
GigaScience, 9, 2020, 1–10

doi: 10.1093/gigascience/giaa122
TECHNICAL NOTE

TECHNICAL NOTE

DrivAER: Identification of driving transcriptional
programs in single-cell RNA sequencing data
Lukas M. Simon 1,*,+, Fangfang Yan 1 and Zhongming Zhao 1,2,3,4,*

1Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center
at Houston, 7000 Fannin St, Houston, TX 77030, USA; 2Human Genetics Center, School of Public Health, The
University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA; 3MD Anderson
Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
and 4Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End, Nashville,
TN 37203, USA
∗Correspondence address. Lukas M. Simon, Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center
at Houston, 7000 Fannin St, Houston, TX 77030, USA. E-mail: lukas.simon@bcm.edu http://orcid.org/0000-0001-6148-8861 and Zhongming Zhao, Center
for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030,
USA. E-mail: zhongming.zhao@uth.tmc.edu http://orcid.org/0000-0002-3477-0914
+Contact lead.

Abstract

Background: Single-cell RNA sequencing (scRNA-seq) unfolds complex transcriptomic datasets into detailed cellular maps.
Despite recent success, there is a pressing need for specialized methods tailored towards the functional interpretation of
these cellular maps. Findings: Here, we present DrivAER, a machine learning approach for the identification of driving
transcriptional programs using autoencoder-based relevance scores. DrivAER scores annotated gene sets on the basis of
their relevance to user-specified outcomes such as pseudotemporal ordering or disease status. DrivAER iteratively evaluates
the information content of each gene set with respect to the outcome variable using autoencoders. We benchmark our
method using extensive simulation analysis as well as comparison to existing methods for functional interpretation of
scRNA-seq data. Furthermore, we demonstrate that DrivAER extracts key pathways and transcription factors that regulate
complex biological processes from scRNA-seq data. Conclusions: By quantifying the relevance of annotated gene sets with
respect to specified outcome variables, DrivAER greatly enhances our ability to understand the underlying molecular
mechanisms.
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Findings
Background

Single-cell RNA sequencing (scRNA-seq) experiments dissect bi-
ological processes or complex tissues at the cellular and molec-
ular levels [1, 2]. Owing to the high complexity and large num-
ber of observations, 1 critical step in scRNA-seq analysis is di-
mension reduction [3]. Dimension reduction projects the high-
dimensional expression matrix into a low-dimensional space,

also called data manifold or cellular map, which captures the
underlying biological processes [4]. A number of methods have
been used for manifold learning in scRNA-seq data [5–10].

Biological meaning can be extracted from the data manifold
following in-depth analysis. After cells are stratified into sepa-
rate groups or along a continuum, differential expression anal-
ysis is performed. Gene set enrichment analysis represents one
of the most popular approaches to interpreting lists of differ-
entially expressed (DE) genes and has been frequently used on
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bulk RNA-seq data [11–13]. More recent work has adapted this
approach to scRNA-seq data [14]. Additional tools for biological
interpretation of scRNA-seq data focus on the identification of
latent variation that is aligned with gene sets [15–18].

However, choosing the best parameters to identify DE genes
across diverse scRNA-seq datasets is still an open challenge [19].
Moreover, subtle transcriptional signals driven by a specific set
of genes may not be sufficiently reflected in the global data man-
ifold. Therefore, there is a need for methods that facilitate bi-
ological interpretation without performing differential expres-
sion analysis that capture subtle transcriptional signals driven
by knowledge-based annotated gene sets.

Here, we present DrivAER, a method for the identification of
driving transcriptional programs based on autoencoder-derived
relevance scores. Transcriptional programs (TPs) are sets of
genes sharing biological properties [20] such as genes sharing
transcription factor (TF) binding motifs or genes involved in the
same biological pathway [11, 21]. TPs have been annotated ex-
tensively, and DrivAER infers TP relevance scores for existing
gene set annotations with respect to specified outcomes of inter-
est. These outcomes can represent extrinsic phenotypes, such
as disease status, or intrinsic phenotypes derived from the data
itself, such as pseudotemporal trajectories. Relevance scores al-
low researchers to rank TPs and help explain the underlying
molecular mechanisms.

We evaluated DrivAER by application to 2 publicly avail-
able scRNA-seq datasets and comparison to 2 competing meth-
ods called VISION [22] and PAGODA [15]. Our results demon-
strate that DrivAER correctly extracts well-known regulators
from complex scRNA-seq datasets profiling interferon stimula-
tion and blood development. Moreover, DrivAER outperforms ex-
isting methods when subtle transcriptional signals are present.
Our user-friendly tool integrates smoothly downstream of the
popular scRNA-seq analysis framework Scanpy [23].

Results
DrivAER correctly identifies interferon response

DrivAER is based on 1 assumption: the data manifold of relevant
TPs shares information with the outcome of interest. Irrelevant
TPs, on the other hand, will generate data manifolds where the
cells fall randomly with respect to the outcome of interest. Dri-
vAER builds upon our Deep Count Autoencoder (DCA) method
[9], which has been shown to achieve high scalability for large
scRNA-seq data [24]. DrivAER iteratively applies DCA to the raw
counts of each annotated TP-specific gene set to generate a 2D
data manifold in an unsupervised manner (Fig. 1A and B). Next,
we associate the resulting manifold coordinates with the out-
come of interest using random forest models (Fig. 1C). We inter-
pret the random forest accuracy as relevance score, which quan-
tifies the amount of information that is shared between the TP-
specific data manifold and the outcome of interest (Fig. 1D).

To demonstrate the ability of DrivAER to perform correct
manifold interpretation, we reanalyzed 2 publicly available
scRNA-seq datasets. The first dataset by Kang et al. [25] de-
scribed a transcriptional response to interferon stimulation
(Fig. 1E). As a proof of principle, we asked whether DrivAER
could recapitulate this biology and extract the interferon signa-
ture as the driving transcriptional program defining the T-cell
data manifold (Fig. 1F). We applied DrivAER to the subset of T
cells and evaluated all 50 hallmark gene sets from the Molec-
ular Signatures Database (MolSigDB) [26] with respect to inter-
feron stimulation (Supplementary Table S1). Indeed, the “INTER-

FERON GAMMA RESPONSE” gene set received the highest rele-
vance score (Fig. 1G) among all 50 gene sets included in the anal-
ysis. Visualization of the T-cell DCA embedding derived from the
“INTERFERON GAMMA RESPONSE” gene set showed clear sepa-
ration by condition (Fig. 1H), implicating that this gene set is the
main driving force separating the stimulated and unstimulated
T cells. As a negative control, we show the DCA embedding for
1 of the lowest scoring gene sets “PROTEIN SECRETION” (Fig. 1I).
For this gene set, the cells cluster randomly with respect to the
stimulation status. The heat map in Fig. 1J shows the expres-
sion levels of T cells for the “INTERFERON GAMMA RESPONSE”
gene set. It is important to note that the cells (columns) are
ordered by stimulation status and that the DCA coordinates
are strongly associated with the stimulation status. Most “IN-
TERFERON GAMMA RESPONSE” genes are upregulated in stimu-
lated compared to unstimulated cells. Expression of genes in the
“PROTEIN SECRETION” gene set shows a random pattern (Sup-
plementary Fig. S1).

To further manifest the biological meaning of the DCA em-
bedding, we visualized the expression of interferon marker
IFIT2 in the “INTERFERON GAMMA RESPONSE” (Fig. 1K) and
“PROTEIN SECRETION” (Fig. 1L) embeddings. Expression lev-
els of IFIT2 increase along the DCA coordinates in the
“INTERFERON GAMMA RESPONSE”-derived embedding. In con-
trast, IFIT2 expression is distributed randomly in the “PRO-
TEIN SECRETION”-derived embedding. Therefore, DrivAER cor-
rectly identified the TPs driving interferon stimulation out of the
entire collection of hallmark gene sets.

DrivAER unveils key transcription factors in blood
development

Next, we tested whether DrivAER is capable of extracting key
TFs involved in differentiation trajectories. DrivAER is particu-
larly well suited to infer the relevance of TFs for the following
reasons. TF-mediated regulation is regarded as a combinatorial
process that requires the coordination of multiple TFs and co-
activators [27]. Moreover, there are vast differences in sensitiv-
ity and typical sequencing depth across various scRNA-seq tech-
nologies. Owing to the low RNA capture rate in some scRNA-seq
technologies, generally TFs with low levels of expression may
not be detected reliably [28]. Therefore, the expression levels of
the target genes represent a better proxy of TF activity compared
to the expression level of the TF itself [29].

To demonstrate the utility of DrivAER, we use a collection
of TF-target annotations to infer TF activity and reanalyzed a
hematopoietic differentiation dataset by Paul et al. [30]. The au-
thors identified and described the main blood development tra-
jectories including differentiation from stem cells towards ery-
throcytes and monocytes (Fig. 2A and B). Next, we calculated
2 independent pseudotemporal trajectories for erythrocyte and
monocyte differentiation (Fig. 2C and D). We then applied Dri-
vAER to identify TFs that are relevant for erythrocyte and mono-
cyte differentiation using the entire collection of motif gene sets
contained in MolSigDB [31]. Among all 495 gene sets included
in the analysis, DrivAER identified the GATA TF family as the
most relevant in the erythrocyte trajectory (Fig. 2E, Supplemen-
tary Table S1). The DCA embedding derived from the “GATA C”
gene set showed strong clustering by pseudotime, demonstrat-
ing that GATA target gene expression is highly coordinated along
this trajectory (Fig. 2F). Indeed, expression levels of GATA targets
showed strong association with both pseudotime and DCA coor-
dinates (Fig. 2G).
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Figure 1: DrivAER correctly identifies interferon response. (A) DrivAER iteratively subjects annotated gene sets to unsupervised dimension reduction via Deep Count
Autoencoder (DCA). (B) For each gene set, the 2D data manifold coordinates are calculated and (C) subsequently used as input features in a random forest model to

predict the outcome of interest (i.e., pseudotemporal ordering). (D) The random forest prediction accuracy represents the relevance score. (E) t-Distributed stochastic
neighbor embedding (tSNE) visualization displays all peripheral blood mononuclear cells (PBMCs) colored by cell type. NK: natural killer. (F) Cellular map (tSNE) of T cell
subset clusters by stimulation status. (G) Bar plot indicates relevance scores of the 5 most and least relevant transcription programs. DCA embeddings calculated based
on “INTERFERON GAMMA RESPONSE” (H) and “PROTEIN SECRETION” (I) (negative control) gene sets are depicted. Cells are colored by stimulation status. (J) Heat map

shows gene expression of “INTERFERON GAMMA RESPONSE” target genes and cells in rows and columns, respectively. Columns are ordered first by stimulation status
and second by DCA coordinates. Bars on top of the heat map represent stimulation status and DCA coordinates 1 and 2. Red and blue colors correspond to high and
low relative expression values. Relative expression of interferon gene IFIT2 is overlaid on top of the DCA embeddings derived from “INTERFERON GAMMA RESPONSE”
(K) and “PROTEIN SECRETION” (L) gene sets. Dark colors indicate higher expression.
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Figure 2: DrivAER unveils key transcription factors in blood development. PAGA (A) and cell-level graph (B) visualization of the Paul et al. [30] dataset. Cells are colored

by Louvain clustering as provided by Scanpy. Two independent trajectories were calculated for erythrocyte (C) and monocyte (D) development. Cells are colored by
pseudotime. (E) Bar plot displays relevance scores for the 5 most and least relevant transcription factors in the erythrocyte development trajectory. (F) DCA embedding
plot was derived from the “GATA C” gene set and is colored by pseudotime. (G) Heat map showing gene expression of cells and “GATA C” target genes for the erythrocyte
trajectory in columns and rows, respectively. (H) Bar plot displays relevance scores for the 5 most and least relevant transcription factors in the monocyte development

trajectory. (I) DCA embedding plot was derived from the “PU1 Q6” gene set and is colored by pseudotime. (J) Heat map shows scaled gene expression of cells and
“PU1 Q6” target genes for the monocyte trajectory in columns and rows, respectively. For both heat maps, columns are ordered by pseudotime. Bars on top of heat
map indicate pseudotime, DCA coordinates 1 and 2. Red and blue colors reflect high and low expression values.
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Of note, targets showed both up- and down-regulation.
A fraction of targets increased in expression along the tra-
jectory while a smaller fraction decreased. When integrat-
ing annotation from the TRRUST database [32] with the
“GATAAGR GATA C” gene set, Fli1 expression was predicted to
be repressed by TF GATA1 and, correspondingly, we observed a
negative correlation along the trajectory between these 2 genes
(Supplementary Fig. S2).

Among the most relevant TFs in the monocyte trajectory
was PU1 (Fig. 2H, Supplementary Table S1), which also showed
strong association between the DCA embedding (Fig. 2J) and tar-
get gene expression (Fig. 2I) with pseudotime. Both GATA and
PU1 are well-known lineage-determining regulators in blood de-
velopment, with GATA and PU1 driving erythrocyte and mono-
cyte differentiation, respectively [33]. However, such conclusions
cannot be drawn on the basis of the expression of Gata1 and
Pu1 itself. Although Gata1 and Pu1 showed increased expression
along their developmental trajectories, many other TFs exhib-
ited a similar pattern, making it difficult to pinpoint the driv-
ing regulator (Supplementary Fig. S3). Taken together, our find-
ings demonstrate that DrivAER robustly explains the molecular
mechanisms underlying complex biological processes.

Benchmarking DrivAER

To further assess and thoroughly benchmark our method in a
controlled setting, we performed extensive simulation analysis.
We used the Splatter [34] framework to simulate scRNA-seq data
consisting of 2 groups of cells with subtle transcriptional differ-
ences where only 10% of genes were DE between the 2 groups.
Subsequently, we generated different gene sets that varied in the
number of truly DE genes (Fig. 3A). The gene sets ranged from
sets without any truly DE genes (DE fraction = 0) to sets con-
sisting of all truly DE genes (DE fraction = 1). Visualization of all
genes in reduced dimensions using UMAP showed no clear sep-
aration between the 2 cell groups (Fig. 3B). However, dimension
reduction restricted to truly DE genes using DCA showed sepa-
ration between the cells (Fig. 3C), indicating that while the sig-
nal may be weak across all genes, targeted dimension reduction
of specific genes successfully recovered the underlying cellular
manifold.

To evaluate methodological aspects underlying DrivAER, we
performed the following analyses. With respect to the dimen-
sion reduction task, we compared DCA with principal compo-
nent analysis (PCA), Uniform Manifold Approximation and Pro-
jection (UMAP), and t-distributed stochastic neighbor embed-
ding (tSNE). Across the gene sets that vary in the fraction of truly
DE genes, DCA overall achieved the highest relevance scores
(Fig. 3D). At low fractions of DE genes, the alternative dimension
reduction methods slightly outperformed DCA (Supplementary
Fig. S5). Therefore, we implemented PCA, UMAP, and tSNE-based
dimension reduction into the DrivAER framework. Users have
the option to select any of these 4 dimension reduction meth-
ods for their DrivAER analysis.

Next, we compared random forest and support vector ma-
chines (SVM) for the classification task. We did not observe any
significant differences in performance between these 2 meth-
ods, indicating that random forest models represent an appro-
priate choice for this task (Fig. 3E). Moreover, we evaluated the
impact of various hidden layer configurations during the DCA di-
mension reduction underlying DrivAER. We applied DrivAER us-
ing varying bottleneck layer sizes to the collection of simulated
gene sets. The performance did not differ substantially across
the 3 configurations, indicating that DrivAER is robust to vari-

ous hidden layer configurations (Fig. 3F). Even when the gene
set contained only 20% of truly DE genes, the relevance score
was significantly higher than that of random gene sets over 10
bootstraps (1-sided t-test, P < 0.05, Fig. 3G), demonstrating Dri-
vAER’s ability to capture subtle transcriptional signals.

Additionally, we evaluated the different bottleneck config-
urations in a more complex simulation scenario consisting of
4 unbalanced groups of cells. All 3 configurations successfully
recovered the varying degree of signal in the gene sets. The
4D and 8D bottleneck layers outperformed the 2D bottleneck
layer slightly (Supplementary Fig. S6A). Visualization of the cel-
lular manifold derived from the 2D, 4D, and 8D bottleneck layers
showed improved separation of the 4 cell groups, suggesting that
higher dimensional bottleneck layers may be needed to resolve
more complex data manifolds (Fig. S6C and D).

Next, we compared DrivAER to VISION [22] and PAGODA [15],
2 existing tools for the functional interpretation of scRNA-seq
data. Unlike DrivAER, VISION does not iteratively subject gene
sets to dimension reduction; instead it operates directly on the
global cellular manifold. VISION uses a local autocorrelation
statistic to infer the relevance of various gene sets. PAGODA, on
the other hand, calculates the adjusted z-score for each gene set
and assesses the variance explained for significance. Both the
autocorrelation and adjusted z-scores are analogous to the Dri-
vAER relevance score. High values indicate relevant gene sets.

We applied VISION in directed and undirected mode, as well
as PAGODA, to the simulated gene sets. As expected, for all 3
methods, the respective scores increased with the fraction of
truly DE genes (Fig. 3H–J). However, it is important to note the
following differences. For PAGODA, the gene sets with 20% truly
DE genes achieved a lower adjusted z-score compared with the
completely random gene sets. Moreover, the fact that none of
the absolute adjusted z-scores passed 1.96 implied that none of
the gene sets achieved statistical significance. For VISION, we
observed a similar pattern. While the autocorrelation statistic
increased with the fraction of truly DE genes, it never passed
0.1 and 100% truly DE gene sets never reached a high autocor-
relation. Because VISION operates on the global manifold (i.e.,
Fig. 3B) instead of gene set–specific manifolds (i.e., Fig. 3C), it is
less likely to capture subtle transcriptional differences. When
using DrivAER, on the other hand, random gene sets achieved
a relevance score ∼0.5. This corresponds to the likelihood of
taking a random guess with 2 classes. Correspondingly, gene
sets consisting of all truly DE genes approached relevance scores
close to 1. Therefore, relevance scores for categorical phenotype
can be readily interpreted.

For additional comparison, we applied VISION and PAGODA
to the interferon stimulation and blood development datasets
(Supplementary Fig. S4). All 3 methods clearly identified the cor-
rect TPs involved in interferon stimulation. In the erythrocyte
trajectory, the GATA C gene set achieved high scores using Dri-
vAER and VISION but not PAGODA. For the monocyte trajectory,
only DrivAER generated high relevance scores for PU1-related
gene sets.

Discussion and Conclusions

While autoencoders have been applied for unsupervised dimen-
sion reduction in bulk [35–37] and scRNA-seq data [38, 39], Dri-
vAER makes use of autoencoders with a different goal. By iter-
ative application, DrivAER scores gene sets on the basis of their
relevance instead of trying to identify potential signatures that
may not be captured in databases. Thus, while using autoen-
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Figure 3: DrivAER identifies drivers underlying subtle transcriptional changes. (A) Two groups of single cells were simulated and gene sets were created by sampling

a mixture of truly differentially expressed (DE) genes and random genes. (B) The global embedding using all genes is visualized using UMAP. (C) The DCA embedding
for a gene set consisting of all truly DE genes is depicted. For both (B) and (C), cells are colored by group. (D) Relevance scores (y-axis) for gene sets ranging in the
fraction of truly DE genes (x-axis) are displayed across implementations of DrivAER differing in the underlying dimension reduction methods. (E) Relevance scores
(y-axis) for gene sets ranging in the fraction of truly DE genes (x-axis) are displayed using random forest (red) and support vector machine (SVM; blue) classification

models. (F) Relevance scores (y-axis) for gene sets ranging in the fraction of truly DE genes (x-axis) are displayed across various configurations of the hidden layer. (G)
Box plot shows significantly different relevance scores between 10 bootstrap runs of completely random gene sets (red) and gene sets consisting of 20% truly DE genes
(blue) (1-sided t-test, P = 0.0467). The boxes represent the interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the
interquartile range. (H) PAGODA’s adjusted z-scores (y-axis) are displayed for gene sets ranging in the fraction of truly DE genes (x-axis). (I) VISION’s autocorrelation

statistic is displayed for gene sets ranging in the fraction of truly DE genes (x-axis). (J) DrivAER (default parameters) relevance scores (y-axis) are displayed for gene
sets ranging in the fraction of truly DE genes (x-axis). The horizontal dashed line indicates 0.5, the accuracy of random guesses for a binary outcome. For (D), (E), (F),
(H), (I), and (J) lines represent the smoothed values and gray shading represents the 95% confidence interval derived from the smoothing fit.
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coders for unsupervised dimension reduction intrinsically, our
method aims to rank gene sets in a supervised fashion.

Unlike VISION, DrivAER does not require a predefined dis-
tinction between the sign of regulation (repression or activa-
tion) of genes in a given gene set. The unsupervised nature of
the DCA embedding captures any form of non-random, coordi-
nated expression pattern. Therefore, DrivAER captures complex,
non-linear expression patterns commonly observed in scRNA-
seq data. An additional benefit of DrivAER is its ability to visu-
alize the gene set–specific data manifold. These visualizations
promote discovery of transcriptional regulation that may oth-
erwise be hidden in the summary statistics generated by other
methods including gene set enrichment analysis or VISION and
PAGODA. Moreover, as demonstrated in the simulation analysis,
DrivAER’s relevance score is readily interpretable.

As illustrated in the blood development example, we divided
the manifold into independent trajectories for interpretation.
However, DrivAER provides the flexibility to be applied to the en-
tire manifold or any subset of it. The user can make this choice
and arbitrarily define regions of the manifold, which are ex-
pected to be regulated by a TP.

Additionally, as demonstrated in the blood development ex-
ample, DrivAER enables users to make inferences about regula-
tors that were not measured or where measurements are noisy.
We envision that users will apply DrivAER to infer activity of reg-
ulators not generally detected in scRNA-seq data such as mi-
croRNAs and long noncoding RNAs.

In the present approach DCA needs to be retrained for each
gene set because the input genes and thus the network archi-
tecture changes between gene sets. Therefore, the running time
of DrivAER depends on the number of gene sets included in
the analysis. In the interferon stimulation analysis, the running
time per gene set averages between 20 and 30 seconds depend-
ing on the number of genes and convergence of the model. To
improve speed, we plan to extend DrivAER by developing a “hot-
start” approach in future work.

In summary, specialized methods facilitating the functional
interpretation of scRNA-seq data are needed to fuel the rapid
progress in the field. DrivAER is a novel machine learning ap-
proach that is effective for manifold interpretation in scRNA-seq
data. Our results demonstrate that relevance scores represent a
useful measure to extract driving transcriptional regulators from
complex scRNA-seq datasets. DrivAER, including interactive use
tutorial, is freely available from Github [40] and we anticipate
broad use by the community.

Methods
Transcriptional program annotations

The Molecular Signatures Database (MolSigDB, v7.0) was used
to define transcriptional programs [11]. The hallmark gene set
contained 50 gene sets corresponding to specific well-defined bi-
ological processes [26]. The C3 TF targets collection contains 610
genes sets in total, where genes share the same cis-regulatory
motifs from known TF binding sites in the TRANSFAC (v7.4) [41]
database around their transcription start sites [31]. The gene
sets with motifs not included in the TRANSFAC database were
removed. A total of 495 gene sets were utilized in the blood
development study. For mouse scRNA-seq datasets, the gene
symbols were converted to mouse homologs before running
DrivAER.

DrivAER

DrivAER was written in Python and designed to integrate down-
stream of Scanpy [23]. Given a collection of annotated gene sets,
DrivAER uses the DCA [9] to calculate a 2D data manifold for
each gene set. Autoencoders are neural networks that learn an
efficient compression of high-dimensional data [42]. One impor-
tant characteristic that distinguishes DCA from other dimen-
sion reduction methods is a scRNA-seq–specific noise model.
The bottleneck layer captures the compression and represents
the data manifold. As default for DrivAER, we set the bottleneck
dimension to 2 neurons. DCA takes a raw count matrix as in-
put and outputs the data manifold coordinates using the pa-
rameter mode = “latent.” To account for differences in library
size, size factors derived from the transcriptome-wide, instead
of gene set–specific, expression matrix are fed into DCA.

The relevance scores are derived using random forest mod-
els as implemented in the Python module sklearn (v0.21.2). Once
DCA has reduced the dimensions, the 2D data manifold co-
ordinates are used as input features and the variable of in-
terest as outcome in the random forest model. For categorical
outcomes, “sklearn.ensemble.RandomForestClassifier” is used.
For continuous outcomes, such as pseudotemporal trajectories,
“sklearn.ensemble.RandomForestRegressor” is used. The num-
ber of trees was set to 500. The out-of-bag accuracy score of the
TP-specific random forest model represents the relevance score.

For benchmarking purposes only, we applied SVM classifica-
tion as implemented in the R package e1071 with default param-
eters. Additionally, we implemented 3 alternative dimension re-
duction methods into the DrivAER framework. PCA, tSNE, and
UMAP were implemented using the Scanpy functions “pp.pca,”
“tl.tsne,” and “tl.umap,” respectively. All functions use Scanpy’s
default parameters.

Simulation analysis

scRNA-seq data were simulated using the splatter R package
[34]. Specifically, the splatSimulate() function was used to sim-
ulate scRNA-seq data with 2 equally sized groups, consisting of
500 genes and 2,000 cells. The default gene expression and li-
brary size parameters were used. To simulate subtle transcrip-
tional differences, the proportion of DE genes was set to 0.1
and the differential expression factor was set to 0.01. To include
specific noise commonly encountered in scRNA-seq data, the
dropout type was set to “experiment.” The “dropout.mid” pa-
rameter was set to 5 and “dropout.shape” was set to −1. The
splatSimulate() function was also used to simulate scRNA-seq
data with 4 unbalanced groups, containing 1,000 genes and 4,000
cells. The proportion of cell numbers in these 4 groups was set to
0.1, 0.2, 0.3, and 0.4, respectively. The “dropout.mid” parameter
was set to 2 and “dropout.shape” was set to −1.

To simulate gene sets from a continuous spectrum of rele-
vance the following approach was used. Gene sets were created
by combining truly DE genes with genes showing no expression
difference between the 2 groups. We generated gene sets con-
taining 6 different fractions of truly DE gene sets (0, 0.2, 0.4, 0.6,
0.8, 1). Ten bootstrap samples were generated at each fraction.
These 60 simulated gene sets were used for DrivAER evaluation.

For the evaluation of DrivAER using different configurations
of hidden layers 5 bootstrap samples were generated at each
fraction of truly DE gene sets. These 30 simulated gene sets were
subjected to 3 different configurations of hidden layers, (4, 2, 4),
(8, 4, 8), and (16, 8, 16), in an independent analysis.
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Interferon stimulation analysis

The scRNA-seq dataset of 29,065 peripheral blood mononuclear
cells (PBMCs) from patients with lupus with and without in-
terferon stimulation were obtained from the Gene Expression
Omnibus database (GSE96583). The tSNE coordinates as well as
cell type and state (stimulated or unstimulated) information dis-
played in Fig. 1E and F were taken from the supplemental mate-
rials of the original publication [25]. CD4 T cells were isolated on
the basis of the cell type annotation file from the paper and DB-
SCAN clustering algorithm [43] was used to remove outlier cells
(epsilon = 0.1, min cells = 20). Before applying DrivAER, genes
with low expression with <3 counts across all cells were filtered
out.

Blood development analysis

Expression data for the Paul et al. [30] data were obtained
from Scanpy’s (version 1.4.6) [23] built-in datasets using the
“scanpy.datasets.paul15()” function. Expression data consist of
2,730 hematopoietic stem cells and 3,451 genes. The prepro-
cessing of the data was performed following the Scanpy tu-
torial using the “scanpy.pp.recipe zheng17()” function. Specif-
ically, the 1,000 most highly variable genes were selected for
downstream analysis. Louvain clustering (version 0.6.1) was
conducted with resolution of 1, which resulted in 25 clusters.
Clusters were annotated on the basis of the expression of canon-
ical cell type marker genes. Two major developmental trajecto-
ries were identified, namely, the differentiation of hematopoi-
etic stem cells to erythrocytes and monocytes. Pseudotemporal
ordering was independently calculated for these 2 trajectories
using the “scanpy.tl.dpt” function. DrivAER was applied to the
raw counts and pseudotemporal ordering of each trajectory in-
dependently to infer relevant TPs.

Expression data for the Nestorowa dataset were obtained
from the “Gene and protein expression in adult hematopoiesis”
website [44]. On the basis of the provided annotation, cells
were divided into the erythrocyte and monocyte trajectory. Pseu-
dotemporal ordering was calculated as described above. DrivAER
was applied as described above.

PAGODA

PAGODA facilitates biological interpretation by testing gene sets
for coordinated variability among cells. Briefly, PAGODA first es-
timates measurement properties, such as sequencing depth,
drop-out rate, and amplification noise, for each cell. Next,
PAGODA renormalizes the expression variance of each gene ac-
counting for the measurement properties. Next, PAGODA tests
whether a panel of gene sets shows statistically significant ex-
cess of coordinated variability using weighted PCA. A high dis-
persion or adjusted z-score indicates statistical significance and
transcriptional heterogeneity of the gene set. The underlying
idea is that overdispersed gene sets separate cells along a cer-
tain principal component. The separation of cells along this gene
set–specific principal component implies relevance of the gene
set.

The SCDE (version 1.99.1) R package including PAGODA was
downloaded from github [45]. The gene set overdispersion anal-
ysis was conducted following the PAGODA tutorial with default
parameters. The minimum number of reads for a gene was
set to 2. The pagoda.varnorm() function was used to normal-
ize the variance. The custom gene set environment file was
created using the 60 simulated gene sets described above. The

pagoda.pathway.wPCA() and pagoda.top.aspects() function were
used to estimate the overdispersion of each gene set. The ad-
justed z-score was compared to DrivAER’s relevance scores.

VISION

VISION annotates sources of variation in scRNA-seq data by di-
rectly operating on the global cellular manifold. For each cell,
VISION first identifies its closest k-nearest neighbor graph. By
default, VISION uses PCA to create this low-dimensional space,
but the user can provide more advanced latent space models.
Next, VISION calculates a signature score for each annotated
gene set and subsequently assesses whether the signature score
is randomly distributed throughout the cellular manifold using
a local autocorrelation statistic, the Geary C [46]. High values of
VISION’s autocorrelation indicate non-random pattern, and this
score can be compared to DrivAER’s relevance score. The input
of VISION is the normalized count matrix and the signature files
or objects containing various gene sets. The output is a VISION
object containing the local autocorrelation scores for each gene
set and corresponding embedding plot colored by scores.

VISION (version 2.0.0) was downloaded from github [47]. We
applied VISION to the simulation analysis, interferon stimula-
tion, and blood development experiments using default param-
eters. For the simulation analysis, VISION was run in both di-
rected and undirected mode. The signature object was created
using the 60 simulated gene sets described above. For the undi-
rected mode, 1 was used for the value of every gene. For the di-
rected mode, the values for the up- and down-regulated genes
were set to 1 and −1, respectively. For the blood development
experiments, VISION was run in trajectory mode following the
pipeline of the VISION tutorial. After filtering and normalization,
slingshot from the Dynverse package (version 0.1.1) [48, 49] was
used to infer the trajectory. The VISION scores for each gene set
were compared to DrivAER’s relevance scores.

Additional Files

Supplementary Figure S1. Heat map shows gene expression of
PROTEIN SECRETION gene set and cells in rows and columns,
respectively. Columns are ordered first by stimulation status and
second by DCA coordinates. Bars on top of heat map represent
stimulation status and DCA coordinates 1 and 2. Red and blue
colors correspond to high and low relative expression values.

Supplementary Figure S2. Plots show Fli1 (top) and Gata1
(bottom) expression along the erythrocyte trajectory. Grey points
indicate cells. The green and blue lines represent smoothed ex-
pression estimates.

Supplementary Figure S3. Expression of Gata1 (A) and Gfi1b
(B) along the erythrocyte trajectory shows similar pattern. How-
ever, DCA embedding derived from “GFI1 01” gene set shows
poor association with pseudotime. Expression of Pu1 (A) and
Cebpa (B) along the monocyte trajectory shows similar pattern.
However, DCA embedding derived from “CEBPA 01” gene set
shows poor association with pseudotime.

Supplementary Figure S4. (A) Scatter plots depict VISION
autocorrelation statistic (x-axis) and DrivAER relevance scores
(y-axis) for the Interferon stimulation (left), erythrocyte (mid-
dle), and monocyte (right) trajectories. (B) Scatter plots depict
PAGODA adjusted z-scores (x-axis) and DrivAER relevance scores
(y-axis) for the interferon stimulation (left), erythrocyte (middle),
and monocyte (right) trajectories. For all panels, points represent
gene sets and exemplary gene sets are highlighted.
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Supplementary Figure S5. Box plot shows relevance scores
between completely random gene sets (red) and gene sets con-
taining 20% truly DE genes (blue) differing in the underlying di-
mension reduction methods. From left to right, dimension re-
duction was based on DCA, PCA, UMAP, and tSNE.

Supplementary Figure S6. Complex 4-group simulation anal-
ysis. (A) Relevance scores (y-axis) for gene sets ranging in the
fraction of truly DE genes (x-axis) are displayed across various
configurations of the hidden layer. The horizontal dashed line
indicates 0.25, the accuracy of random guesses for an outcome
with 4 categories. (B) The DCA embedding derived from a 2D bot-
tleneck layer for a gene set consisting of all truly DE genes is
depicted. Embedding derived from 4D (C) and 8D (D) bottleneck
layers is visualized in 2 dimensions using UMAP. For (B–D), cells
are colored by group.

Supplementary Table S1. Table contains the DrivAER rele-
vance scores for the interferon stimulation and blood develop-
ment experiments.

Data Availability

An archival copy of the code and supporting data is available via
the GigaScience repository, GigaDB [50].

Availability of Supporting Source Code and
Requirements

Project name: DrivAER
Project home page: https://github.com/lkmklsmn/DrivAER
Operating system(s): Platform independent
Programming language: Python
License: MIT license
bio.tools ID: drivaer
RRID: SCR 019076

Abbreviations

DCA: deep count autoencoder; DE: differentially expressed; Mol-
SigDB: Molecular Signatures Database; PCA: principal compo-
nent analysis; PBMC: peripheral blood mononuclear cell; scRNA-
seq: single-cell RNA sequencing; SVM: support vector machines;
TF: transcription factor; TP: transcriptional program; tSNE: t-
distributed stochastic neighbor embedding.
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