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Abstract
Background and Objectives
Myelin oligodendrocyte glycoprotein antibody–associated disorder (MOGAD) is a rare, au-
toimmune demyelinating CNS disorder, distinct from multiple sclerosis and neuromyelitis
optica spectrum disorder. Characterized by pathogenic immunoglobulin G (IgG) antibodies
against MOG, a potential treatment strategy for MOGAD is to reduce circulating IgG levels,
e.g., by interference with the IgG recycling pathway mediated by the neonatal Fc receptor
(FcRn). Although the optic nerve is often detrimentally involved in MOGAD, the effect of
FcRn blockade on the visual pathway has not been assessed. Our objective was to investigate
effects of a monoclonal anti-FcRn antibody in murine MOG-IgG–associated experimental
autoimmune encephalomyelitis (EAE).

Methods
We induced active MOG35-55 EAE in C57Bl/6 mice followed by the application of a mono-
clonal MOG-IgG (8-18C5) 10 days postimmunization (dpi). Animals were treated with either
a specific monoclonal antibody against FcRn (α-FcRn, 4470) or an isotype-matched control
IgG on 7, 10, and 13 dpi. Neurologic disability was scored daily on a 10-point scale. Visual acuity
was assessed by optomotor reflex. Histopathologic hallmarks of disease were assessed in the
spinal cord, optic nerve, and retina. Immune cell infiltration was visualized by immunohisto-
chemistry, demyelination by Luxol fast blue staining and complement deposition and number
of retinal ganglion cells by immunofluorescence.

Results
In MOG-IgG–augmented MOG35-55 EAE, anti-FcRn treatment significantly attenuated neuro-
logic disability over the course of disease (mean area under the curve and 95% confidence intervals
(CIs): α-FcRn [n = 27], 46.02 [37.89–54.15]; isotype IgG [n = 24], 66.75 [59.54–73.96],
3 independent experiments), correlating with reduced amounts of demyelination andmacrophage
infiltration into the spinal cord. T- and B-cell infiltration and complement deposition remained
unchanged. Compared with isotype, anti-FcRn treatment prevented reduction of visual acuity
over the course of disease (median cycles/degree and interquartile range: α-FcRn [n = 16], 0.50
[0.48–0.55] to 0.50 [0.48–0.58]; isotype IgG [n = 17], 0.50 [0.49–0.54] to 0.45 [0.39–0.51]).
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Discussion
We show preserved optomotor response and ameliorated course of disease after anti-FcRn treatment in an experimental model
using a monoclonal MOG-IgG to mimic MOGAD. Selectively targeting FcRn might represent a promising therapeutic
approach in MOGAD.

The development of highly sensitive cell-based assays for the
detection of antibodies against myelin oligodendrocyte gly-
coprotein (MOG) allows to identify a patient subgroup with
an inflammatory demyelinating CNS disorder, MOG immu-
noglobulin G (IgG)–associated disorder (MOGAD).1

MOGAD presents with relapsing rather than monophasic
neurologic syndromes, most commonly optic neuritis, trans-
verse myelitis, and acute disseminated encephalomyelitis.2,3

Although typical criteria for multiple sclerosis (MS) are usu-
ally not met,1 clinical differentiation of MOGAD andMSmay
still be difficult.4

MOGAD cannot be considered as equivalent to aquaporin 4
(AQP4)-IgG–seronegative neuromyelitis optica spectrum
disorder (NMOSD)5 due to different epidemiologic, clinical,
radiographic features and outcome6 and most interestingly re-
markable immunologic differences.7-9 Retrospective studies
suggest that treatment strategies that work well in MS and
NMOSD, e.g., targeting CD20+ B cells, are not similarly effec-
tive in MOGAD.10,11 The intrathecal production of MOG-IgG
in a subgroup of patients may contribute to this.9 Experimental
data indicate the potential limitations of treatment strategies
targeting the complement system.8 Although there have been
several treatment options for AQP4-IgG–seropositiveNMOSD
recently licensed,12-15 evidence-based treatment options are still
lacking for MOGAD.16

The neonatal Fc receptor, FcRn, is an important player in IgG
homeostasis. FcRn protects IgG from degradation, thereby
prolonging the half-life of IgG in the serum.17 After endocytic
uptake of IgG from the circulation by endothelial cells and
monocytes, FcRn binds IgG in the acidified endosome. This
leads to the recycling of IgG back into the circulation, in-
cluding pathogenic IgG. There are several ways to interfere
with the physiologic function of FcRn. Administration of
high-dose IVIg has pleiotropic mechanisms of action in-
cluding the saturation of FcRn and therefore an increased IgG
turnover.18 Recombinant antibodies with increased binding
affinity for FcRn via their Fc region (antibodies that enhance

IgG degradation, abdegs) outcompete other IgG in experi-
mental models.19,20 Engineered MOG-Fc fusion proteins for
selective degradation (seldegs) of MOG-specific antibodies
have recently been tested in a different experimental model
setup.21 The Fc fragment efgartigimod has been investigated
in a phase 2 study in immune thrombocytopenia22 and in a
phase 3 study in myasthenia gravis.23

The blockade of FcRn-IgG interaction using high-affinity
specific monoclonal antibodies against FcRn has been pro-
posed as a more direct and selective approach to reduce IgG
serum concentration for IgG-mediated autoimmune diseases
on the basis of experimental data and first clinical
applications.24-28 Here, we set out to investigate potential
treatment effects of a murine monoclonal anti-FcRn antibody
(α-FcRn) in an experimental autoimmune encephalomyelitis
(EAE) model enhanced by administration of a monoclonal
MOG-IgG.

Methods
Ethics Approval, Animal Husbandry, and
Experimental Planning
Animal experiments were approved by the governmental
authorities of the canton of Bern, Switzerland (BE134/16),
and performed in compliance with the ARRIVE guidelines
(Animal Research: Reporting of In Vivo Experiments) and
Association for Research in Vision and Ophthalmology
Statement for the Use of Animals in Ophthalmic and Vision
Research. Eight- to 12-week-old female C57Bl/6JRj wild-type
mice (Janvier Labs, Le Genest-Saint-Isle, France) were kept
under standardized pathogen-free conditions including a
stable light/dark cycle (12 hours:12 hours) and access to food
and water ad libitum. Experimental procedures were started
after an acclimatization period of at least 7 days. Experiments
were strictly randomized and analyzed in a blinded manner.
Statistical planning assumed an α-error of 5% and 1-statistical
power (β-error) of 20%.

Glossary
abdegs = antibodies that enhance IgG degradation; AUC = area under the curve; AQP4 = aquaporin 4;CCD = charge-coupled
device; c/d = cycles per degree; CI = confidence interval; dpi = days postimmunization; EAE = experimental autoimmune
encephalomyelitis; FcRn = neonatal Fc receptor; α-FcRn = specific monoclonal antibody against FcRn; IgG = immunoglobulin
G; IF = immunofluorescence; IHC = immunohistochemistry; IP = intraperitoneal; MOG = myelin oligodendrocyte
glycoprotein; MOGAD = myelin oligodendrocyte glycoprotein antibody–associated disorder; MS = multiple sclerosis;
NMOSD = neuromyelitis optica spectrum disorder; OMR = optomotor reflex; PFA = paraformaldehyde; RGC = retinal
ganglion cell; ROI = region of interest; SC = subcutaneous; seldeg = selective degradation.
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Induction of MOG-IgG–Augmented
MOG35-55 EAE
Chronic EAE was induced by active subcutaneous (SC) im-
munization with 100 μg MOG peptide 35–55 (MOG35-55;
Charité Berlin, Germany) emulsified in complete Freund’s
adjuvant under short isoflurane anesthesia. Two hundred
nanograms of Pertussis toxin (List Biological Laboratories,
Campbell, CA) were injected intraperitoneally (IP) on 0 and
2 days postimmunization (dpi). The experimenters observed
the animals after this procedure until they detected normal
behavior.

At 10 dpi, animals were injected IV with 200 μg of murine
anti-MOG 8-18C5 IgG1 (2 mg/mL, hybridoma cell line
provided by Chris Linington, Glasgow, United Kingdom,
purified by Aldevron, Freiburg, Germany) or a monoclonal
IgG1 isotype (UCB Pharma, Slough, United Kingdom).

Treatment of MOG-IgG–Augmented
MOG35-55 EAE
A monoclonal murine α-FcRn IgG1 (4470; UCB Pharma) or
monoclonal murine IgG1 isotype control (101.4; UCB
Pharma) was administered IP (30 mg/kg body weight) at 7,
10, and 13 dpi. This dosage and dosing interval were chosen
based on previous data with 4470.29 Of note, the second day
of administration of 4770 coincides with the injection of the 8-
18C5 MOG-IgG but they have different routes of adminis-
tration (IP and IV, respectively).

Assessments of Disease Course and
Visual Function

Clinical Scoring
Disease severity was assessed using a 10-point EAE scale: 0,
normal; 1, reduced tone of tail; 2, limp tail, impaired righting;
3, absent righting; 4, gait ataxia; 5, mild paraparesis of hind
limbs; 6, moderate paraparesis; 7, severe paraparesis or
paraplegia; 8, tetraparesis; 9, moribund; and 10, death.30-32 A
score of 7 on 3 consecutive days or a score of 8 or higher
required early individual termination of the experiment for
ethical reasons. As a conservative approach, these animals are
continued in the clinical evaluation with the respective last
score until 21 dpi (end of experiment for all animals).

Optomotor Reflex Measurement
As a proxy for visual acuity, optomotor reflex (OMR) was
measured in vivo in nonanesthetized, freely moving animals33

at baseline (before immunization) and at the end of experi-
ment (19–20 dpi) using a commercially available OMR sys-
tem (OptoDrum; Striatech, Tübingen, Germany). A rotating
black and white striped pattern was presented at a constant
velocity of 6.1°/s and maximal contrast to animals placed on a
platform in the center of 4 computer screens. A charge-
coupled device (CCD) camera installed centrally above the
platform automatically detected the animal behavior (OMR)
in response to the presented stimulus. The software auto-
matically adjusted the stimulating pattern width (in cycles/

degree; staircase assessment). All stimuli were presented and
assessed binocularly, and the threshold value per mouse was
confirmed in repeated measurements. As the OMR is an au-
tonomous reflex, EAE-related symptoms do not hamper its
measurement.34-36

Histology, Immunohistochemistry, and
Immunofluorescence of the Spinal Cord and
Optic Nerve
Animals were euthanized at 21 dpi. Spinal cords and optic
nerves were extracted and fixed in 4% paraformaldehyde (PFA)
for 24 hours and embedded in paraffin and 5-μm-thick tissue
sections were stained.

Demyelination was assessed after Luxol fast blue (Carl Roth,
Arlesheim, Switzerland)/periodic acid–Schiff (VWR International,
Dietikon, Switzerland) staining. For immunohistochemistry
(IHC), epitopes were unmasked with a Tris-EDTA buffer
before blocking with fetal calf serum (Thermo Fisher Scientific,
Waltham,MA). IHCwas performed for macrophages (rat anti-
mouse Mac3, 0.3 μg/mL; BD Pharmingen, Heidelberg, Ger-
many), T cells (rat anti-human CD3, 10 μg/mL; Bio-Rad AbD
Serotec, Puchheim, Germany), and B cells (rat anti-mouse
B220r, 10 μg/mL; Bio-Rad, Cressier, Switzerland) with a bio-
tinylated secondary antibody (biotinylated rabbit anti-rat IgG,
2.5 μg/mL; Vector BA, Burlingame, CA) and counterstaining
with hematoxylin (VWR International). B-cell staining was
only performed in spinal cord tissue due to the sparse in-
filtration seen therein and limited availability of optic nerve
tissue. Complement deposition was visualized by immunoflu-
orescence (IF) staining for C5b-9 (rabbit anti-mouse C5b-9,
10 μg/mL; Abcam, Cambridge, United Kingdom).

Images were acquired with a slide scanner (Pannoramic 250
Flash III; 3DHISTECH, Budapest, Hungary) or a Nikon
microscope equipped with epifluorescence and CCD camera
(Nikon Instruments Europe B.V., Egg, Switzerland) and
evaluated using CaseViewer (3DHISTECH) or ImageJ
(NIH, Bethesda, MD), respectively.

Retinal GanglionCell Count Via Eye FlatMounts
One eye per animal was fixed in 4% PFA for 24 hours, and
retinal flat mounts were prepared as described before.37 After
IF staining for retinal ganglion cells (RGCs, goat anti-Brn3a,
0.2 μg/mL; Santa Cruz Biotechnology, Dallas, TX), retinas
were extended on a microscope slide with the nerve fiber layer
facing upward and viewed on a Nikon microscope equipped
with epifluorescence. Pictures were taken with a CCD camera
(Nikon Instruments Europe B.V.).

Quantification of Tissue Assessments (Spinal
Cord, Optic Nerve, and RGCs)
In transverse spinal cord cross-sections, demyelinated area was
determined as percentage of total white matter after manual
outlining. Demyelinated area of the optic nerve was assessed
with the color deconvolution plugin in ImageJ and expressed as
percentage of the complete longitudinal optic nerve section.
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The number of T cells and macrophages was counted with
CaseViewer, and complement fluorescence intensity was
quantified with ImageJ in 4 regions of interest (ROIs) of 100
× 100 μm within 2 lesions of the lumbar and thoracic spinal
cord each or over the whole optic nerve tissue. B-cell infil-
trates were assessed according to a semiquantitative score (0,
no infiltrate; 1, 1–3 cells; and 2, more than 3 cells or clusters)
in 2 sections of the lumbar and thoracic spinal cord, each.
RGCs were counted semiautomated in 4 ROIs of 1.11 mm2

around the optic nerve head using ImageJ.

Statistics
Statistical analysis was performed with GraphPad 9 (GraphPad
Software Inc., San Diego, CA). Animal numbers result from 3
pooled independent EAE experiments with the same experi-
mental setup. Varying n-numbers in analyses are due to limited
tissue availability or the sole inclusion of animals with available
longitudinal OMR measurement, respectively. Data are shown
as mean ± SEM. Unpaired groups were compared using the
Mann-Whitney test. For paired groups, the Wilcoxon matched-
pairs signed-rank test was used. For the clinical disease course,
95%confidence intervals (CIs) of the area under the curve (AUC)
were additionally calculated to reflect cumulative disease severity.
Visual acuity as detected via OMR is given in cycles per degree
(c/d) and described in a box-and-whiskers plot with median,
interquartile range, and minimum/maximum. The exploratory
correlation analyses were performed using Spearman rank corre-
lation, providing Spearman rho (r) and the respective p value.

p Values of <0.05 were deemed statistically significant, and
levels of significance are indicated as follows: ns = not sig-
nificant; *p < 0.05; **p < 0.01; and ****p < 0.0001. Exact p
values are given with 2 decimal places, except for p < 0.0001.

Data Availability
The data sets supporting the conclusions of this article are
available to any qualified researcher on reasonable request.

Results
Anti-FcRn Treatment Ameliorated Clinical
Course of MOG-IgG–Augmented MOG35-55 EAE
A single pilot experiment descriptively depicts the disease
course ofMOG-IgG–augmentedMOG35-55 EAE in our setting
compared with EAE using isotype IgG and sham immunization
in the presence of MOG or isotype IgG (eFigure 1, links.lww.
com/NXI/A688), in line with previous findings.19,38 In our
model system of MOG-IgG-augmented MOG35-55 EAE, dis-
ease incidence in all experiments was 100% for both groups.

Clinical disease severity was significantly reduced in animals
receiving anti-FcRn treatment compared with the isotype
IgG-treated group (α-FcRn: n = 27; isotype IgG: n = 24; p =
0.03; Figure 1A). The mean clinical score at the end of ex-
periment was 4.56 (±0.33) in the anti-FcRn group and 7.04
(±0.16) in the isotype IgG, respectively. The 95% CIs of the

AUC did not overlap (α-FcRn: 37.89–54.15, mean AUC
46.02; isotype IgG: 59.54–73.96, mean AUC 66.75).

The apparent delay of onset in the anti-FcRn group was
caused by 4 animals in the isotype IgG group that developed
disease symptoms from 8 dpi (n = 1) and 10 dpi (n = 3)
onward, respectively. All other animals developed clinically
manifest EAE between 11 and 14 dpi in both groups, i.e., after
MOG-IgG administration.

Optomotor Response Was Preserved in
Anti-FcRn–Treated Animals
The OMR revealed no significant differences at baseline in
both treatment groups (α-FcRn: 0.50 c/d [0.48–0.55], n = 16;
isotype IgG: 0.50 c/d [0.49–0.54], n = 17; p = ns; Figure 1B).
Whereas no significant decline was detected in the anti-FcRn
group at the end of experiment (0.50 c/d [0.48–0.58]; p = ns),
isotype IgG-treated animals displayed a reduction of opto-
motor response (0.45 c/d [0.39–0.51]; p = 0.02).

Morphologic Surrogates Were Supportive of
Functional Findings
Treatment effects on disease course of MOG-IgG–augmented
MOG35-55 EAE could be corroborated histologically in the spinal
cord (Figure 2) with reduced demyelination (1.8-fold, p <
0.0001; Figure 2A) and less macrophage infiltration (1.4-fold, p
< 0.0001; Figure 2B) anti-FcRn–treated animals. No further
quantitative differences were detected for T-cell infiltration,
B-cell infiltration, or complement deposition (Figure 2, C–E).

Histologic analyses of optic nerve tissue (Figure 3) reflected
pathologic involvement in MOG-IgG–augmented MOG35-55

EAEwith the presence of demyelination,macrophage infiltration,
and complement deposition; yet, no significant differences were
detected between the treatment groups (Figure 3, A, B, and D).
T-cell counts were increased in animals receiving anti-FcRn
treatment (Figure 3C). However, the absolute number of T cells
counted in the optic nerves was very low (α-FcRn: 3.75 cells/ROI
[0.38], n = 7; isotype IgG: 2.07 cells/ROI [0.77], n = 7, p= 0.04).
RGCcount showed a tendency to be lower in isotype IgG-treated
animals (α-FcRn: 2,877 cells/ROI [87.27], n = 14; isotype IgG:
2,565 cells/ROI [185.20], n = 11, p = 0.18, Figure 3E).

Correlation of Functional Visual Assessment
and Morphology of the Anterior Visual System
In an exploratory analysis, correlation of OMRwith optic nerve
demyelination and RGC counts was performed (eFigure 2,
links.lww.com/NXI/A688). Lower visual acuity correlated
with increased optic nerve demyelination (r = −0.71, p = 0.04),
whereas no significant association was found for OMR and
RGC counts (r = 0.16, p = 0.45).

Discussion
We here demonstrate a treatment effect of an anti-FcRn an-
tibody on different clinical and morphological outcome
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parameters in a murine model of MOG-IgG–augmented
MOG35-55 EAE. Histologic correlates in the spinal cord sup-
port the reduced severity of disease symptoms. Optomotor
response was preserved in anti-FcRn–treated animals as
shown by an in vivo automated measurement of spatial visual
acuity. In addition, visual acuity correlated with the pro-
portion of demyelination in the optic nerve.

The significance of monoclonal antibodies against MOG (8-
18C5) has been shown experimentally by their potential to
exacerbate clinical disease symptoms and demyelination in
EAE.19,38 Delivery of 8-18C5 into the CNS after IV admin-
istration, although not reviewed in our setting, was demon-
strated before using fluorescence-labeled 8-18C5.19 In this
context, other IgG-reducing treatment strategies have already
been tested. Engineered antibodies that lower endogenous
IgG levels by competing for binding to FcRn, the so-called
abdegs, or that selectively bind anti-MOG–specific antibodies,
seldegs, have shown an effect on the disease course. However,
several methodological differences including immunization
with a human MOG peptide and later administration of the
monoclonal 8-18C5 antibody or polyspecific human IgG from
MS patient samples (15 vs 10 dpi) hamper a direct compar-
ison of these models.19-21 Abdeg and seldeg have thus far not
been used in human settings.

In our model, we applied a specific, high-affinity monoclonal
antibody against FcRn (4470) to explore the translatability of
a humanized monoclonal antibody (rozanolixizumab) to the
treatment of MOGAD. As rozanolixizumab does not bind
mouse FcRn, the pharmacologically equivalent murine 4470
antibody was used here. Rozanolixizumab has been evaluated
in phase 2 studies in other IgG autoantibody–mediated

diseases, myasthenia gravis, and immune thrombocytopenia
and has demonstrated promising results.24,26 Moreover, a
phase 3 clinical study with rozanolixizumab has recently been
initiated in patients with MOGAD (NCT05063162).

Lowering of circulating IgG via species-specific anti-FcRn
antibodies has been demonstrated before including the mu-
rine antibody used in this study.29,39 We did not measure the
actual decrease of circulating IgG or MOG-IgG in our ex-
periments, representing a limitation of our work.

In addition to the existing data in a model system using an
abdeg,19 we demonstrate robust morphologic correlates for the
spinal disease manifestation. Another important feature of our
work is the specific assessment of the visual outcome on a
functional and morphological level. We have demonstrated not
only the involvement of the optic nerve on a functional level
correlating with demyelination but also the effects on visual
acuity of an intervention in this system. As a limitation, the
morphologic assessments of the optic nerve and retina have
been performed with limited animal numbers due to the avail-
ability of material. Therefore, further confirmation is required.

Nevertheless, as different visual outcomes including OMR,
histology, and optical coherence tomography have just re-
cently been included in experimental models of CNS
demyelination,40,41 our findings underscore the usefulness of
these approaches to perform a multimodal analysis of exper-
imental models and to gain more insights on a potential
translation to the human diseases.

To further corroborate our findings measured on a functional
level, electrophysiologic outcome parameters might have

Figure 1 Clinical and Visual Outcome in MOG35-55 EAE With MOG-IgG Augmentation

(A) Treatment with anti-FcRn (α-FcRn, black, n = 27, 30 mg/kg, IP) or isotype-matched control antibody (IgG, gray, n = 24, 30 mg/kg, i.p.) on 7, 10, and 13 days
postimmunization (dpi). Disease augmentation with MOG-IgG (200 μg, IV) on 10 dpi. Neurologic disability was scored daily on a 10-point scale. n = 3
independent experiments, Mann-Whitney test, *p = 0.03. (B) Visual acuity (c/d)measured as optomotor reflex at baseline (before immunization, days [d] −6 to
−2, white) and at the end of the experiment (19–20 dpi, gray) in anti–FcRn-treatedmice (left, n = 16 paired observations) and in control IgG-treatedmice (right,
n = 17 paired observations), n = 3 independent experiments. Within-group comparisons: Wilcoxon signed-rank test, line, *p = 0.02 in the control group.
Between-group comparisons: Mann-Whitney test, dashed line, *p = 0.01 at the end of the experiment, ns = not significant. c/d = cycles per degree; EAE =
experimental autoimmune encephalomyelitis; MOG = myelin oligodendrocyte glycoprotein.
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been included. Yet, differences were already detectable using
the noninvasive OMR measurement. Thus, the gain of addi-
tional insight in the visual system by measuring the more
sensitive visual evoked potentials with an implanted electrode
would be limited.42

To detect retinal involvement in EAE, different model sys-
tems and methodology have been used. Thereby, retinal de-
generation has already been demonstrated.40,41,43 Lacking a
functional outcome, RGC loss at 23 dpi has been detected
with Brn3a staining.43 With neuronal nuclei (NEUN) and
apoptosis (TUNEL) staining, retinal neuron loss has been
gradually found from 11 dpi on in a MOG35-55 EAE model
reaching its maximum at 28 dpi.41 Comparing different EAE
models, RGC loss detected via Brn3a and beta-III–tubulin
staining has been shown as a long-term outcome (120 days up
to 9 months after immunization), yet with considerable var-
iance in some of the model systems.40 All these studies
compared different EAE mice with controls and were not
directly comparable to our setting.

Thus, the lack of a significant difference in RGC at 21 dpi in
our setup comparing anti-FcRn–treated and control mice

could be explained (1) by the comparatively early time point
of assessment, (2) high interindividual variance of total RGC
counts, or (3) smaller differences between 2 diseased groups.

The assumption is that the anti-FcRn demonstrated efficacy
in our model by removing pathogenic anti-MOG antibodies.
However, because FcRn is also known to be involved in
modulating immune complex presentation in antigen-
presenting cells and subsequent activation of T cells,44 one
could hypothesize that modulation of the primarily T cell–
driven MOG35-55 EAE response45 was also involved. In our
setup, this has not been investigated in more detail.

A potential limitation in the translation of our study to a
human setting may be the timing of anti-FcRn application
before the administration of MOG-IgG. However, it was ap-
plied after the active peptide immunization phase, creating an
inflammatory CNS background so that our setup is not a
prophylactic treatment in sensu stricto.

In an experimental model using a monoclonal MOG-IgG to
mimic MOGAD, treatment with a specific monoclonal anti-
body against FcRn has demonstrated positive effects on spinal

Figure 2 Histopathologic Disease Manifestations in the Spinal Cord

Quantification and histologic representation of the (A) percentage of demyelination after LFB/PAS staining, (B) macrophage infiltration after IHC for Mac3+
cells, (C) T-cell infiltration after IHC for CD3+ cells, (D) B-cell infiltration after IHC for B220+ cells, and (E) complement deposition after IF for C5b-9/DAPI in the
anti-FcRn (α-FcRn) and control (IgG) group. Scale bars = 100μm. n = 3 independent experiments.Mann-Whitney test, ****p < 0.0001, ns = not significant. a.u. =
arbitrary units; DAPI = 49,6-diamidino-2-phenylindole;αFcRn = specificmonoclonal antibody against FcRn; IF = immunofluorescence; IgG = immunoglobulinG;
IHC = immunohistochemistry; LFB = Luxol fast blue; PAS = periodic acid–Schiff; ROI = region of interest.
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cord and optic nerve manifestations that represent the most
common and disabling symptoms inMOGAD. If these effects
were further corroborated and translated into the human
situation, anti-FcRn therapy could become a promising
treatment option in a disease, which thus far lacks evidence-
based therapeutics.
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Figure 3 Histopathologic Disease Manifestations in the Optic Nerve (A–D) and Retina (E)

Quantification and histologic representation of the (A) percentage of demyelination after LFB/PAS staining, (B) macrophage infiltration after IHC for Mac3+
cells, (C) T-cell infiltration after IHC for CD3+ cells, (D) complement deposition after IF for C5b-9/DAPI, and (E) retinal ganglion cells counted on retinal flatmount
with IF for Brn3a+ in the anti-FcRn (α-FcRn) and control (IgG) group. Scale bars = 100 μm. n = 2 independent experiments. Mann-Whitney test, *p = 0.04, ns =
not significant. a.u. = arbitrary units; DAPI = 49,6-diamidino-2-phenylindole; αFcRn = specific monoclonal antibody against FcRn; IF = immunofluorescence; IgG
= immunoglobulin G; IHC = immunohistochemistry; LFB = Luxol fast blue; PAS = periodic acid–Schiff; ROI = region of interest.
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