial resolution, as 185 

this approach necessarily pools over larger brain regions, and requires a prior biological 186 

knowledge of cell type-specific gene expression profiles. To address this loss of spatial 187 

resolution, we established a new analysis tool (Spatial Transcriptomics ANaLYsis (STANLY) 188 

that aligns dots from multiple samples from different animals into one common anatomical 189 

reference space, the Common Coordinate Framework (CCF) of the Allen Mouse Brain Atlas, 190 

thus allowing a dot-by-dot comparison of the transcriptome in an unrestricted inference space 191 

(Fig. 5A). To account for different numbers of Visium spots across slices, we generated ‘digital 192 

spots’ in this same coordinate system to allow a statistical comparison across. Using this method, 193 

we detected at least 18,893 genes in all sample slices for changes in expression between NSD 194 

and SD. Of these, 428 genes were significantly differentially expressed, with 150 genes showing 195 

an upregulation in all significant spots, 22 showing downregulation in all significant spots, and 196 

256 showing a combination of up and down regulation across the sample space. These DEGs 197 

include previously described upregulated genes like Per1 (Fig. 5B), Nr4a1 (Fig. 5C), Homer1 198 

(Fig. 5D), and Arc (Fig. 5E), which showed localized increases in the neocortex, as well as 199 
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downregulated genes like Rbm3 (Fig. 5F) and Cirbp (Fig. 5G), which showed hippocampal 200 

specific changes, similar to those seen in our deconvolution approach. Using ToppGene51, we 201 

found the top five enriched mouse phenotypes were related to abnormal synaptic transmission 202 

(83 DEGs), abnormal synaptic physiology (83 DEGs), abnormal learning/memory/conditioning 203 

(84 DEGs), abnormal cognition (84 DEGs), and abnormal CNS synaptic transmission (75 DEGs) 204 

across the whole coronal slice. GO-molecular function (GO:MF) enrichment analysis showed 205 

similar functions enriched in previously identified brain region such as RNA binding (found in 206 

the hippocampus), Ubiquitin-like protein ligase activity, GTP binding, kinase activity (found in 207 

the neocortex), and neuropeptide and hormone activity (found in the hypothalamus) (Fig. 3). 208 

 209 

Discussion 210 

The identification of cell-type specific transcriptomic signatures has been invaluable in 211 

distinguishing subclasses of cell types in the brain52 and has provided novel insights into brain 212 

disorders such as epilepsy, autism, Alzheimer’s disease53–55. However, the lack of spatial 213 

information associated with single cell transcriptomics represents a significant obstacle56,57 214 

especially in an organ as complex as the brain. Spatial transcriptomics, using the Visium 215 

platform, combines a spatial barcode of RNA transcripts with near single cell sequencing 216 

resolution providing a major advance for understanding gene regulation across brain regions. 217 

However, the recent development of this technology means that it is largely untested for the 218 

analysis of differential gene expression. Here, we used this technique to examine the important 219 

problem of how acute sleep deprivation affects gene expression across brain regions. The effects 220 

of sleep deprivation on public health, and as a risk factor increasing the susceptibility and 221 
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incidence of numerous diseases, necessitate that we utilize and develop techniques that will 222 

provide more detailed understanding of the consequences of sleep loss. 223 

The Visium spatial transcriptomic platform provided sequencing depth comparable to single cell 224 

and single nuclear transcriptomic studies in terms of gene number per spot, with the advantage of 225 

enriching mature RNA transcripts. Potentially, the clustering of a small number of cells in the 226 

spots of the Visium platform allows for a greater sequencing of mature cytoplasmic RNA 227 

molecules, compared to the nuclear mRNA that contains immature RNAs still being processed. 228 

This technique allowed us to anatomically distinguish individual brain regions by aligning brain 229 

regions with the reference mouse Allen brain atlas, where we found that individual brain regions 230 

showed distinct transcriptional profiles after acute sleep deprivation. Individual cell types 231 

clustered within a brain region similar to single cell transcriptomic studies (Fig. 1). Thus, these 232 

results demonstrate the comparability of spatial transcriptomics to the resolution of single-cell 233 

approaches with the added power of simultaneous brain-wide investigation and additional spatial 234 

information. 235 

Given the recent development of the spatial transcriptomics platform, we employed both a 236 

relatively large number of samples for a transcriptomics study and a highly conservative 237 

statistical analysis using an FDR of 0.001 to determine differential gene expression in individual 238 

brain regions following acute sleep deprivation. Importantly, all samples were collected at the 239 

same time of day as the circadian clock has independent effects on transcription58,59. We found 240 

that acute sleep deprivation had the greatest impact on gene regulation in the hippocampus, 241 

neocortex, hypothalamus and thalamus (Fig. 2A). Interestingly, this conservative approach 242 

strongly illustrated heterogeneity of brain regions in response to sleep deprivation, as we found 243 

little overlap in the differentially expressed genes across brain regions (Fig. 2F).  Moreover, our 244 

.CC-BY-NC 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.18.524406doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524406
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Spatial transcriptomic analysis of the impact of sleep loss 

12 

 

results conclusively demonstrate that directional changes in gene expression following acute 245 

sleep deprivation vary widely across brain regions; approximately 98% of the differentially 246 

expressed genes downregulated in the hippocampus, while the opposite was true in the 247 

neocortex, which had approximately 96% of the differentially expressed genes upregulated (Fig. 248 

2B, C). Thus, analysis of gene expression changes after acute sleep deprivation in older studies, 249 

in which the entire forebrain was collected, may have masked the nuanced effects of sleep 250 

deprivation on gene regulation.  The dramatic differences in gene expression across brain regions 251 

in response to sleep deprivation also suggests that a single theory to explain the impact of 252 

wakefulness on the brain or the function of sleep is unlikely to be satisfactory. 253 

 254 

The work presented here establishes the robustness and fidelity of spatial transcriptomics for the 255 

determination and analysis of differential gene expression within brain subregions as well as for 256 

comparisons of gene expression across the brain. For example, in the hippocampus, we found 257 

that acute sleep deprivation significantly reduced gene expression involved in RNA processing 258 

similar to what was found in previous research11.  In the neocortex, upregulation was observed 259 

for genes involved in DNA binding and transcription factor activity, protein kinase regulation, 260 

GTPase regulation and ubiquitin like protein ligase activity. This upregulation of genes involved 261 

in DNA binding and transcription factor activity, such as the transcription factor Nr4a1, may 262 

explain the greater percentage of upregulated genes found in the neocortex as increased 263 

expression of NR4A1 would lead to increased expression of its target genes. Although a smaller 264 

number of genes were identified in the hypothalamus and thalamus, they nonetheless indicate 265 

significant changes in molecular function17. For instance, we found that the most significant 266 

alterations in the hypothalamus were for genes associated with neuropeptide and hormone 267 
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signaling. The differences in the functions and molecular pathways affected in each region may 268 

provide key insights into how each structure is related to some of the broader and longer lasting 269 

effects of acute sleep deprivation. Importantly, the differentially expressed gene functions we 270 

identified in each brain region are consistent with the behavioral effects that have been observed 271 

following sleep deprivation and attributed to changes in neuronal function, such as changes in 272 

circadian behavior or impairments in long-term memory. 273 

 274 

The high density of individually coded spots on the Visium slide grid enabled sub-regional 275 

analysis of gene expression between slices from sleep deprived and non-sleep deprived mice 276 

when combined with a deconvolution approach using single cell reference data sets from the 277 

Allen Brain Atlas for the hippocampus (Fig. 3A) and the cortex (Fig. 4A). Subregional analysis 278 

of the hippocampus was done for the CA1, CA2/3 pyramidal cell layers, dentate gyrus granule 279 

cell layer, and the stratum oriens and the stratum radiatum which contain diverse populations of 280 

interneurons. Although both the stratum oriens and the stratum radiatum contain interneurons, 281 

the functions of these two layers are distinct, and receive different anatomical inputs. Given the 282 

disparate functions and circuitry of the hippocampal subregions, we predicted that sleep 283 

deprivation would result in distinct transcriptional profiles in these subregions. We found that 284 

sleep deprivation induced the largest number of changes in gene expression in the CA1 and 285 

stratum radiatum. Surprisingly, there were only four genes affected by sleep deprivation in the 286 

stratum oriens, although interneurons within this region have been shown to be plastic and 287 

provide input to CA1 pyramidal cells60. These results suggest that sleep deprivation has the 288 

broadest impact on gene regulation in the excitatory neurons of the hippocampus. This result is 289 

consistent with previous research in which manipulations of protein synthesis within 290 
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hippocampal excitatory neurons ameliorated the impacts of sleep deprivation on hippocampus 291 

dependent long-term spatial memory61.  However, it should be noted that the power of 292 

subregional analysis for differential gene expression within the hippocampus may be limited by 293 

the number of spots in each subregion. In comparison to the individual layered analysis of the 294 

neocortex, there were fewer differentially expressed genes detected in the subregions of the 295 

hippocampus (Fig. 3C vs 4B).  However, future research in which single-cell RNA-seq is 296 

combined with spatial transcriptomics could resolve these issues. 297 

 298 

 We found that within the neocortex, sleep deprivation differentially affected individual cortical 299 

layers (Fig. 4B), and that Layers 2/3 and 5 were the most affected by sleep deprivation. 300 

Interestingly, changes in gene expression following sleep deprivation were unique for individual 301 

layers: more than 65% of the genes were unique in Layer 5 and 75% of the genes in Layer 2/3 302 

were unique. Although the number of genes affected was smaller for Layer 4 and Layer 6, the 303 

number of layer specific gene changes for these layers was still approximately 50%. From this 304 

we can observe that there are distinct impacts of sleep deprivation on individual cortical layers. 305 

Indeed, Layer 2/3 function as corticocortical projections to layer 5 and form a prominent 306 

interlaminar pathway to amplify, integrate, distribute and temporarily store information within 307 

subsets of neurons62. From the Layer 5, pyramidal tract neurons project to multiple targets 308 

including ipsilateral striatum, thalamus, subthalamic nucleus and many brainstem and spinal cord 309 

regions63. The elevated level of response from these two layers highlight how the cortex is 310 

adapting in response to sleep deprivation, and these connections may better illustrate why 311 

cortical functions and properties are so altered by sleep loss64. 312 

 313 

.CC-BY-NC 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.18.524406doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524406
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Spatial transcriptomic analysis of the impact of sleep loss 

15 

 

Spatial transcriptomics provides a potentially powerful approach for large scale comparisons of 314 

gene expression across multiple conditions or disease states. For the full capability of spatial 315 

transcriptomics to be realized, it is necessary to develop the analysis tools for the alignment of 316 

spatial transcriptomic data sets into a common anatomical reference space to allow an 317 

unrestricted comparison of gene expression between samples. To further this goal, we pioneered 318 

the adaption of bioinformatic tools to facilitate the transformation and registration of spatial 319 

transcriptomic data sets with the anatomical reference space of the Allen Mouse Brain Atlas 320 

(Fig. 5). By computationally aligning the spatial transcriptomic data through a digital spot 321 

workflow with the Common Coordinate Framework, we can observe gene expression changes 322 

between the sleep deprived and non-sleep deprived conditions for individual genes of interest. 323 

This coordinate approach allows significant changes in gene expression to be visualized and 324 

analyzed for individual spots across the brain (Fig. 5) in greater detail and with much higher 325 

sensitivity for localized changes within larger anatomical structures than the region of interest 326 

approach above. We used this approach at its most basic level to examine single gene expression 327 

across the brain, finding 428 genes that significantly changed after sleep deprivation. However, 328 

our data shows that even genes with robust changes after sleep deprivation display regional 329 

differences in expression, which emphasizes that sleep deprivation has localized impacts on gene 330 

regulation. With the formidable technological advances that have been made over the past 331 

decade, specifically those enabling detailed analysis of gene regulation at multiple levels, one of 332 

the greatest challenges facing neuroscientists is the integration and management of complex 333 

multimodal data sets. There is a critical need to integrate large data sets for spatial and specific 334 

cell type characterization of the mouse brain, as the majority of preclinical research is done using 335 

the mouse model. The bioinformatic approach for spatial gene expression analysis across brain 336 
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regions that we developed for this study helps to meet the challenge of integrating complex data 337 

sets for mouse spatial transcriptomic data sets and reveals critical regional selectivity in the 338 

impact of brief periods of sleep loss across the brain.  339 

Material and Methods  340 

Animals: Male C57BL/6J mice (Jackson Laboratory #000664), age 2.5-3.5 months were used for 341 

all the experiments. Mice were group housed (up to 5 per cage) in cages containing soft bedding 342 

with food (NIH-31 irradiated modified mouse diet #7913) and water available ad libitum in a 343 

12hr :12hr light-dark schedule. The start of the lights-on period is defined as Zeitgeber time zero 344 

(ZT 0). Experiments were conducted according to National Institutes of Health guidelines for 345 

animal care and use and were approved by the Institutional Animal Care and Use Committee 346 

(IACUC) at the University of Iowa. 347 

Sleep deprivation: All mice were single housed seven days prior to the experiment with  corncob 348 

bedding (Envigo, Teklad ¼” corncob, #7907) and soft bedding for nesting. Mice had ad libitum 349 

access to food and water during sleep deprivation. All mice were habituated for 5 days prior to 350 

the experiment by the researcher conducting the experiments. Habituation, performed in the 351 

behavior room for experiments, was done by holding each mouse in the palm for 2 min and then 352 

after returning to the home cage, tapping of the cage for 2. Sleep deprivation was performed for 353 

5 hours from ZT 0 – ZT 5 using the gentle handling method31,32. Briefly, the experimenter tapped 354 

the side of the cage, as needed, to keep each mouse awake. When taps were no longer sufficient 355 

the mice received a light “cage shake” to rouse the animal. NSD mice remained in the colony 356 

housing room throughout the 5-hour period.  357 
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Tissue processing and Visium data generation: Each mouse was rapidly euthanized by cervical 358 

dislocation at ZT 5 with the whole brain rapidly extracted and flash frozen by ≥ -70°C isopentane 359 

(n=8 SD and n=8 NSD). Frozen brains were stored at -80°C. Prior to sectioning, a small tissue 360 

sample from the cerebellum of each frozen brain was removed, RNA extracted and quality 361 

assessed using RNA Integrity Number (RIN). Brains with a RIN above 7 were embedded in 362 

optimal cutting temperature medium (OCT) and cryosectioned at -20 °C (10μm sections) with 363 

the Leica CM3050 S Cryostat in the Iowa Neuroscience Institute (INI) NeuroBank Core. One 364 

coronal section per mouse, corresponding approximately to section 45 of the Paxinos Mouse 365 

Brain atlas, was mounted on Visium Spatial Gene Expression Slides (catalog no. 2000233, 10x 366 

Genomics). Sections were immediately processed with the 10x Genomics Visium Gene 367 

Expression Slide kit. Full details on the methods used are found in the manufacturer’s 368 

instructions (CG000239 Rev A User Guide Visium Spatial Gene Expression Reagent Kits). First, 369 

the slides were fixed in chilled methanol at -20˚C then stained with hematoxylin and eosin 370 

(H&E) to visualize the slices. Brightfield images of the H&E-stained sections were acquired 371 

(20X) using an Olympus BX61 Upright Microscope. Raw images were stitched together with the 372 

CellSens software (Version 3.2; Olympus) and exported as tiff files. Tissue was then 373 

permeabilized with Permeabilization Enzyme (provided by 10X Genomics in the Visium Gene 374 

Expression Slide & Reagent Kit, PN-1000184) for 18 min as determined based on tissue 375 

optimization time-course experiments. Permeabilization resulted in the release of polyA mRNA 376 

from the tissue enabling capture by poly(dT) primers precoated on the Visium Gene Expression 377 

slides. Slides also contained barcoded probes with unique molecular identifiers (UMI) so that the 378 

spatial gene distribution was mapped. After reverse transcription and second strand synthesis, the 379 

amplified cDNA samples from the Visium slides were transferred, purified, and quantified for 380 
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library preparation. Sequencing libraries were prepared by the Iowa Institute of Human Genetics 381 

(IIHG) Genomics Division, according to the Visium Spatial Gene Expression User Guide. 382 

Libraries were pooled for sequencing to achieve sequencing depth balance across the samples 383 

based on the relative area of coverage of each tissue on the slide. The fragmented cDNA pools 384 

were sequenced using an Illumina NovaSeq 6000 SP or S1 flowcell running 100 cycle SBS 385 

chemistry v1.5 and aimed for 200 million total read pairs. Read 1 was 48 nucleotide length (10 nt 386 

i5 index + 10 nt i7 index + 28 nt Spatial Barcode, UMI) and read 2 was 90 nucleotides length 387 

(insert).  388 

Visium data processing: Raw FASTQ files and histology images were processed with the Space 389 

Ranger software v.1.3.1, which uses STAR v.2.7.10a for genome alignment against the Cell 390 

Ranger mm10 reference genome refdata-gex-mm10-2020-A, available at: 391 

https://cf.10xgenomics.com/supp/spatial-exp/refdata-gex-mm10-2020-A.tar.gz. Quantification 392 

and statistical analysis were done with Partek Flow package (Build version 10.0.21.0621) in the 393 

Iowa Institute of Human Genetics (IIHG) Genomics Division. Briefly, to avoid raw gene 394 

expression counts of 0, a value of 0.001 was added to all counts prior to running SCTransform 395 

for normalization and scaling steps. Interpretation of spatial transcriptomic data requires 396 

effective preprocessing and normalization to remove spot-to-spot technical variability such as the 397 

number of molecules detected in each spot, which can confound biological heterogeneity with 398 

technical effects. Recently, a new modeling framework for normalization and variance 399 

stabilization of molecular count data was made available for spatial datasets which improves 400 

downstream analytical tasks including gene selection, dimensional reduction, and differential 401 

expression65 from spatial datasets. After applying this modeling framework, the dimensionality 402 

of each sample was reduced using 100 principal components from the variance of the features. 403 
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Then, an unbiased graph-based clustering was performed to identify the transcriptional 404 

signatures of each spot using the Louvain clustering algorithm that includes 30 nearest neighbors 405 

and 20 principal components. This threshold of 20 principal components was chosen based the 406 

elbow plot of each sample where most of the transcriptional variation was captured within the 407 

first 20 principal components. Since SCTransform is not suitable for differential gene expression 408 

analyses, output data from Space Ranger were renormalized with a more classical approach 409 

including Counts Per Million (each gene’s raw read count in a sample divided by the total 410 

number of counts per million in a sample), with a value of 1 added to avoid 0 counts and errors 411 

in differential analysis, and finally a log base 2 transformation applied to all values to model and 412 

measure proportional fold changes. This normalization revealed similar counts variation across 413 

samples. The cluster and brain region labels previously computed by the SCTransform algorithm 414 

were then transferred to this log-transformed data. Differential gene expression analysis was 415 

performed using the non-parametric Kruskal-Wallis rank sum test because the distribution of the 416 

counts does not conform to a normal or binomial distribution. Rank-sum tests have been the most 417 

widely used approach in the field of single-cell transcriptomics66 because it is assumed that every 418 

cell (or spot for spatial transcriptomics) is an identical replicate that defines the sample size of 419 

the statistics and this approach generates fewer false positives. In this study, the Kruskal-Wallis 420 

test was able to assign a median count of 1 (or 0 in log2), for both conditions, for a gene that is 421 

not expressed in a given brain region resulting in a fold change of 1 (or 0 in log2). Therefore, a 422 

gene was considered significantly differentially expressed (DE) if it has a false discovery rate 423 

(FDR) step-up (p-value adjusted) below 0.001 and a log2fold-change ≥ |0.2|. 424 

Deconvolution: integration with single-cell data: At 55µm, spots from the Visium assay 425 

encompass the expression profiles of 10-20 cells and represent averaged expression of the 426 
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heterogeneous mixture of cells at the spot level. For this reason, computational techniques called 427 

deconvolution have been developed that use scRNA-seq data to infer cell proportions in bulk 428 

transcriptomic samples67. Consequently, deconvolution of each of the spatial voxels was 429 

performed to predict the underlying composition of cell types. We used a reference scRNA-seq 430 

dataset of ~14,000 adult mouse cortical cell taxonomy from the Allen Institute50. We applied the 431 

anchor-based integration that enables the probabilistic transfer of annotations from a reference to 432 

a query set, here it is our SCTransformed gene expression matrix output from Partek Flow®. We 433 

then took advantage of the SCTransform normalization to label transfer the cell-type 434 

identification of scRNA-seq clusters into the transcriptional signatures of the spatial voxels. The 435 

voxels with the highest prediction score were labeled and transferred to the log-transformed data 436 

for downstream differential gene expression analysis.  437 

GO molecular function enrichment analyses of differentially expressed genes (DEGs): The 438 

ClueGO68 and CluePedia69 plug-ins of the Cytoscape 3.9.0 software70 were used in “Functional 439 

analysis” mode for analyzing the Gene Ontology Molecular Function (4691 terms) database in 440 

networks for DEGs. The names of significant DEGs were pasted into the “Load Marker List” of 441 

ClueGO, and the organism “Mus Musculus [10090]” was selected. Only pathways with a p-value 442 

< 0.05 were displayed on the figures. The GO Term Fusion was used allowing for the fusion of 443 

GO parent-child terms based on similar associated genes. The GO Term Connectivity had a 444 

kappa score of 0.4. The enrichment was performed using a two-sided hypergeometric test. The p-445 

values were corrected with a Bonferroni step down approach. 446 

Data and spot preprocessing for STANLY: We inspected all 16 samples visually, excluding any  447 

with serious tissue damage or a large amount of tissue folding after adhesion to the slide limiting 448 

our analysis to 13 samples. Samples were collected from the left or right hemisphere, but to 449 
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maximize spatial similarity, we mirrored the right hemisphere samples (2) to the left hemisphere, 450 

so that all samples could be aligned in the left hemisphere space. After importing the image data 451 

of the Visium slice along with the filtered feature matrix we reduced the list of spots per slice 452 

down to only those listed as “in tissue” by Space Ranger and masked the filtered feature matrix 453 

for each sample to first remove empty non-tissue spots. We further removed from the analysis 454 

any in tissue spots that had fewer than 5,000 total gene counts, which might indicate an error 455 

with the spot itself. Any genes that expressed 0 total reads across an entire sample were removed 456 

due to low statistical viability. For these 13 samples the average number of in tissue spots per 457 

slide was 2548. Given the localized nature of gene expression to certain tissues or regions of a 458 

sample, raw gene counts in each spot are likely to be correlated to their neighbors, but not 459 

necessarily across an entire sample. This leads to a high likelihood of a right tail distribution of 460 

data when genes are regionally expressed, with potentially high counts in some spots and counts 461 

of zero in others. In order to account for this distribution of data we performed log base 2 462 

normalization on the raw gene counts being fed into the analysis. Log base2 normalization is 463 

specifically useful in the case of biological data such as gene counts as this normalizes the data 464 

to look for proportional rather than additive changes in expression. 465 

 466 

Image preprocessing: Our data was collected as coronal slices of the mouse brain, chosen to be 467 

similar to slice 45 in the Paxinos Mouse Atlas, which is similar to Allen Brain Atlas slice 70, so 468 

as a template we chose slice 70 from the Allen Common Coordinate Framework30. The code 469 

base for image preprocessing steps were performed using SimpleITK71 (v.5.3.0) and scikit-470 

image72 (v.0.19.3) as well as SciPy73 (v.1.7.3) and NumPy74 (v.1.21.5) for processing the filtered 471 

feature matrices from Space Ranger and performing analysis on the registered spots.  472 
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 473 

For our current pipeline, most coronal tissue adhered to the slide in such a way that a simple 474 

rotation of [0°, 90°, 180, or 270°] is sufficient to bring the tissue images into the same general 475 

orientation as the template image. For those images from right hemisphere, we additionally 476 

performed a symmetrical flip on the images and their corresponding spots to match the 477 

hemisphere of the template image. This hemisphere combination allows us to maximize the 478 

usability of tissue slices in the analysis. Any rotation or mirroring transformation to the tissue 479 

image is applied also to the spot coordinates so that these maintain the same space throughout 480 

processing. One common problem when trying to register different image modalities is how to  481 

handle differences in voxel resolution. In the case of Visium, we know the size of each spot 482 

(55µm) as well as their distance on center from each other (100µm). Using the image spot 483 

scaling information provided by Space Ranger we are able to accurately calculate the size of 484 

each spot in the original high-resolution image and calculate the voxel to real world resolution 485 

and bring the image into the same resolution as the template.  In order to perform the 486 

registration, the tissue image is converted to gray scale. The template image is also min-max 487 

normalized in order to bring it into range of a normal gray scale image rather than the original 488 

multi-channel image. In order to mask the background noise from the sample images we ran a 489 

20µm Gaussian blur on each image, from which we generated a binary tissue mask using the 490 

Otsu method, which allows us to mask out all voxels except for those that contain tissue from the 491 

registration process.  492 

Image Registration: After the initial rotation, we selected a single image from our sample set to 493 

act as our “best fit.” For the best fit we chose a sample that had good shape and image quality. 494 

This selection of a best fit image is done to minimize the need of registering each sample 495 
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individually to the template image, which has a higher potential for error, and instead register 496 

them all to the best fit image that shares more of the image characteristics of H&E stains. To run 497 

the registration of the best fit sample (Fig. 5A1) and its spots (Fig. 5A2) to the CCF template 498 

image (Fig. 5A3) we used the symmetric image normalization method (SyN) nonlinear 499 

registration tools from Advanced Normalization Tools (ANTs)75 (v.2.3.2), specifically the 500 

SyNAggro transformation using a mattes SyN metric with parameters of: SyN sampling=32, 501 

flow sigma=3, gradient step=0.1, and registration iterations=[120, 100,80,60,40,20,0]. The result 502 

of this registration can be seen applied to the tissue image (Fig. 5A4) and to the tissue spots (Fig. 503 

5A5). After the best fit image was registered to the CCF template image we used the same 504 

registration parameters to register the remaining samples to the unregistered best fit image, and 505 

then finally applied “best fit to template” transformation generated above to each sample and its 506 

spots, bringing them into common space (Fig. 5A6). 507 

Digital Spots: With all sample images and their spot coordinates in the CCF reference space, we 508 

developed a method to create “digital spots” to make running analysis on multiple samples 509 

simpler and more closely representative of spacing of the spots in relation to each other. Visium 510 

spots are organized in a honeycomb arrangement, where each 55µm spot has 6 equidistant 511 

nearest neighbors spaced 100µm away on center. Knowing this, we created digital spots that 512 

replicate the characteristics of the Visium spots in the digital space. Using the 10µm resolution 513 

of the CCF template, we wrote a function that generated a honeycomb spaced grid of digital 514 

spots in CCF space and within the bounds of our template mask by defining the desired spacing 515 

between digital spots. Due to inevitable spatial uncertainty during registration, we set the spot 516 

spacing of our digital sampling to 150µm in order to “smooth” the data, a method already 517 

common in neuroimaging. We then measured Euclidean distance between each digital spot and 518 
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template registered tissue coordinates from all samples in the experiment. We sorted these 519 

distances and selected at each digital spot from each sample the 7 nearest neighbor spots up to 520 

450µm, or approximately 3 digital spots away from the center of the digital spot. We chose 7 521 

because of the hexagonal properties of the spot spacing, with every 1 spot having 6 nearest 522 

neighbors. Each digital spot is therefore a vector of multiple spots from each of the registered 523 

samples, e.g. for our 13 samples, this sampling would include up to 7 x 13 sample spots at each 524 

digital spot. For our data, this method generated 2,052 spots for the CCF template image (Fig. 525 

5A7), of which we removed 160 spots from analysis for not having sufficient nearest neighbors 526 

across samples, leaving 1,892 spots.  Examples of this sampling can be seen in Fig. 5B-G, with 527 

the first image in each plot showing the mean of the digital spots of log base 2 normalized gene 528 

counts for NSD samples (Fig. 5B1-G1), the second image showing the mean of normalized gene 529 

counts for SD (Fig. 5B2-G2). 530 

 531 

Statistical analysis of digital spots: We performed a two-tailed t-test on each digital spot with a 532 

Šidák p-value correction (Šidák, 1967) for the number of digital spots as follows: 533 

 534 

Where αs is the Šidák corrected p-value, α is the original p-value (e.g. 0.05 or 0.01) and m is the 535 

number of digital spots used in the analysis. The number of digital spots is determined by the 536 

distance between spots and the actual size of the slice used to create the digital spots. In our case, 537 

with a digital smoothed spot distance of 150µm the number of digital spots came to 2,052, as 538 

compared to the mean of 2,538.46 spots across our sample slices with a spot distance of 539 
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100µm. Based on these numbers, any genes that differed between NSD and SD with a p-value < 540 

2.50e-05 for at least 3 of the 1,892 digital spots present in all samples was considered 541 

significantly differentially expressed. The results of the two-tailed t-test for 6 example DEGs can 542 

be found in figure 5 (Fig. 5B3-G3). 543 

Functional enrichment analysis of DEGs using ToppGene: ToppFun, the functional 544 

enrichment analysis tool from ToppGene suite51 was run by pasting the list of 428 DEGs 545 

generated by STANLY into the ToppFun enrichment gene set and searching for an enrichment of 546 

GO: Molecular Functions, GO: Biological Processes, and Mouse Phenotypes.  547 

  548 
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Figure 1. Spatial patterns of gene expression define anatomically distinct brain regions. A. Coronal tissue section 

H&E histology staining from sample 4. B. Graph-based cluster identification from spot-level (2,711 spots) of sample 4. 

Each spot is colored based on the transcriptional signature computed from 20 principal components using Louvain 

clustering algorithm. The brain regions are labeled in the colored legend. C. Screenshot of the reference mouse Allen 

brain atlas (coronal section image 72 of 132, position 285, http://atlas.brain-map.org/). D. UMAP plot based on the 

transcriptional signature of each spot. E. Bubble plot of the most significant computed biomarkers for each brain 

region. The bubble chart shows the expression level of biomarkers in each brain region. Bubble diameters are 

proportional to the percentage of spots that show expression of the biomarker. For each brain region, two significant 

biomarkers are displayed.
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Figure 2. The hippocampal region is the brain region the most transcriptionally affected after sleep deprivation. 

A. Histogram representing the number of significant differentially expressed genes (DEGs) across each brain region 

previously identified. B-E. Molecular functions enriched from the significant DEGs in the hippocampal region (B), 

neocortex (C), hypothalamus (D), thalamus (E). A gene is significant if its FDR step-up < 0.001 and its log2fold-

change ≥ |0.2|. The size of the circle for each enriched molecular function is proportional to the significance. Only 

molecular functions with a corrected p-value < 0.05 are displayed (two-sided hypergeometric test, Bonferroni step 

down). The DEGs within these molecular functions are color coded to show whether they are downregulated (blue) or 

upregulated (red). F. UpSet plot of interactions between each brain region that have more than 50 significant DEGs 

(fiber tracts and caudatoputamen excluded). The number of DEGs submitted for each brain region is represented by the 

histogram on the left (0-600 range). Dots alone indicate no overlap with any other lists. Dots with connecting lines 

indicate one or more overlap of DEGs between brain regions. The number of DEGs in a specific list that overlap is 

represented by the histogram on the top. For spatial expression patterns with smaller numbers of DEGs, we were able 

to list the gene names above their respective histogram. Genes are labeled for the smallest lists. HPF = Hippocampal 

Formation ; Neo CTX = Neocortex ; HY = Hypothalamus ; TH = Thalamus ; Allo CTX = Allocortex ; SLAN = 

Striatum-like amygdalar nuclei.
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Figure 3. Each hippocampal subregions displays a unique transcriptional impact of sleep deprivation. A. 

Prediction score of the deconvolution step for each of the 2085 spots of a representative example slice for CA1 

pyramidal layer and dentate gyrus granule cells are represented with the color legend from blue to red. The rest of the 

subregions were selected based on biological knowledge using anatomical structures apparent on the H&E staining 

images. B. Example of identified hippocampal subregions on the sample. C. UpSet plot of interactions between each 

hippocampal subregion. The number of DEGs submitted for each subregion is represented by the histogram on the left 

(0-62 range). A gene is significant if its FDR step-up < 0.1 and its log2fold-change ≥ |0.2|. Dots alone indicate no 

overlap with any other lists. Dots with connecting lines indicate one or more overlap of DEGs between hippocampal 

subregion. The number of DEGs in a specific list of overlap is represented by the histogram on the top. Genes are 

labeled for the smallest lists. The unique lists of 53 DEGs and 51 DEGs for stratum radiatum and CA1 pyramidal cells 

respectively enriched specific molecular functions displayed on the left. The size of the circle for each enriched 

molecular function is proportional to the significance. Only molecular functions with a corrected p-value < 0.05 are 

displayed (two-sided hypergeometric test, Bonferroni step down). A gene is considered significant if FDR < 0.001 and 

log2fold change > |0.2|.
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Figure 4. Each cortical layer of the neocortex displays a unique transcriptional impact of sleep deprivation. A. 

Prediction score of the deconvolution step for each of the 2085 spots of a representative example slice for each cortical 

layer are represented with the color legend from blue to red: layer 2-3 (A1), layer 4 (A2), layer 5 (A3), layer 6 (A4). We 

can distinguish between distinct sequential laminar excitatory neurons layers on the aggregated profile (A5). B. UpSet

plot of interactions between each deconvoluted cortical layers of the neocortex. The number of DEGs submitted for 

each layer is represented by the histogram on the left (0-225 range). A gene is significant if its FDR step-up < 0.001 

and its log2fold-change ≥ |0.2|. Dots alone indicate no overlap with any other lists. Dots with connecting lines indicate 

one or more overlap of DEGs between cortical layers. The number of DEGs in a specific list of overlap is represented 

by the histogram on the top. Genes are labeled for the smallest lists. L2/3 = Layer 2 and 3 ; L4 = Layer 4 ; L5 = Layer 

5 ; L6 = Layer 6. The unique lists of 174 DEGs for layer 5 and 149 DEGs for layer 2/3 that enrich specific molecular 

functions are listed on the left. The size of the circle for each enriched molecular function is proportional to the 

significance. Only molecular functions with a corrected p-value < 0.05 are displayed (two-sided hypergeometric test, 

Bonferroni step down). A gene is considered significant if FDR < 0.001 and log2fold change > |0.2|.
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Figure 5. Registration of Visium data to Allen Common Coordinate Framework and statistical analysis of 

aligned transcriptomic spots. A. Nonlinear registration of the tissue image from a single Visium sample (A1) and its 

transcriptomic spot coordinates (A2) – shown as example: the gene Camk2n1 – to the template image (A3), slice 70 

from the Allen P56 Mouse Common Coordinate Framework (CCF. Due to the nonlinear nature of the registration, we 

were able to precisely align the sample image (A4) to landmarks in the template image and apply that transformation to 

the spot coordinates (A5). To account for different numbers of spots in individual samples, digital spots spaced at 

150µm in a honeycomb were created for the template slioce. Each digital spot is populated with the log base 2 

normalized transcriptomic counts from the 7 nearest spots from each sample in a group (A7). This approach allows the 

comparison of gene expression across entire brain slices in an unrestricted inference space.  B-G. Samples were split 

into non-sleep deprived (NSD, n=6, 42 sample spots per digital spot) and sleep deprived (SD, n=7, 49 sample spots per 

digital spot). The range of the color bar for the mean calculations is set from 0 to the maximum normalized gene count 

for that gene for all samples, while the t-statistic color bar is bounded to [-4,4], which is approximately the equivalent 

to the Šidák corrected p-value of < 2.50e-05. We show a selected group of 6 genes from the 428 DEGs (Sup. Table X) 

(B-G). Panel 1 shows for each gene (B1-G1) the mean normalized gene count in NSD, panel 2 depicts the mean 

normalized gene count in SD (B2-G2) and panel 3 shows the t-statistics (B3-G3). The following DEGs are depicted: B. 

Per1, 4 significant spots. C. Nr4a1,  29 significant spots. D. Homer1, 306 significant spots. E. Arc, 168 significant 

spots. F. Rbm3, 31 significant spots. G. Cirbp, 9 significant spots.
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