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The rational design of T Cell Receptors (TCRs) for immunotherapy has stagnated due to a limited under-
standing of the dynamic physiochemical features of the TCR that elicit an immunogenic response. The
physiochemical features of the TCR-peptide major histocompatibility complex (pMHC) bond dictate bond
lifetime which, in turn, correlates with immunogenicity. Here, we: i) characterize the force-dependent
dissociation kinetics of the bond between a TCR and a set of pMHC ligands using Steered Molecular
Dynamics (SMD); and ii) implement a machine learning algorithm to identify which physiochemical fea-
tures of the TCR govern dissociation kinetics. Our results demonstrate that the total number of hydrogen
bonds between the CDR2b-MHC⍺(b), CDR1a-Peptide, and CDR3b-Peptide are critical features that deter-
mine bond lifetime.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Main

T cell-based immunotherapies (e.g., chimeric antigen receptor-
T, or CAR-T; and TCR-engineered-T, or TCR-T) have provided trans-
formative therapeutic responses in a small subset of cancers and
patients (1–5); however, progress in solid tumors has been agoniz-
ingly slow. For example, CAR-T cells require an antigen on the
tumor cell surface, but the majority (�85%) of identified neoanti-
gens are intracellular (6) and thus are immunogenic only when a
representative fragment is presented on the cell surface in a
peptide-major histocompatibility complex (i.e., pMHC). Although
TCR-T therapy is MHC-restricted, this approach can target intracel-
lular antigens, and the remarkable sensitivity of a TCR to recognize
a single pMHCmolecule (7) provides an additional strategic advan-
tage. Nonetheless, identifying neoepitopes, matching these with
immunogenic TCRs, and minimizing off-target effects remain sig-
nificant challenges to implementation of these therapies (8).

Recent reports demonstrate that single-cell sequencing and
machine learning technologies can identify patient- and tumor-
specific neoepitopes (9,10). However, identification of partner TCRs
remains challenging, despite the fact that tumor-specific T cells can
be found in the peripheral blood (11,12). The human immune sys-
tem generates tumor-specific T cells in a process that begins with
random V(D)J recombination to create the hypervariable regions of
the TCR a and b chains. While this process generates a stunningly
large number of possible TCRs (>1020-1061) (13,14), including 106-
108 in the peripheral blood, it is inherently inefficient and does
not necessarily produce a TCR with appropriate immunogenicity
for a given tumor (15). Alternate strategies of TCR identification
have also fallen short; for example, TCR affinity enhancement can
lead to a loss of TCR specificity (16,17) and does not always deter-
mine immunogenicity (18).

Computational techniques such as steered molecular dynamics
(SMD) and machine learning may enable the creation of highly
immunogenic, tumor-specific TCRs through rapid and efficient
screening of the vast number of possible TCRs. The success of these
techniques depends on accurate in vitro predictions of T cell
immunogenicity, a goal that remains elusive. Quantitative descrip-
tors of the TCR-pMHC bond identified in previous studies do not
consistently correlate with immunogenicity (18–21). The majority
of these studies measured equilibrium parameters of the TCR-
pMHC bond (e.g., affinity), which do not account for the non-
equilibrium mechanical forces on the TCR-pMHC bond present
in vivo. Recent studies using DNA-based tension probes have esti-
mated this force at � 10–20 pN (22,23), and subsequent studies
demonstrate that dissociation kinetics (i.e., bond lifetime) of the
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TCR-pMHC bond at this physiologic force can predict immuno-
genicity (24–31). These correlations are consistent across species,
TCR-pMHC pairs, and experimental systems (24–31). Importantly,
force-dependent bond lifetime represents an alternative hypothe-
sis to affinity with no straightforward integration.

Here, we seek to discern the atomic-level physiochemical fea-
tures that determine the TCR-pMHC bond lifetime under force
(i.e., characterize the TCR-pMHC’s force-dependent dissociation
kinetics). As a first attempt to manipulate the bond lifetime of
the TCR-pMHC over a wide range and to develop a novel computa-
tional methodology, we characterized the force-dependent dissoci-
ation kinetics of a single TCR (with a known crystal structure) to 17
possible pMHCs using steered molecular dynamics (SMD). Then,
we used several machine learning algorithms, including linear
regression, to identify the physiochemical features and the specific
regions of the TCR regulating bond lifetime. The dataset for this ini-
tial study is limited due to the computational cost of atomistic
molecular dynamic simulations (i.e., we utilized � 350,000 core-
hours used to accrue this dataset). Simulations were performed
on a high perforamce computing cluster with two 8-core CPUs run-
ning at 2.4 GHz. Although this modest dataset is limited to a single
TCR, this methodology sets precedence for an encompassing study
of a multitude of known TCR-pMHC structures which will require a
significant allocation on one of the world’s largest supercomputers.
Nonetheless, our results provide intriguing insight into the deter-
minants of the TCR-pMHC bond strength and demonstrate that
the total number of hydrogen bonds (H-bonds) between the
CDR2b-MHC⍺(b), CDR1a-Peptide, and CDR3b-Peptide are critical
features that determine bond lifetime for the DMF5 TCR. This find-
ing may inform the rational design of TCRs for TCR-T cell therapy,
and provides a path forward to create more advanced and predic-
tive machine learning algorithms.
2. Methods

2.1. Molecular Dynamics setup

The crystal structure of the human DMF5 TCR complexed with
agonist pMHC MART1-HLA-A2 (PDB code: 3QDJ) (32) was the ini-
tial structure for all simulations (Fig. 1A). To generate the 17 TCR-
pMHC pairs, amino acid substitutions were made to the MART1
peptide (AAGIGILTV) using the Mutagenesis plugin on Pymol
Molecular Graphics System (Schrödinger, New York, New York).
A property distance index (PD) was calculated to determine pep-

tide amino acid sequence similarity to MART1 (SDAP, https://

fermi.utmb.edu/SDAP/) (33) (Table S1). Interfacial substructures
(Fig. 1B) were defined by sequential residues from the correspond-
ing chains: TCR⍺ (CDR1⍺: 24–32, CDR2⍺: 50–55, CDR3⍺: 89–99),
TCRb (CDR1b: 25–31, CDR2b: 51–58, CDR3b: 92–103), MHC⍺
(MHC⍺(b): 50–85, MHC⍺(⍺): 138–179), and peptide (1–9). To
determine protonation states, pKa values were calculated using
propka3.1 (34,35) and residues were considered deprotonated in
Gromacs (36) if pKa values were below the physiological pH 7.4.
The resulting systems were solvated using the TIP3P water model
(37) in rectangular water boxes large enough to satisfy the mini-
mum image convention. Na+ and Cl- ions were added to neutralize
protein charge and reach physiologic salt concentration
of � 150 mM. All simulations were performed with Gromacs
2019.1 (36) using the CHARMM 22 plus CMAP force field for pro-
teins (sometimes referred to as CHARMM 27) (38) and orthorhom-
bic periodic boundary conditions. All simulations were in full
atomistic detail.
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2.2. Energy minimization and equilibration

Generating equilibrated starting structures for the Steered
Molecular Dynamics simulations required four steps: (1) Steepest
descent energy minimization to ensure correct geometry and the
absence of steric clashes; (2) 100 ps simulation in the constant vol-
ume (NVT) ensemble to bring atoms to correct kinetic energies,
while maintaining temperature at 310 K by coupling all protein
and non-protein atoms to separate baths using the velocity rescale
thermostat with a 0.1 ps time constant (39), (3) 100 ps simulation
in the constant pressure (NPT) ensemble using Berendsen pressure
coupling (39) and a 2.0 ps time constant to maintain isotropic pres-
sure at 1.0 bar; and (4) Production MD simulations conducted for
50–150 ns with no restraints. The protein structures were evalu-
ated every 50 ns to determine if all protein chains were equili-
brated by root mean square deviation. To ensure true NPT
ensemble sampling during 100 ns production runs, the Nose-
Hoover thermostat (40) and Parrinello-Rahman barostat (41) were
used to maintain temperature and pressure, respectively. Time
constants were 2.0 and 1.0 ps for pressure and temperature cou-
pling, respectively, utilizing the isothermal compressibility of
water, 4.5-5 bar�1. Box size for equilibration was 10.627 � 7.973
x.10.685 nm3 with � 48,000 water molecules, �300 ions,
and � 157,000 total atoms. All simulation steps used the Particle
Ewald Mesh algorithm (42,43) for long-range electrostatic calcula-
tions with cubic interpolation and 0.12 nmmaximum grid spacing.
Short-range non-bonded interactions were cut off at 1.2 nm using
the Verlet cutoff-scheme and all bond lengths were constrained
using LINCS algorithm (44). The leap-frog algorithm was used for
integrating equations of motion with 2 fs time steps. After the
preparation runs, three independent MD configurations for each
peptide mutant were extracted and used as the three starting
points for steered molecular dynamics simulations.
2.3. Steered Molecular Dynamics (SMD

The full TCR-pMHC complex structure was extracted from the
preparation run for each peptide mutant to generate three SMD
starting configurations. The main axis of these protein complexes
was aligned along the x-axis of the box and solvated in rectangular
water boxes with dimensions 30 � 9.972 � 12.685 nm3. Solvent
was again represented by the TIP3P water model and Na + and
Cl- ions were added to neutralize protein charge and reach physi-
ologic salt concentration of � 150 mM. This resulted
in � 120,000 water molecules, �700 ions, and � 370,000 total
atoms. All Gromacs structure files are uploaded to a Dryad reposi-
tory (https://doi.org/10.25338/B8R33G) for the exact atomic spec-
ifications. Before pulling, all systems underwent (1) energy
minimization; (2) 100 ps NVT; and (3) and 100 ps NPT to remove
high energy contacts without disturbing the configurations. During
pull, the Nose-Hoover thermostat and Parrinello-Rahman barostat
were used to maintain temperature and pressure. 500 pN linear
potential was applied to the center of mass (COM) of the TCR
and pMHC in the x-direction and simulations continued until dis-
tance between COMs reached 0.49 times the box size in x-
direction (Fig. 1A). The COM was chosen as the site of applied force
because pulling from the TCR and MHC termini resulted in artificial
unfolding (45). The 500 pN pulling force was chosen because no
substantial differences in root mean square fluctuations of the
interfacial substructures were found between pulling at 10 pN
and 500 pN (45). All simulation trajectories and selected frames
were visualized using the Pymol Molecular Graphics System
(Schrödinger, New York, New York).
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Fig. 1. Steered Molecular Dynamics (SMD) simulations and machine learning algorithms were used to identify the physiochemical features that predict TCR-pMHC
bond lifetime. (A) Starting structure for SMD of TCR and pMHC (shown at the top with black lines and circle arrowheads). The location/direction of pulling are depicted with
yellow circles/arrows, respectively; the black scale bar with diamond arrowheads denotes the definition of distance between centers of mass. The non-interacting bodies of
the TCR and pMHC are colored in gray. Axes directions are indicated in the left corner (red: +x-direction, blue: +y-direction, and green: +z-direction). (B) The primary
interfacial substructures: (i) MHC⍺(⍺) & MHC⍺(b) = green, Epitope = black; and (ii) TCR CDR1⍺ = light blue, TCR CDR2⍺ = cyan, TCR CDR2⍺ = dark blue, TCR CDR1b = salmon,
TCR CDR2b = light red, and TCR CDR3b = red. (C) A two-layer Elastic Net-Exhaustive Feature Selection algorithm (dashed boxes) was used to obtain ranked and reduced
feature sets. (D) Selected features were used to tune hyperparameters (dashed box) for each machine learning model (Linear Regression = blue, Elastic Net = orange, k-Nearest
Neighbors = green, Support Vector Machines = red, Decision Tree = purple, Random Forest = brown, AdaBoost = pink, Neural Net = gray). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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2.4. Physiochemical descriptors and data analysis

Physiochemical descriptors were evaluated by defining Gro-
macs index groups (gmxmake_ndx) and using Gromacs-suite anal-
ysis tools (i.e., gmx hbond, gmx rms, gmx rmsf, gmx sasa, gmx
gyrate, gmx distance). The physiochemical features were calcu-
lated for the specified index groups and detailed descriptions of
these calculations can be found in the Gromacs manual (36). The
feature averages (e.g., SASA, RMSF, etc.) are the arithemetic average
of triplicate SMD trajectories. Instananeuos features are averaged
over all snapshots (instants) of the SMD trajectories at 10 picosec-
ond time resolution. Data analyses were performed by standard
python packages for data handling and visualization (i.e., numpy
(46), pandas (47), seaborn (48), matplotlib (49), statistics (50),
and GromacsWrapper (51), and custom python scripts. Random
mutants were generated with a custom python script compatible
with Pymol using the random python package and selecting a ran-
dom location and amino acid to mutate the peptide. The machine
learning algorithms were developed using the sklearn package
(52,53) and exhaustive feature selection was performed using mlx-
tend package (54). The geometry of a Lennard-Jones contact (LJ-
contact) is defined as a distance<0.35 nm between atoms. The L1
peptide bond lifetime was an outlier (z-score = 3.65 > 3). To reduce
the effects of the outlier on the dataset, median absolute error was
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selected as the scoring criterion and L1 was excluded from correla-
tion coefficient calculations. The mean absolute error represents
the arithmetic average of median absolute error from repeated
three-fold cross validation. The Pearson correlation coefficient
(rp) and Spearman rank correlation coefficients (rs) were calculated
using the correlationmethod in the pandas python package. Akaike
and Bayesian Information Criterion (AIC and BIC) were calculated
from the standard deviation of repeated three-fold cross validation
of the best machine learning algorithm selected from the hyperpa-
rameter grid search. Statistical significance was determined by
performing a one-tailed student’s t-test (p < 0.05) for each machine
learning algorithm across feature sets. Custom scripts relevant to
mutant generation, feature selection, machine learning, and the
production of figures have been made available in a GitHub repos-
itory: https://github.com/zrollins/TCR.ai.git.

2.5. Feature selection and Machine learning algorithms

Pearson and Spearmen correlation coefficients between all fea-
tures are on the Dryad repository. Features were ranked and
reduced utilizing a two-layer Elastic Net – Exhaustive Search algo-
rithm (Fig. 1C). First, Elastic Net Regularization (55) was used with
all physiochemical features and a grid search was performed to
optimize hyperparameters. The optimized hyperparameters were
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implemented into the Exhaustive Feature Selector (54) and the
best individual features were ranked by repeated (n_repeats = 3)
threefold cross-validation. The top ten features were ranked by
mean absolute error and feature combinations were exhaustively
searched, utilizing Elastic Net Regularization, to determine the best
combinations of 3, 5, and 7 features (Fig. 1C). The best feature com-
binations were selected by mean absolute error arithmetically
averaged over the cross-validation. These feature combinations
were then implemented into several machine learning algorithms
to determine the most predictive model of bond lifetime
(Fig. 1D) (52,53). The machine learning algorithm hyperparameter
optimization was performed on a high performance compute clus-
ter at the University of California, Davis College of Engineering and
the best model for each feature set was scored on absolute error
and ranked by the arithmetic average of repeated threefold
cross-validation (i.e., n_splits = 3, n_repeats = 3, random_state = 1).
Detailed documentation regarding the cross validation and hyper-
parameter optimization of two-layer Elastic Net – Exhaustive
Search feature selection and machine learning predictions are pro-
vided in the supporting information. In addition, this dataset has
been made freely available on the Dryad repository (https://doi.
org/10.25338/B8R33G).
3. Results

3.1. Bond lifetime

As the starting point to simulate the force-dependent dissocia-
tion kinetics of 17 TCR-pMHC pairs using SMD, we used the previ-
ously reported crystal structure (PDB ID: 3QDJ) (32) of the DMF5
TCR (from a melanoma patient) bound to the MART1 peptide
(AAGIGILTV)-MHC complex (Fig. 1A). We then replaced the MART1
peptide with 16 different peptides (Table S1) for a total of 17 TCR-
pMHC pairs. Ten peptides were chosen from a set of known pMHCs
(56,57) and 7 were generated through random point mutation of
the MART1 peptide. The similarity of peptides to the MART1 pep-
tide is evaluated by a property distance index (PD) (33)
(Table S1). The ten known and 7 unknown pMHCs have no known
standard measure of T cell activation, therefore mean computa-
tional bond lifetime is used as a proxy. For these 17 TCR-pMHC
pairs, the mean bond lifetime in the SMD simulations was
5400 ± 1700 picoseconds (Fig. 2).
Fig. 2. TCR-pMHC bond lifetime for 17 different peptides. Using Steered Molecular Dyn
and pMHC and estimated the bond lifetime for 17 different peptides. Known peptides
respectively. Each TCR-pMHC was pulled apart 3 times using different equilibrated struct
standard error of measurement.
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3.2. Physiochemical features of the TCR-pMHC

Next, we identified two sets of physiochemical features which,
at distinct resolution levels, describe the TCR-pMHC bond during
the SMD simulation. The first set characterizes physiochemical fea-
tures of the entire TCR-pMHC interaction (e.g., total H-bonds
between the TCR and pMHC). This characterization provides an
overall assessment of the physiochemical features that might
impact bond lifetime and is consistent with the quaternary struc-
ture of globular proteins. We considered features likely to impact
dissociation kinetics and thus included H-bonds (58), LJ- contacts
(59), distance between the TCR and pMHC (60,61), solvent accessi-
ble surface area (SASA) (62), root mean square fluctuations (RMSF)
(63), and the gyration tensor of the TCR and pMHC. This approach
resulted in 18 features for the first set, and we dubbed these qua-
ternary features (Table S2).

An understanding of the physiochemical features that regulate
dissociation kinetics of the global TCR-pMHC bond provides an
overall assessment of which physiochemical features regulate
bond lifetime. However, this approach does not identify the sub-
regions of the TCR-pMHC bond that regulate bond lifetime and
thus are suitable targets for rational design of TCRs. The hypervari-
able regions of the TCR can be divided into 3 complementarity
determining regions (CDRs) on the ⍺ and b chain, respectively.
Within the MHC, the peptide is surrounded by ⍺-helices which also
interact with the nearby chains of the TCR (Fig. 1B). These MHC a-
helices are located on the MHCa chain and these substructures are
defined by their interaction with the TCR ⍺ and b chain, respec-
tively (i.e., MHC⍺(⍺) and MHC⍺(b)). These TCR CDRs and MHC a-
helices form an interface with the peptide antigen – the variable
in this study – and based on their physical location are likely to
influence TCR-pMHC bond lifetime. Hence, we also identified a sec-
ond set of features focused on the interface between the TCR and
the pMHC (e.g., CDR3a loop of the TCR and the MHC⍺(b) chain,
Fig. 1B). This higher level of resolution is consistent with the sec-
ondary structures (e.g., a-helices) of a protein. Again, we consid-
ered features that are likely to affect dissociation kinetics and
thus included H-bonds, LJ-contacts, distance between the sub-
regions, SASA, RMSF, and the gyration tensor of the sub-regions.
From these considerations, we identified 79 secondary features
(Table S3) that could potentially impact dissociation kinetics. The
quaternary and secondary features were further categorized into
chemical – such as H-bonds and LJ-Contacts – and physical –
amics (SMD), we applied a constant force of 500 pN at the center of mass for the TCR
and those with random point mutations are denoted with circles and and crosses,
ures. The bar height represents the mean bond lifetime and the error represents the
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including RMSF, SASA, and the gyration tensor – interaction
parameters.

3.3. TCR-pMHC bond lifetime prediction using quaternary
physiochemical features

To examine how quaternary physiochemical features influence
TCR-pMHC bond dissociation kinetics, we ranked the top ten qua-
ternary features after an Elastic Net grid search for each individual
feature (Fig. 3A). The scoring criterion was mean absolute error of
bond lifetime in picoseconds. After Elastic Net grid search, chemi-
cal interaction features, in particular Total LJ-contacts and Total H-
bonds, were the most predictive (Fig. 3A); in particular, the total
number of unique LJ-Contacts between TCR and pMHC had the
smallest mean absolute error. In addition, the total LJ-Contacts
had the highest Pearson and Spearman correlation coefficients
(Figure S1, Table S4).

We next explored whether a combination of quaternary physio-
chemical features would improve predictions of bond lifetime. To
Fig. 3. Quaternary Feature Selection and Bond Lifetime Predictions. (A) Mean absolut
features. Errors represent the best test set standard deviation from repeated threefold cro
3, 5, and 7) to predict bond lifetime. (C) The mean accuracies of bond lifetime prediction
(Linear Regression = blue, Elastic Net = orange, k-Nearest Neighbors = green, Support Vect
Neural Net = gray). The grouped bars represent the number of quaternary features include
model. Errors represent the best test set standard error from repeated threefold cross-vali
statistically compared for increasing feature sets by a one-tailed student’s t-test: #p < 0.1
from the selected one-feature Support Vector Machines algorithmwith the coefficient of d
set (bottom right). (For interpretation of the references to colour in this figure legend, t
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accomplish this, we applied a regularized regression method (Elas-
tic Net; see Methods) as a filter to identify predictive feature sets.
To avoid overfitting (64–66), feature sets were reduced utilizing an
Elastic Net (55) – Exhaustive Search (54) algorithm (Fig. 1C) to
determine the best combinations of 3, 5, and 7 features. Using
these combinations, we then trained and tested 8 different
machine learning algorithms to estimate TCR-pMHC bond lifetime
(Fig. 1D) (52,53). Several algorithms, including simple linear
regression (limited dataset), were hyperparameter searched and
predictive performance was evaluated. Although physical quater-
nary features were selected in this exhaustive search (Fig. 3B),
these did not significantly improve the predictive power of the
machine learning models (Fig. 3C). This finding holds for all
machine learning algorithms, as determined by the lack of statisti-
cally significant increase in mean accuracy or decrease in informa-
tion criteria scores (Akaike and Bayesian Information Criteria) with
increasing model complexity (Figure S2, Table S5).

The best feature combination and machine learning model was
chosen based on the lowest error and standard deviation from
e test error from elastic net regularization was used to select the top ten quaternary
ss-validation. (B) According to an exhaustive search, the best feature sets (i.e., p = 1,
for all feature sets in (B) and machine learning models after hyperparameter tuning
or Machines = red, Decision Tree = purple, Random Forest = brown, AdaBoost = pink,
d in increasing order (i.e., 1, 3, 5, and 7 features) for the respective machine learning
dation. The machine learning model standard error from cross-validation (n = 9) was
0, *p < 0.05, **p < 0.01. (D) The scatter plot of predicted and measured bond lifetimes
etermination (top left), the Pearson correlation coefficient (top left), and the feature
he reader is referred to the web version of this article.)
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repeated three-fold cross-validation. Our results demonstrated
that a feature set of only LJ-Contacts combined with a Support Vec-
tor Machines is best at predicting bond lifetime (Fig. 3D). The mean
absolute error using Support Vector Machines was 560 ± 200
picoseconds producing an accuracy of 90.0 ± 3.7% (i.e., 1–
560/5400).
3.4. TCR-pMHC bond lifetime prediction using secondary
physiochemical features

Analogous to our strategy to assess quaternary features of the
TCR-pMHC, we examined secondary features. We ranked the top
ten secondary features after an Elastic Net grid search for each
individual feature (Fig. 4A). The total number of unique H-bonds
between CDR2b -MHC⍺(b) generated the smallest mean absolute
error (Fig. 4A). In addition, the top three features had the highest
Pearson and Spearman correlation coefficients (Figure S3,
Table S4).
Fig. 4. Secondary Feature Selection and Bond Lifetime Predictions. (A) Mean absolute
features. Errors represent the best test set standard deviation from repeated threefold cro
3, 5, and 7) to predict bond lifetime. (C) The mean accuracies of bond lifetime prediction
(Linear Regression = blue, Elastic Net = orange, k-Nearest Neighbors = green, Support Vect
Neural Net = gray). The grouped bars represent the number of secondary features include
model. Errors represent the best test set standard error from repeated threefold cross-vali
statistically compared for increasing feature sets by a one-tailed student’s t-test: #p < 0.1
from the selected 3-feature Decision Tree algorithm with the coefficient of determination
right). (For interpretation of the references to colour in this figure legend, the reader is
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We explored whether a combination of secondary physiochem-
ical features would improve the prediction of bond lifetime. Fol-
lowing the same algorithm as for quaternary features, we applied
an Elastic Net (55) – Exhaustive Search (54) algorithm (Fig. 1D to
identify the best combinations of 3, 5, and 7 secondary features;
cross-validated 8 machine learning models with these feature
combinations; and selected the best feature combination and
machine learning model based on error, standard deviation, and
information criteria. Interestingly, the best 3 feature combination
(CDR2b -MHC⍺(b), CDR1⍺-Peptide, and CDR3b-Peptide) selected
by exhaustive search (Fig. 4B) did not correspond to the top three
individual features selected by Elastic Net rank (Fig. 4A) or correla-
tion coefficients (Table S4). Compared to the single best feature,
the best 3-feature combination statistically improved bond life-
time predictions for Linear Regression, k-Nearest Neighbors, Deci-
sion Tree, and Random Forest machine learning algorithms
(Fig. 4C). Increases in mean accuracy were not statistically signifi-
cant beyond 3 features (Fig. 4C, Table S6). Moreover, these algo-
rithms reduced information criteria scores (Akaike and Bayesian
test error from elastic net regularization was used to select the top ten secondary
ss-validation. (B) According to an exhaustive search, the best feature sets (i.e., p = 1,
for all feature sets in (B) and machine learning models after hyperparameter tuning
or Machines = red, Decision Tree = purple, Random Forest = brown, AdaBoost = pink,
d in increasing order (i.e., 1, 3, 5, and 7 features) for the respective machine learning
dation. The machine learning model standard error from cross-validation (n = 9) was
0, *p < 0.05, **p < 0.01. (D) The scatter plot of predicted and measured bond lifetimes
(top left), the Pearson correlation coefficient (top left), and the feature set (bottom

referred to the web version of this article.)
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Information Criteria) when increasing from 1 to 3 features,
whereas the Elastic Net, Support Vector Machines, and Neural
Net algorithms increased both AIC & BIC (Figure S4). These results
indicate that, among the secondary features and machine learning
algorithms tested, a 3-feature combination utilizing a Decision
Tree provides the most accurate prediction of bond lifetime
(Fig. 4D). The absolute error using the Decision Tree was
870 ± 570 picoseconds (Table S6), or an accuracy of 84 ± 10%. In
addition, this Decision Tree prediction by the best 3 feature combi-
nation exceeded the Pearson correlation coefficient of the individ-
ual features (Fig. 4D, Figure S4).
4. Discussion

T cell-based immunotherapies, such as TCR-engineered-T cells,
provide exciting potential to treat a wide range of cancers, includ-
ing solid tumors. However, this potential has not been reached,
due, in part, to the inability to rapidly and efficiently explore the
vast TCR space to identify optimal tumor-specific TCRs. Experi-
mental methods to design and test potential TCRs are expensive
and slow, thus hindering throughput. In contrast, computational
algorithms that utilize machine learning have enormous potential
to rapidly interrogate the TCR space and identify a small number of
candidates for more efficient experimental testing. We initiate this
premise using SMD to create a small database of TCR-pMHC bond
lifetimes, then created machine learning algorithms to predict
bond lifetime based on quaternary and secondary features of the
TCR-pMHC bond. Using the quaternary features, we found that
total LJ-contacts could predict bond lifetime with 90% accuracy.
More importantly, we also found that we could predict bond life-
time with an accuracy of 84% using only the total H-bonds between
three subregions of the TCR-pMHC: CDR2b-MHC⍺(b), CDR1a-
Peptide, and CDR3b-Peptide. Although these subregions may only
apply to the DMF5 TCR, these results validate the methodology
and identify new, unanticipated regions of the TCR to target in
the rational design of TCRs for immunotherapy.

4.1. Quaternary features of the TCR-pMHC

Upon quaternary feature investigation, the LJ-Contacts between
the TCR and pMHC dominated bond lifetime prediction. In fact, for
all machine learning algorithms investigated, there was no statisti-
cally significant i) increase in mean accuracy when expanding to
larger feature sets (Fig. 3C) or ii) decrease in information criteria
scores (Figure S4). Moreover, although physical features (e.g., x-
Gyration of TCR) were selected in the exhaustive feature selection
process (Fig. 3B), these did not significantly increase mean accu-
racy. This demonstrates that no selected physical features improve
predictive performance and thus the atomic motion of the TCR or
pMHC is unlikely to regulate dissociation kinetics.

4.2. Secondary features of the TCR-pMHC

To identify the specific subregions of the TCR that determine the
TCR-pMHC bond lifetime, we investigated the TCR-pMHC interface
and included substructures, or secondary protein features, that
defined the interaction (Fig. 1B). Physiochemical features within
each substructure and between adjacent substructures (Table S3)
were then evaluated to determine the best predictors of bond life-
time. Among the features and machine learning algorithms
selected, a 3-feature combination of secondary features (CDR2b-
MHC⍺(b), CDR1a-Peptide, and CDR3b-Peptide) was selected as
the most accurate predictor of TCR-pMHC bond lifetime. This
was based on: i) a decrease in information criteria score for 5 of
8 machine learning algorithms; and ii) a statistically significant
3479
increase in mean accuracy for 4 of 8 machine learning algorithms
when increasing the feature set size from 1 to 3. We found that
the combination of total H-bonds between these subregions could
predict bond lifetime with the highest accuracy.

The finding that both the total number of unique H-bonds
between CDR3b-Peptide and CDR1a-Peptide predict TCR-pMHC
bond lifetime is consistent with known DMF5-MART1 structural
immunology. There are a reported three H-bonds between the
CDR3b-Peptide compared to zero H-bonds between the CDR3⍺-
Peptide. Similarly, a reported two H-bonds between the CDR1a-
Peptide and one H-bond between the CDR1b-Peptide (32). Our
finding that the number of unique H-bonds between CDR3b-
Peptide and CDR1a-Peptide are predictive of bond lifetime is con-
sistent with known structural immunology and serves as valida-
tion of the methodology.

The finding that the unique H-bonds between the CDR2b-MHC⍺
(b) predict TCR-pMHC bond lifetime is unanticipated. For example,
the DMF5-MART1 crystal structure reports one H-bond between
both the CDR2b-MHC⍺(b) and CDR2⍺-MHC⍺(⍺). However, the H-
bonds between CDR2b-MHC⍺(b) remained in all exhaustive search
feature sets (Fig. 3B) whereas the H-bonds between CDR2⍺-MHC⍺
(⍺) was not selected as a predictive feature of bond lifetime. This
insight demonstrates the utility of identifying interfacial substruc-
tures that may be manipulated to effect TCR-pMHC bond lifetime.
Most attention has been focused on the heralded CDR3 domains
(67) given the proximity to the peptide (Fig. 1A, B). In contrast,
CDR2 flanks the MHC⍺(a) and MHC⍺(b) domains. It is perhaps
not surprising, given the significantly larger number of residues
(MHC⍺(b) = 42 residues) compared to the peptide (peptide = 9 resi-
dues), that interactions between the CDR2b and the MHC⍺(b)
could potentially be the most energetically significant physio-
chemical features to impact bond lifetime. This is consistent with
our previous study demonstrating that mutations to the MART1
peptide alter the conformation of the MHC⍺(a) and MHC⍺(b)
resulting in increased coulombic potential between the TCR and
MHC (45).

Overall, these results suggest that mutagenesis strategies to
increase hydrogen bonding between CDR2b-MHCa(b), CDR1a-
Peptide, and CDR3b-Peptide may enhance TCR-pMHC force-
dependent bond lifetime. It is important to acknowledge that the
interactions between these interfacial substructures may be speci-
fic to the DMF5 TCR and will require further investigation to gen-
eralize. Nonetheless, these results increase attention to the CDR2
regions in the future of TCR design. Finally, in contrast to previous
reports (28,59), peptide radius of gyration and CDR3⍺-CDR3b dis-
tance were not selected in the top ten predictive features. This is
likely due to the artificial pMHC unfolding by pulling from TCR-
pMHC termini 27 and the lack of diversity in TCR-pMHC pairs eval-
uated (28,59), respectively.

4.3. Computational methods

One of the limiting factors of this study is the computational
constraint of generating a SMD dataset; here, we examined 17
TCR-pMHC pairs. Larger datasets would likely provide more useful
insight into feature combinations that predict TCR-pMHC bond
lifetime, but come at a significant additional computational cost.
Similarly, although the two-layer Elastic Net – Exhaustive Search
feature selection methodology provided a rapid filtering of physio-
chemical features, this biases the machine learning predictor
towards features selected by Elastic Net. At the cost of computa-
tion, exhaustive or recursive feature selection for each machine
learning predictor may improve predictive performance. However,
the focus of this work is to provide an architecture for identifying
physiochemical features that dictate TCR-pMHC dissociation
kinetics.
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4.4. Bond lifetime

The force dependent bond lifetime (at � 10–20 pN) has been
reported to correlate with TCR-pMHC immunogenicity. These find-
ings highlight the importance of TCR-pMHC bond lifetime and sug-
gest that the TCR needs to sustain and form transient bonds under
load for sufficient time to initiate biochemical signaling. Thus, we
utilized force-dependent bond lifetime as an objective function
to uncover the physiochemical determinants of this biomolecular
design feature. It is important to note that this biomolecular design
feature does not necessarily conflict with catch-slip bond behavior
(24), and we recognize that our approach may be expanded in the
future to include other physiochemical characteristics of the TCR-
pMHC bond.
4.5. Conclusions

We have demonstrated the utility of combining two computa-
tional methods – steered molecular dynamics and machine learn-
ing – to create a methodology that can be used to examine the
physiochemical features of the TCR-pMHC bond that predict
force-dependent bond lifetime. Future applications of this work
may inform TCR mutagenesis strategies to target neopeptide-
MHCs in solid tumors. Our initial results suggest that the physio-
chemical features of three subregions of the TCR-pMHC are of par-
ticular importance in determining bond lifetime (CDR2b-MHC⍺(b),
CDR1a-Peptide, and CDR3b-Peptide) for the DMF5 TCR and provide
new and unanticipated regions of the TCR to manipulate in the
rational design of TCR-engineered T cells.
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