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Abstract

When studying financial markets, we often look at estimating a correlation matrix from asset

returns. These tend to be noisy, with many more dimensions than samples, so often the

resulting correlation matrix is filtered. Popular methods to do this include the minimum span-

ning tree, planar maximally filtered graph and the triangulated maximally filtered graph,

which involve using the correlation network as the adjacency matrix of a graph and then

using tools from graph theory. These assume the data fits some form of shape. We do not

necessarily have a reason to believe that the data does fit into this shape, and there have

been few empirical investigations comparing how the methods perform. In this paper we

look at how the filtered networks are changed from the original networks using stock returns

from the US, UK, German, Indian and Chinese markets, and at how these methods affect

our ability to distinguish between datasets created from different correlation matrices using

a graph embedding algorithm. We find that the relationship between the full and filtered net-

works depends on the data and the state of the market, and decreases as we increase the

size of networks, and that the filtered networks do not provide an improvement in classifica-

tion accuracy compared to the full networks.

1 Introduction

The study of correlation matrices estimated from financial data has been of interest to econo-

physicists for many years. We do this as it allows us to quantify levels of risk in a portfolio. In

general, we desire a low risk portfolio to consist of negatively correlated assets. This means that

even if the value of one of the assets drops, the others will not. This involves calculating the cor-

relation matrix from a set of stock returns. Most authors use Pearson correlation due to its

interpretability, but other options are available, including partial correlation [1–3], rank corre-

lation [4, 5] or mutual information [6]. Asset returns are generally not stationary [7], and so a

small window of data is usually chosen where stationarity can be assumed [8]. However, the

accurate estimation of a correlation matrix requires a relatively large window of data, as the

correlation matrix will be ill-formed if there is more dimensions than samples. This therefore

necessitates a trade off, with often the smaller window of data winning out. To overcome this
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issue, we can choose to estimate fewer edges by removing noisy ones. This has the added

advantage of making the resulting correlation matrix easier to interpret.

Deciding which edges are noisy is not a trivial task. Various methods have been proposed

to solve this, such as sparsity [9, 10] or thresholding [11], but we are particularly interested in

topological methods. Here we assume the dataset fits a certain shape, and keep the strongest

edges that correspond to this shape. Once these edges have been removed, we can treat the cor-

relation matrix as the adjacency matrix of a network, and use tools from graph theory to study

it. This results in a financial network, with nodes in said network representing companies and

edges representing relationships between them. The two most popular options for filtering a

correlation matrix are the Minimum Spanning Tree (MST) [12, 13] and the Planar Maximally

Filtered Graph (PMFG) [14]. Using the MST to filter a correlation matrix was originally pro-

posed by Mantegna [12]. However, this method retains only a small number of the correlations

present—from a matrix containing p assets only p − 1 edges are retained. Tumminello et al.

[14] therefore proposed a method which retained more edges, the PMFG, which greedily

selects the largest correlations while ensuring the resulting graph is planar (can be drawn on a

2d surface with no edges crossing). This results in 3p − 6 edges retained. However, the PMFG

relies on a planarity check at each iteration, which is very computationally expensive for larger

graphs. Therefore, Massara et al. [15] proposed the TMFG, which constructs a planar graph

without the requirement for a planarity check. Instead, at each iteration the new node is added

as a clique (a sub-graph where all nodes are fully connected to each other) into a triangular

face. Pseudo code for each of these filtration methods can be found in Fig 1.

While much of the focus of the applications of these filtration methods has been on stock

returns [13, 16], there have been applications on other types of data, including cryptocurren-

cies [17, 18], gene expression data [19, 20], fMRI data [21, 22] and on semantic networks [23].

Fig 1. Pseudo code for the described topological filtration methods. (a) Minimum Spanning Tree, (b) Planar

Maximally Filtered Graph, (c) Triangular Maximally Filtered Graph.

https://doi.org/10.1371/journal.pone.0273830.g001
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While these methods do produce graphs with greater interpretability, there is not necessar-

ily a great deal of evidence to believe that the underlying dataset can nicely fit into such struc-

tures [24]. Furthermore, these models also discard many correlations, which changes the

structure of the resulting networks, sometimes in non-obvious ways [25]. There is also little

evidence on whether these methods actually improve performance on certain tasks. We have

only found one paper on this subject. In this paper, Tola et al. [26] find that using MST filtered

correlation matrices does not improve portfolio optimization performance unless the volatili-

ties are known beforehand.

Therefore in this paper we look at studying the effects of these filtration methods compared

to just using the full correlation matrix. To do this we use a set of stock data from five different

countries, the US, UK, Germany, India and China. Using this spread of countries also allows

us to see if the effects can be seen in both developed and developing markets, as these are

known to have different structures [27].

Firstly, we study how the filtered networks differ on a node and edge level from the full net-

works, and how this varies depending on the number of dimensions considered in the analysis.

Secondly, we study how this difference changes with the market state. Thirdly, we look at

using an objective measure to quantify how useful the methods are. In particular we focus on

graph classification—if we create different underlying graphs, do the filtration methods cause

an increase in accuracy compared to an unfiltered graph? Furthermore which filtration

method gives the best accuracy? To the best of our knowledge, this approach to objectively

evaluate the correlation filtration methods has not been undertaken before. We choose the

task of graph classification for a few reasons. Firstly, we know the market tends to fit into cer-

tain states [28, 29], and therefore it should be possible to distinguish between these states using

these networks. Secondly, graph classification is not specific to financial networks, and net-

works inferred from other sources can also be classified (as opposed to using the inferred cor-

relation matrices for portfolio selection, for instance). Therefore this could extend to datasets

from other fields, and help to show how these methods generalize.

2 Materials and methods

2.1 Correlation matrix creation

We create three ‘types’ of correlation matrix for our initial investigations into the effects of the

filtration methods, using returns from the windows of minimum, maximum and median vola-

tility. Each window is 504 days in size. The volatility is measured using the mean of the stan-

dard deviation of all the stock returns in the dataset during that window. From these windows,

we take p dimensions at random to create a set of sub-datasets for each class. The values of p
go from 10 to 200 for the US, 10 to 70 for the UK, 10 to 23 for DE, 10 to 45 for IN and 10 to 30

for CH inclusive, incrementing by 10 for the US, 5 for the UK, 5 for IN and 1 for DE and CH.

We then calculate a set of sample correlation matrices from these sub-datasets, to obtain a

dataset of correlation matrices belonging to the three classes, the minimum, maximum and

median volatility windows.

We also look at doing some analysis on how the relationship between the filtered and full

networks varies over time. To do this, we take windows of 504 days of data, and then slide

along the dataset for 30 days at a time. We do not do any sampling for these datasets. From

each window, we calculate the correlation matrix and then run it through each filtration

method.

For the classification, we take a similar approach to the initial investigations. However for

this we also vary the number of samples involved. For each value of p chosen, we generate 20

subdatasets by sampling from each full window without replacement for each value of n
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between 10 and 200, inclusive, incrementing by 10 each time. We calculate a correlation

matrix for each subdataset, and use these as inputs into the classification procedure (detailed

below).

2.2 Network analysis

To quantify the relationships between the full and filtered networks, we use two simple mea-

sures. The first is the Pearson correlation between the weighted degree centralities of each

node. The weighted degree centrality of node i in a correlation network C is defined as the

sum of the weights of the edges connected to said node:

di ¼
X

i6¼j

Cij ð1Þ

Calculating this for every node in the network, we end up with a vector d. If we do this for

the full network and then a filtered network, we can then calculate the Pearson correlation

between these

dcorr ¼

Pp
i¼1
ðdi �

�dÞðdf
i �

�df Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pp

i¼1
ðdi �

�dÞ2ðdf
i �

�df Þ
2

q ð2Þ

where di is the degree of node i in the full correlation network, df
i is the degree of node i in the

filtered correlation network, �d is the mean of the degree centralities in the network.

This is referred to as degree correlation or degree agreement in the rest of the paper. This

simply measures if the networks agree on the same nodes being important.

The second measure is the Pearson correlation between the off diagonals of the adjacency

matrices (as the diagonal of a correlation matrix always contains 1s). If we have two correlation

matrices for the full (C) and filtered (Cf) networks, we firstly turn the matrices into vectors in a

row major style, discarding the diagonal, resulting in two vectors (c, cf). We can then calculate

the Pearson correlation between these vectors as above. This is referred to as the edge correla-

tion or edge agreement in the rest of the paper.

This measures the overlap of edges between the two networks, with edges with a larger

weight being regarded as more important for this measure.

In general, if the filtration methods are discarding low valued edges which are noisy, while

retaining those edges which are considered signal, we should expect that both of these mea-

sures should be relatively high.

When investigating how varying p affects the resulting networks, we will have a set of corre-

lation matrices for each value of p. For each correlation matrix we then calculate the degree

and edge agreements, and take the mean and standard deviation across the 20 runs for each p.

2.3 Graph classification

Graph classification is a fast moving field, with many new methods being proposed over the

past few years. Various approaches have been taken, including kernel methods [30], embed-

ding methods [31, 32], deep neural networks [33] or manual feature crafting [34]. In general

most applications involving graph classification on real world graphs tend to involve manually

extracting topological measures and then using these to classify graphs [35–37].

We use a very simple method, developed by de Lara et al. [32]. This method is based on ana-

lyzing the spectrum of the graph Laplacian in order to extract a feature vector for the
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classification algorithm. Firstly we calculate the normalized graph Laplacian

L ¼ I � D� 1=2AD� 1=2 ð3Þ

where D is the degree matrix, A is the adjacency matrix of the graph and I is the identity. The

input into the classifier is then the k smallest eigenvalues of the Laplacian in ascending order

X ¼ ðl1; l2; . . . lkÞ ð4Þ

These eigenvalues will be between 0 and 2, which is very convenient when using any classi-

fier, as no re-scaling or normalization is required.

The inspiration for this method comes from an embedding method originally proposed by

Belkin and Niyogi [38, 39], who demonstrated that using the eigenvectors corresponding to

the smallest non-zero eigenvalues is equivalent to minimizing the distance between nodes in a

lower dimension. However, most of the work in this field relates to the eigenvectors of the

Laplacian rather than the eigenvalues. The presence of certain eigenvalues in the spectrum of

the Laplacian is known to indicate certain structures [40], however this relationship is complex

and not fully studied. Empirically this method shows good results in detecting network differ-

ences [32, 41].

We are not aware of an objective method of selecting k, but in this paper we set it to 20. In

general, as long as k is set above 10, the results tend to be fairly similar.

Once we have an embedding for each graph we then use a random forest classifier to clas-

sify the networks. A random forest classifier works by fitting a set of decision trees on subsets

of the data [42]. The resulting trees then vote on the class of new samples, and the class the

majority vote for is taken. This sampling process allows the method to avoid overfitting the

training set, and random forests are generally very good at classifying different types of data.

Their downside is that the models produced are not very interpretable, but for our use in this

paper, this is not an issue. We have taken a similar approach before, on word co-occurrence

networks [43], with good results, and the authors in the original paper also obtained good

results using a random forest classifier. We show results using logistic regression, and an SVM

with a Linear and RBF kernel in the supplementary material.

To evaluate the resulting accuracy, we use the mean accuracy from 10 fold cross validation.

In this paper, we do two classification tasks. The first task is to classify correlation matrices

drawn from the windows of highest and lowest volatility. The second is to classify correlation

matrices drawn from the window with median volatility and the window adjacent to this. The

idea here is to have two classification tasks of differing difficulties, as the first task should be

significantly easier than the second. We draw 50 correlation matrices of each type.

The input into the SF method is then the sample correlation matrices, and then the result-

ing networks after the MST, PMFG and TMFG methods are run. As mentioned in the intro-

duction, the motivation for running these filtration methods is to remove noisy edges in

correlation matrices when we do not have many samples. Therefore, we vary the number of

samples in each of the sub- datasets, running the procedure from n = 10 to n = 200. We also

run the classification procedure for 4 different values of p for each dataset—p = 50, 100, 150,

200 for the US, p = 20, 40, 60, 70 for the UK, p = 5, 10, 15, 20 for Germany, p = 10, 20, 30, 40

for India and p = 10, 15, 20, 25 for China. We would expect that removing the noisy edges

should improve classification accuracy when n is smaller.

For both of these classification tasks, we also calculate a correlation matrix using the Ledoit-

Wolf shrinkage method [44]. Their model combines the identity matrix (I) and the sample
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covariance matrix (S) to produce a new estimate as follows

S� ¼ ð1 � rÞSþ r
trðSÞ
p

I ð5Þ

where tr(S) is the trace of S. This reduces the off-diagonal values of the resulting correlation

matrix to make it more well formed.

To decide ρ the authors wish to minimize the Frobenius norm of the difference between the

estimated covariance matrix S� and the true population covariance matrix S�

min
r

E½jjS� � S�jj
2

F� ð6Þ

The optimal solution of ρ is

r ¼
E½jjS � S�jj

2

F�

E½jjS � trðSÞIjj2F�
¼
b

2

d
2

ð7Þ

The interpretation here is that if S is very close to S� (i.e. our estimate of the covariance is

good) then we do not need to shrink much, or if our shrinkage choice is not very good then we

should not shrink much either. However the obvious flaw so far is that we need to know the

true population covariance matrix to obtain the correct value for ρ—and if we did then we

would not need to bother estimating it to begin with! We therefore require estimates of β2 and

δ2. We can estimate δ2 as following:

d̂
2
¼ jjS � trðSÞIjj2F ð8Þ

and β2 as

ĝ2 ¼
1

n2

Xn

k¼1

jjxkx
T
k � Sjj2F ð9Þ

b̂
2
¼ minðd̂2

; ĝÞ ð10Þ

r̂ ¼ b̂
2
d̂

2 ð11Þ

The constraint on b̂
2

ensures that ρ< 1. While it is rarely necessary, it does help stop us acci-

dentally making our estimate less well formed.

This resulting covariance matrix S� can then be turned into a correlation matrix as follows

C�ij ¼
S�ij
ffiffiffiffiffiffiffiffiffiffiffi
S�ii S�jj

q ð12Þ

2.4 Software and data

The data we use is downloaded from Yahoo Finance. For the UK data we use the FTSE100

companies, for the US returns we use the S&P500 companies, for the German (DE) returns we

use the DAX30 companies, for the Indian (IN) returns we use the NIFTY 50 and for the Chi-

nese (CH) returns we use the SSE50. For the US, UK and Germany we use returns from 2000/

03/01 to 2019/10/21. For the Indian and Chinese markets we use returns from 2008/01/01—

2019/10/21. This is due to the large number of changes in the companies that make up these
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indices compared to those from the US, UK and Germany. For each dataset, any company

missing more than 10% of its data is removed, and any missing values are filled forwards from

the first good value.

This results in 5065 days of return data for 70 companies for the UK, 5068 days for 23 com-

panies for Germany, 4790 days of return data for 229 companies for the US, 2903 days for 47

companies for India and 2855 days for 34 companies for China.

For these datasets we calculate the absolute Pearson correlation coefficient between the log

returns.

We make use of Python, NumPy and SciPy [45] for general scripting, pandas [46] for han-

dling the data, matplotlib [47] for plotting, Networkx [48] for the network analysis and Top-

Corr (https://github.com/shazzzm/topcorr) for constructing the filtered networks.

3 Results

3.1 Degree correlation

To start with we look at the effects of the filtration methods by comparing the weighted degree

of a node in the full and filtered networks as we vary p. Our goal here is to show how the size

of the resulting correlation matrix affects the relationship between the full and filtered net-

works. The results are shown in Figs 2 (maximum volatility), 3 (minimum volatility) and 4

(median volatility).

Over all of the datasets, the correlation drops as p increases. As we increase the number of

nodes in the correlation networks, we discard more correlations (as the number of edges in the

full networks is p(p − 1), but only 3p − 6 in the PMFG and TMFGs and by p − 1 in the MSTs.),

hence why this occurs. We can also see how the network size affects this—the larger US

market allows the correlation to drop much lower than the smaller markets from the other

countries. The shape for all three market states is similar between all countries, indicating this

relationship is relatively stable, and does not seem to change with market type either (i.e. devel-

oping vs developed).

3.2 Edge correlation

Here we look at how the edges differ between the full and filtered networks. Looking at the

results for this (Figs 5 (maximum volatility), 6 (minimum volatility) and 7 (median volatility)

we can see that there is almost no relationship between the MST and full correlation networks

for any data set, while the PMFG and TMFG show much stronger relationships. As with the

degree correlation above, the edge correlation drops as we increase p and discard more corre-

lations. Again the shape of the line is similar for every market state and type, with the devel-

oped and developing markets looking similar.

3.3 Variation over time

Having explored how the agreements vary over the dimensionality of the data, next we look at

how they vary over time throughout the dataset. The degree centrality correlation over time is

shown in Fig 8 and the edge centrality agreement is shown in Fig 9.

For the degree centrality agreement, again the PMFG and TMFG generally have very simi-

lar trends, while the MST has a lower agreement. Having said that, bearing in mind how many

more edges the MST discards compared to the other two methods, we note that the degree

centrality agreement is still quite high over the entire dataset. There is quite a large amount of

variation over time, notably for the smaller UK and German markets.
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Next we look at edge agreement (Fig 9). The PMFG and TMFG show a similar level of

agreement with the unfiltered networks. However, the sparsity of the MST procedure becomes

very noticeable, with the edge agreement being very low across all countries. This measure is

much less variable over time than the degree correlation.

Our goal in this section was to quantify whether these measures vary with the state of the

market. From the figures alone, it is difficult to see any obvious pattern, and so we look at how

the measures are related to the volatility of the market. Again this is defined using the mean of

the sum of the variances of each asset in the window, and we use Spearman correlation to mea-

sure the relationship between volatility and the degree/edge agreements. The results of this are

shown in Table 1.

For the degree agreement, we see each country having a different relationship, with the US

having none, the UK and India having more degree agreement as the markets become more

volatile, while China and Germany having a negative relationship.

Fig 2. Degree agreement between the full and filtered correlation matrices with different values of p for the

windows with maximum volatility. (a) US, (b) UK, (c) DE, (d) IN, (e) CH.

https://doi.org/10.1371/journal.pone.0273830.g002
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For the edge agreement, we see that most countries have a negative relationship between

agreement and volatility, indicating that the filtered and full correlation networks agree with

each other more when the networks are less volatile. The developing markets have a stronger

correlation than the developed markets. This seems quite reasonable, as in general during

times of stress the strength of correlations increases [7, 49]. Therefore we will be discarding

larger correlations during times of stress compared to calm with the filtration methods. Devel-

oping markets also have larger correlations compared to developed ones [27]. However the

strength of the relationship varies strongly across the different countries and filtration meth-

ods—the MST shows little correlation for the US and China, but strong negative correlation

for India.

3.4 Graph classification

The results for classifying the networks from the maximum and minimum windows are

shown in Figs 10 (US), 11 (UK), 12 (DE), 13 (India) and 14 (China), and for the windows

Fig 3. Degree agreement between the full and filtered correlation matrices with different values of p for the

windows with minimum volatility. (a) US, (b) UK, (c) DE, (d) IN, (e) CH.

https://doi.org/10.1371/journal.pone.0273830.g003
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adjacent to each other (also referred to as median) in Figs 15 (US), 16 (UK), 17 (DE), 18

(India) and 19 (China). Results for other classifiers can be found in the supplementary

material.

It is mostly possible to achieve high accuracy for both classification tasks, and for a few

country/p combinations all methods can perfectly classify the test sets (notably the UK for

p = 70). It is slightly easier to distinguish between the maximum and minimum windows than

the adjacent ones, but the difference is not large. Classification accuracy also generally

increases as p increases, and as the number of samples increases. There is also little difference

between the developed (UK, US, DE) and developing markets (CH, IN) once the size of the

correlation matrices is taken into account.

Surprisingly, we do not find that any of the filtration methods improve classification accu-

racy for any of the datasets when compared to the full correlation matrices. This indicates that

Fig 4. Degree agreement between the full and filtered correlation matrices with different values of p for the

windows with median volatility. (a) US, (b) UK, (c) DE, (d) IN, (e) CH.

https://doi.org/10.1371/journal.pone.0273830.g004
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the filtration methods are discarding edges which do contain information. If we compare the

filtration methods, it seems that the MST has the highest accuracy when p is greater than 20.

This is actually quite surprising, as we can see that just maintaining all of the edges seems to

perform the best. From this we would therefore expect the methods that retain more edges to

have a higher classification accuracy, rather than the MST, which discards a large number of

edges. We did find that the MST had larger differences in edge structure between the two win-

dows compared to the PMFG and TMFG, which would explain why the classification accuracy

is higher, but this does not explain why the full networks performed the best. This could how-

ever be due to the large number of extra edges present, which makes up for the amount of

noise.

Fig 5. Agreement between edges between the full and filtered correlation matrices with different values of p for

the window with maximum volatility. (a) US, (b) UK, (c) DE, (d) IN, (e) CH.

https://doi.org/10.1371/journal.pone.0273830.g005
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Interestingly the Ledoit-Wolf shrinkage and unaltered correlation matrices show very simi-

lar results too. This would indicate that reducing the off-diagonal values is less useful in this

task compared to in portfolio optimization, which the Ledoit-Wolf covariance tends to per-

form very well in.

These results hold up for most of the other classifiers too. Generally the random forest clas-

sifier has the highest accuracy, with the SVM with an RBF kernel second. Again we see a larger

p helping improve classification accuracy. However with these alternative classifiers there is no

filtration method which clearly performs the best.

4 Discussion and conclusion

In this paper we have investigated the effects of the three most used correlation matrix filtra-

tion methods using stock returns from five countries and compared their performance on a

Fig 6. Agreement between edges between the full and filtered correlation matrices with different values of p for

the window with lowest volatility. (a) US, (b) UK, (c) DE, (d) IN, (e) CH.

https://doi.org/10.1371/journal.pone.0273830.g006
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graph classification task. Firstly we find that the filtered networks do not always resemble the

original full networks, and that this is dependent on the data, the dimensionality and the

method. Unsurprisingly, the more edges that are discarded by the filtration method, the less

the resulting network resembles the original. Furthermore, as we increase the number of

dimensions, the filtered networks show less resemblance to the original networks, as more

edges are being thrown away. While this may not be unexpected, it is worth bearing in mind

when using these methods.

We also find that the agreement between the full and filtered networks varies over time,

with the agreement on edge structure being negatively correlated to the market state. The

agreement on degree centrality does not show as much of a consistent pattern, with positive,

negative and no correlation being found for the five countries in our dataset.

Fig 7. Agreement between edges between the full and filtered correlation matrices with different values of p for

the window with median volatility. (a) US, (b) UK, (c) DE, (d) IN, (e) CH.

https://doi.org/10.1371/journal.pone.0273830.g007
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In a more surprising result, we find that the correlation filtration methods do not seem to

improve performance for most combinations of p and n on this task for any of the datasets

when compared to the full correlation matrix. Comparing the methods, the MST seems to per-

form the best out of the three methods, and the PMFG and TMFG have very similar

performances.

Due to this, we feel that future authors should be aware of the pitfalls of these methods—

while they are convenient for producing networks that are easy to analyze, they may not neces-

sarily produce a network that is closer to the truth. We would also encourage more future

work on obtaining objective results comparing these methods. This could involve more and/or

larger datasets than the ones considered here, or tasks other than classification (for instance

portfolio optimization), or a different approach to classification. For instance, a study using

Fig 8. Correlation between degree centrality in the full and filtered networks over the dataset. (a) US, (b) UK, (c)

DE, (d) IN, (e) CH.

https://doi.org/10.1371/journal.pone.0273830.g008
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Fig 9. Edge agreement between the full and filtered networks over the time period of the dataset. (a) US, (b) UK,

(c) DE, (d) IN, (e) CH.

https://doi.org/10.1371/journal.pone.0273830.g009

Table 1. Spearman correlation between the degree and edge agreement measures and the volatility of the market. Correlations insignificant at p< 0.05 are in italic.

Filtration Method US UK DE IN CH

Degree Agreement MST -0.012 0.683 -0.108 0.217 0.173
PMFG -0.022 0.437 -0.302 0.423 -0.348

TMFG -0.027 0.523 -0.232 0.636 -0.322

Edge Agreement MST 0.107 -0.403 -0.265 -0.608 0.052
PMFG -0.494 -0.262 -0.256 -0.801 -0.619

TMFG -0.494 -0.264 -0.235 -0.771 -0.649

https://doi.org/10.1371/journal.pone.0273830.t001
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Fig 10. Accuracy when distinguishing between correlation matrices created from the stock windows with the

maximum and minimum volatility using the SF method and a random forest classifier with US stock returns. (a)

US p = 50, (b) US p = 100, (c) US p = 150, (d) US p = 200.

https://doi.org/10.1371/journal.pone.0273830.g010

Fig 11. Accuracy when distinguishing between correlation matrices created from the stock windows with the

maximum and minimum volatility using the SF method and a random forest classifier for UK stock returns. (a)

UK p = 20, (b) UK p = 40, (c) UK p = 60, (d) UK p = 70.

https://doi.org/10.1371/journal.pone.0273830.g011
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Fig 12. Accuracy when distinguishing between correlation matrices created from the stock windows with the

maximum and minimum volatility using the SF method and a random forest classifier for Germany. (a) DE p = 5,

(b) DE p = 10, (c) DE p = 15, (d) DE p = 20.

https://doi.org/10.1371/journal.pone.0273830.g012

Fig 13. Accuracy when distinguishing between correlation matrices created from the stock windows with the

maximum and minimum volatility using the SF method and a random forest classifier for India. (a) IN p = 10, (b)

IN p = 20, (c) IN p = 30, (d) IN p = 40.

https://doi.org/10.1371/journal.pone.0273830.g013
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Fig 14. Accuracy when distinguishing between correlation matrices created from the stock windows with the

maximum and minimum volatility using the SF method and a random forest classifier for China. (a) CH p = 10,

(b) CH p = 15, (c) CH p = 20, (d) CH p = 25.

https://doi.org/10.1371/journal.pone.0273830.g014

Fig 15. Accuracy when distinguishing between correlation matrices inferred from adjacent time windows based

on the median volatility using the SF method and a random forest classifier for US stock returns. (a) US p = 50, (b)

US p = 100, (c) US p = 150, (d) US p = 200.

https://doi.org/10.1371/journal.pone.0273830.g015
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Fig 16. Accuracy when distinguishing between correlation matrices inferred from adjacent time windows based

on the median volatility using the SF method and a random forest classifier for UK stock returns. (a) UK p = 20,

(b) UK p = 40, (c) UK p = 60, (d) UK p = 70.

https://doi.org/10.1371/journal.pone.0273830.g016

Fig 17. Accuracy when distinguishing between correlation matrices inferred from adjacent time windows based

on the median volatility using the SF method and a random forest classifier for German stock returns. (a) DE

p = 5, (b) DE p = 10, (c) DE p = 15, (d) DE p = 20.

https://doi.org/10.1371/journal.pone.0273830.g017
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Fig 18. Accuracy when distinguishing between correlation matrices inferred from adjacent time windows based

on the median volatility using the SF method and a random forest classifier for Indian stock returns. (a) IN p = 10,

(b) IN p = 20, (c) IN p = 30, (d) IN p = 40.

https://doi.org/10.1371/journal.pone.0273830.g018

Fig 19. Accuracy when distinguishing between correlation matrices inferred from adjacent time windows based

on the median volatility using the SF method and a random forest classifier for Chinese stock returns. (a) CH

p = 10, (b) CH p = 15, (c) CH p = 20, (d) CH p = 25.

https://doi.org/10.1371/journal.pone.0273830.g019
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graph distances such as in [50] to compare the filtration methods could be very interesting.

We would also encourage similar work to this, but with higher frequency returns, which

unfortunately were not available to us.

Finally, our results also show that the TMFG and PMFG have very similar performance.

Since the TMFG is a more efficient algorithm (as it avoids the planarity check at every itera-

tion), it should be worth using over the PMFG in most cases.
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