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Abstract. Flagellates of Naegleria gruberi contain two 
calmodulins that differ in apparent molecular weight 
and intracellular location. Calmodulin-1, localized in 
flagella, has an apparent molecular weight of ~ 16,000, 
approximately the size of other protozoan calmodu- 
lins, whereas calmodulin-2, localized in cell bodies, is 
15,300. Both proteins, purified, are calmodulins by 
several criteria, including Ca2+-dependent stimulation 
of  calmodulin-dependent cyclic nucleotide phosphodi- 
esterase and affinity for antibodies to vertebrate cal- 
modulin. The finding of  two calmodulins is unusual. 
Since the only known difference is apparent molecular 
weight, one calmodulin could be derived from the 

other, except that both calmodulins are synthesized in 
a wheat germ, cell-free system directed by RNA from 
differentiating Naegleria. Translatable mRNAs encod- 
ing calmodulins l and 2, not detected in amebas, 
appear and subsequently disappear concurrently dur- 
ing the 100-min differentiation of Naegleria from 
amebas to flagellates. Furthermore, these mRNAs in- 
crease and then decrease in abundance concurrently 
with those for flagellar tubulins, which suggests the 
possibility that the expression of  the unrelated genes 
for calmodulin and tubulin may be under coordinate 
control during differentiation. 

C 
ELLS of the unicellular eukaryote Naegleria gruberi 
can be induced, individually or in suspended popu- 
lations, to change from the vegetative form, amebas, 

to flagellates with a streamlined body contour and two flagella 
(13). This rapid I: I conversion offers opportunities to study 
events of a dramatic phenotypic change in a uniform, syn- 
chronous cell population. A first analysis of the intracellular 
regulation of this cell shape morphogenesis indicated a change 
from the actin-based motility system of amebas to the tubulin- 
based motility system of flagellates, and implicated changes 
in intracellular free calcium ions in the process (12). In 
addition, there are major changes in gene expression during 
differentiation. Actin synthesis ceases, and translatable actin 
mRNA rapidly disappears (37), whereas the tubulin for fla- 
gella is synthesized during differentiation and its translatable 
mRNA markedly increases in abundance and subsequently 
decreases in parallel with the rate of flagellar tubulin synthesis 
in vivo (28). The likely role of intraceUular free calcium ions 
in this morphogenesis led us to examine the synthesis, and 
translatable mRNA, for a major receptor of calcium signals 
in eukaryotic cells, calmodulin. 

Calmodulin, ubiquitous and conserved among eukaryotes, 
serves as the calcium-dependent regulator of diverse enzymes 
and proteins (9, 24, 30). It has also been implicated in cell 
motility, in the assembly and function of both actin-based 
and tubulin-based motility systems, and it has been found in 
flagella (24, 30), although in most cases these roles ofcalmod- 

ulin are not yet precisely defined. As a multifunctional target 
for calcium, calmodulin is a logical starting point for an 
inquiry into the role of intracellular free calcium ions in cell 
morphogenesis. 

If calmodulin were important in Naegleria differentiation 
it, like flagellar tubulin, might be synthesized during differ- 
entiation. In this study, we first developed a simple assay to 
determine whether translatable mRNA for a calmodulin-like 
calcium-binding protein changes in abundance during differ- 
entiation. We found, to our surprise, that translatable mRNAs 
for not one but two such polypeptides, which differ in appar- 
ent molecular weight, appear during differentiation. A prelim- 
inary account of this finding has been presented (14). The 
unexpected finding of two calcium-binding proteins moti- 
vated us to determine whether one or both of these polypep- 
tides is indeed calmodulin; here we show that both are cal- 
modulin by several standard criteria. In addition, we find that 
they are segregated in flagellates, one in flagella and the other 
in the cell bodies. These results indicate that two different 
calmodulins are synthesized during differentiation and serve 
distinct roles in the flagellate. Finally, we report that the 
translatable mRNAs for these two calmodulins increase in 
abundance and subsequently decrease concurrently during 
differentiation and, further, that these changes in abundance 
occur contemporaneously with the changes in abundance of 
mRNAs for flagellar tubulin. 
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Materials and Methods 

Differentiation, RNA Preparation, and 
Cell-free Translation 
Total RNA was isolated from cells of N. gruberi NEG undergoing synchronous 
differentiation at 25°C and then translated in the wheat germ, cell-free system, 
using L-[3SS]methionine as label, as described (28). To enrich for calmodulin- 
like proteins among the translation products, at the end of translation the 
extract was heated for 2 rain at 90"C, cooled to 4"C, and the coagulated material 
removed by centrifugation (4"C, l0 min at 10,000 g). The supernatant was 
divided into two aliquots, one of which received CaCl2 to l mM and the other 
EGTA to l mM. After addition of Laemmli sample buffer (27), mixing, and 2 
rain at 100°C, the translation products were separated by SDS PAGE (see 
below) and visualized by autoradiography. The radioactivity in individual gel 
bands was determined as described (28). 

Purification of Calmodulin 
Amebas ofN. gruberi NEG were grown in 50 baking trays (25), which yielded 
5 x l0 ~° cells. To obtain differentiation to flagellates, amebas were washed to 
2 mM Tris-HC1, pH 7.2, and incubated at 28"C in suspension (25). At ll0 
min, when flagellates had full-length flagella (15 #m), the flagellates were 
centrifuged (4°C, 4 min at 900 g), and either processed directly or fractionated 
into cell bodies and flagella. For this fractionation, flagella were detached by a 
15-s pH shock, cell bodies were collected and washed by low-speed centrifuga- 
tion, and the flagella were purified through discontinuous sucrose gradients 
(25). Subsequent steps were at 0-4°C unless otherwise stated. Whole flagellates, 
cell bodies, or flagella were finally resuspended in 100 ml or less of lysis buffer 
(10 mM Tris-HCl, pH 7.5, 40 mM sodium pyrophosphate, 0.1 mM 2-mercap- 
toethanol, l mM EGTA, 30% [wt/vol] sucrose) containing protease inhibitors 
(leupeptin, 40 ~g/ml; aprotinin, 0.1 trypsin inhibitor units/ml; and phenyl- 
methylsulfonyl fluoride, 0.1 mM; all from Sigma Chemical Co., St. Louis, 
MO). Triton X- 100 was added to 0.5% (vol/vol) and the suspension was shaken 
vigorously for 40 s. The lysate was transferred quickly to a pre-chilled Beckman 
SW27 rotor and centrifuged (2 h at 25,000 rpm). The supernatant was heated 
at 90°C for 5 rain with gentle swirling, cooled to 0°C for 30 min, and the 
denatured proteins were removed by centrifugation (30 min at 40,000 g. unless 
otherwise specified). This supernatant was dialyzed against buffer D (20 mM 
Tris-HCl, pH 7.5, 0. l mM EGTA, 0.1 mM MgC12, 0. l mM 2-mercaptoethanol), 
and centrifuged to remove any precipitate. This heat-stable extract was frac- 
tionated on three successive chromatographic columns (11, 18). The eluted 
fractions were monitored by measuring A2s0 of each fraction and by taking 0.5- 
ml aliquots of selected fractions to assay their ability to stimulate phosphodi- 
esterase activity. (These aliquots were dialyzed against 1 mM 2-mercaptoetha- 
nol, lyophilized, resuspended in 50 ul l0 mM Tris-HC1, pH 7.5, and assayed 
with phosphodiesterase as described below.) The heat-stable extract was loaded 
on a DEAE-cellulose (DE-52, Whatman Inc., Clifton, NJ) column (2.5 x 30 
cm) equilibrated with buffer D. The column was washed with buffer D until 
A28o reached background, and then bound proteins were eluted with buffer D 
containing 0.4 M NaC1. The fractions that stimulated phosphodiesterase were 
pooled and dialyzed against buffer C (20 mM sodium acetate, pH 5.0, l mM 
CaCI2, 0.1 mM 2-mercaptoethanol), centrifuged, and the supernatant loaded 
on a DEAE-Sephadex A-25 (Pharmacia Fine Chemicals, Piscataway, NJ) 
column (1.5 x 25 cm) pre-equilibrated with buffer C. The column was eluted 
with a 400-ml linear gradient of 0 to 0.6 M NaCl in buffer C. The active 
fractions were pooled and dialyzed against buffer P (20 mM Tris-HCl, pH 7.5, 
l mM CaCl2, 0.1 mM 2-mercaptoethanol), centrifuged, and loaded onto a 
phenyl-Sepharose (Pharmacia Fine Chemicals) column (l x l0 cm) at room 
temperature, pre-equilibrated with buffer P. The column was washed with 
buffer P until A2s0 reached background, and then bound proteins were eluted 
with buffer E (20 mM Tris-HCl, pH 7.5, l0 mM EGTA, 0.1 mM 2-mereapto- 
ethanol). Pooled fractions were dialyzed against l mM 2-mercaptoethanol, 
lyophilized, dissolved in I mM Tris-HCI, pH 7.5, 0.1 mM CaC12, and 0.1 mM 
2-mereaptoethanol, and stored in small aliquots at -80°C. 

Protein Determination and Electrophoresis 
Routine protein determinations used the Lowry method (29) with bovine serum 
albumin as standard. Purified calmodulins were quantified by densitometry of 
polyacrylamide tube gels stained with Fast Green FCF (15), using purified 
bovine brain calmodulin as standard. SDS PAGE on discontinuous slab gels 
(27) used either a 15 to 20% exponential gradient of acrylamide (28) (Figs. 1 
and 7) or 15% acrylamide (Figs. 3-4); the gels were stained with Coomassie 
Brilliant Blue R-250. Size standards were as follows: bovine brain calmodulin, 

prepared as described (3), a girl of S. Rudnick (New York Medical College); 
Dictyostelium calmodulin (1 l), a giR of M. Clarke (Albert Einstein College of 
Medicine); rabbit skeletal muscle troponin C and troponin I (20), a gift of C. 
Cohen (Brandeis University); and egg white lysozyme (Worthington Biochem- 
ical Corp., Freehold, N J). 

Phosphodiesterase Assay 
The ability of extracts and proteins to stimulate calcium- and calmodulin- 
dependent cyclic nucleotide phosphodiesterase were determined as described 
( l l), except that bovine heart phosphodiesterase (Sigma Chemical Co., P0520, 
5 t~g/50 IA) was used. In the absence of calmodulin, ~10% oftbe cyclic [3H]- 
AMP in a reaction mixture was hydrolyzed. The addition ofcalmodulin resulted 
in a maximal increase of fivefold. 

Radioimmune Assay 
Competitive radioimmunoassays of calmodulin, similar to published proce- 
dures (5, 7), were done using New England Nuclear (Boston, MA) kit NEK- 
018. Serial dilutions of purified protein or heat-stable cell extracts were assayed 
in duplicate for their ability to compete with ~251-1abeled calmodulin (bovine 
brain) for binding to affinity-purified anti-calmodulins (prepared to rat testis 
calmodulin in sheep). All samples were heated 5 rain at 90°C just before assay. 
Control tubes without competing antigen were used to calculate 100% bound, 
which averaged -6,000 cpm/sample. 

Results 

Assay for Translatable mRNA Encoding 
Calmodulin-like Proteins 
A simple assay was developed to test for the presence and 
relative abundance of translatable mRNA encoding calmod- 
ulin-like calcium-binding proteins during Naegleria differen- 
tiation. This assay uses two attributes of calmodulin: heat 
stability and calcium-dependent mobility shift in SDS PAGE 
(3, 9, 19). [35S]Methionine-labeled translation products were 
heated to denature most of the protein in the extract. The 
supernatant was then analyzed by SDS PAGE in the presence 
or absence of Ca 2+, using paired samples on single gels 07, 
19), followed by autoradiography. 

Translatable mRNA for Two Calcium-binding 
Proteins Is Present in Differentiating Cells But Not 
in Amebas 

The above assay was applied to translation products directed 
by total RNA extracted from cells at various times during 
differentiation. Under the conditions used, differentiation is 
initiated in early stationary-phase amebas at 0 rain, the cells 
begin to form flagella at 57 _+ 2 rain, and by 100 rain the 
flagella reach full length and the cells have assumed their 
streamlined body contour (16, 28). Translatable mRNAs that 
directed the synthesis of two calcium-binding polypeptides 
were found in differentiating cells (20-80 min); these mRNAs 
reached peak abundance at -60  rain of differentiation (see 
below). A sample result is shown in Fig. 1. The two polypep- 
tides in the translation product of 60-min RNA that migrated 
faster in the presence of Ca 2+ than in its absence are designated 
products 1 and 2. Product 1 was the major heat-stable trans- 
lation product. An inventory of these products (Table I) shows 
that they accounted for ~ 1.5 and 0.6% of the methionine 
radioactivity in the translation product. In spite of these 
amounts, the two products were not detected when the un- 
fractionated translation product was examined by one-dimen- 
sional electrophoresis and autoradiography without the en- 
richment procedure. 

The major and apparently larger product, product 1, mi- 
grated faster in SDS PAGE than bovine brain calmodulin, 
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Table I. Inventory of Calcium-binding Proteins in a Cell-free 
Translation Directed by RNA Isolated at 60 min of 
Differentiation 

Sample Product 

Translation product (659,000, trichloroacetic acid 
insoluble, cpm/vl) 

Heat-stable supernatant 
Calcium-binding protein- 1 (9% of heat stable) 
Calcium-binding protein-2 (37.5 % of- 1) 

% 

100 

17 
1.5 
0.6 

Figure 1. Calcium-binding proteins among the [35S]methionine-la- 
beled translation products directed by total RNA extracted after 0 
and 60 min of  differentiation. The supernatants, after heating, were 
resolved on SDS PAGE in the presence of  1 m M  CaCI2 (+) or in the 
absence of  Ca 2÷ produced by 1 m M  EGTA ( - ) .  Each lane was loaded 
with 1.5 x 106 clam of  heat-stable translation product. The two 
calcium-binding proteins are indicated on the right. 

but co-migrated with Dictyostelium calmodulin. This product 
had an apparent molecular weight, in the absence of  Ca 2+, of  
~ 16,000, close to a recent estimate for Dictyostelium calmod- 
ulin (2 l), as compared to 16,800 for vertebrate calmodulin 
(24). Product 2 migrated still faster, with an apparent molec- 
ular weight of  ~15,300. These polypeptides all showed a 
calcium-dependent mobility shift. In our early experiments, 
this shift was reproducibly 4-6 mm (as Fig. l), with brain 
calmodulin showing a shift of  6 mm; Naegleria product 1 and 
Dictyostelium calmodulin, 5 mm; and Naegleria product 2, 4 
mm. In later experiments, using new lots of  all PAGE com- 
ponents, we were unable to obtain shifts greater than 2 mm, 
but all still showed the shift. We conclude that the two 
products synthesized from mRNA of differentiating Naegleria 
are calcium-binding proteins that migrate similarly to proto- 
zoan calmodulins and show the calcium-dependent anodal 
mobility shift characteristic of  calmodulin. 

A most striking result is that translatable mRNAs for these 
two calcium-binding polypeptides could not be detected in 0- 
min RNA, i.e., in RNA from amebas (Fig. 1). As described 
previously (28, 37), and as shown in the comparison of  heat- 

Table II. Purification of Naegleria Calmodulins: Scheme 
and Example of Yields 

Flagellate Cell body Flagella 

Fraction mg protein (% of initial) 

Extract 3,062 (100) 2,800 (100) 60 (100) 
5 min at 90"C superna- 567 (18.5) 435 (15.5) 22 (36.7) 

tant 
DEAE-cellulose active 150 (4.9) 94 (3.4) 10 (16.7) 

fractions 
DEAE-Sephadex A-25 20 (0.65) 15 (0.54) 3 (5.0) 

active fractions 
Phenyl-Sepharose 0.15 0.01 0.07 

EGTA eluate (0.005) (0.0003) (0.12) 

Specific activity of final 2.36 2.30 2.25 
product* 

Calmodulin found CAM-1 and CAM-2 CAM-1 
CAM-2 

Ratio CaM- 1/CAM-2 3.4 t - -  - -  

* Units of calmodulin activity/#g protein. One unit is the amount required to 
increase the rate of cAMP hydrolysis by 1 nmol/min under the conditions of 
phosphodiesterase assay. 
t The average of values obtained by scanning gels, such as Figs. 3b and 4a, and 
determining the relative peak areas. 

stable translation products in Fig. 1, translatable mRNAs for 
some products remain relatively constant during differentia- 
tion, others increase or decrease in abundance, and others 
show such marked changes that they appear or disappear. The 
apparent absence of  translation products for calmodulin-like 
proteins in the 0-min sample has been reproduced with several 
different preparations of  0-min RNA. 

Isolation o f  Calraodulin-like Proteins from Flagellates 
The presence of  mRNA for two calmodulin-like polypeptides 
in differentiating cells, but not in amebas, indicated that these 
polypeptides probably are synthesized during differentiation. 
This motivated us to attempt to purify and characterize these 
proteins from flagellates. Successful isolation was dependent 
on the presence of  protease inhibitors during extraction. Our 
final purification scheme is outlined in Table II. Fractions of  
the heat-stable extract that activated calmodulin-dependent 
phosphodiesterase eluted from each of  the DEAE columns as 
described by others for calmodulins (see, for example, refer- 
ences 3, 11, 24). As shown in Fig. 2, a small active fraction 
bound to phenyl-Sepharose (18) in the presence of Ca 2+ but 
eluted in the absence of Ca 2÷. This fraction, when examined 
by electrophoresis, showed two bands that gave a calcium- 
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Figure 2. Phenyl-Sepharose hydrophobic affinity chromatography, 
the final step in purification of calmodulins from flagellates. The 
initial sample and elution buffer contained I mM CaCI2. 1-mt samples 
were collected, and their A~80 determined (0). At fraction 80 (arrow), 
after the A28o reached background, the elution was continued with a 
buffer containing 10 mM EGTA. At intervals, aliquots were assayed 
for their ability to stimulate calmodulin-dependent phosphodiesterase 
(O). The indicated fractions were pooled. 

mobility shift in SDS PAGE. Two more decisive tests, pre- 
sented below, justify designation of these proteins as calmod- 
ulins, specifically as CaM-1 and CAM-2. 

In several comparisons the mobilities of these two polypep- 
tides, in the presence and absence of Ca 2÷, have been indistin- 
guishable between the proteins purified from flagellates and 
the products of translation of 60-min RNA in a cell-free 
system. We conclude that these are the same polypeptides, 
and that their duality occurs both in Naegleria and in the 
wheat germ system. In purified preparations, the ratio of CaM- 
1/CAM-2 was 3.4 (Table II); in translation products it was 2.7 
(Table I). In view of the uncertainties in both measurements, 
these results are considered similar and indicative of a 3:1 
ratio. 

The Two Calmodulin-like Proteins Are Segregated, 
One in Flagella and the Other in Cell Bodies 

Preliminary observations indicated that only CAM-1 was 
found in heat-stable extracts of flagella. To examine this 
localization further, we separated flagellates into cell bodies 
and flagella, purified calmodulin-like proteins as described 
above, and compared them by electrophoresis. The results 
(Table II and Fig. 4) indicate that flagella contain CaM- 1 and 
cell bodies contain CAM-2. This segregation has been observed 
in all experiments. Mixtures of the calmodulins purified from 
the cell body (Fig. 4 b) and from the flagella (Fig. 4 c) restored 
the doublet of CaM-l and -2 seen in calmodulin purified 
from whole flagellates (Fig. 4 a) (data not shown). Since the 
amount of protein, particularly CAM-2, is small, we cannot 
conclude that the segregation is absolute, but we have never 
detected CaM-1 in cell bodies or CAM-2 in flagella. 

The Two Proteins Are Calmodulins 

Two particularly decisive tests for calmodulins, as opposed to 
related calcium-binding proteins, are the calcium-dependent 

Figure 3. Electrophoretic mobility of calmodulins from flagellates. 
SDS PAGE in the presence (+) or absence ( - )  of Ca 2÷ (5 mM CaC12 
or EGTA, respectively) of (,4) 2 ~g bovine brain calmodulin, and (B) 
5/~g of calmodulins purified from flagellates. (C) Autoradiograph of 
translation products directed by 60-rain RNA. 

dependent mobility shift (Fig. 3 b), co-migrated with the two 
calcium-binding polypeptides in translation products directed 
by 60-min RNA (Fig. 3 c), and migrated faster than vertebrate 
calmodulin (Fig. 3 a). No polypeptides other than these two 
have been detected in the purified fraction, but we have not 
had sufficient amounts of the proteins for a proper assessment 
of homogeneity. The steps in isolation indicate that these two 
polypeptides share the following attributes of calmodulin: 
thermal stability, binding to and elution from DEAE columns 
(which also indicates that they are acidic polypeptides), hy- 
drophobic interaction with phenyl-Sepharose in the presence 
but not in the absence of Ca 2÷, and a calcium-dependent 

Figure 4. Segregation of two calmodulins in flagellates. SDS PAGE 
in the presence (+) and absence (-) of Ca 2÷ (as in Fig. 3). (A) 5 ug of 
flagellate calmodulins, (B) 2 t*g of cell body calmodulin, and (C) 5 ug 
of flagellar calmodulin. 
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stimulation of calmodulin-dependent enzymes, especially 
phosphodiesterase, and immunoreactivity to anti-calmodulin 
sera. These tests are specific to caimodulin (4, 24), and both 
are used to measure calmodulin in crude extracts (7, 40). The 
calmodulin-like proteins of Naegleria flagellates were isolated 
on the basis of their ability to activate calmodulin-dependent 
phosphodiesterase (Table II and Fig. 2). A direct comparison 
of the ability of the purified proteins to activate phosphodi- 
esterase is shown in Fig. 5. The three Naegleria preparations 
tested--the mixture of CaM-1 and -2 from whole flagellates, 
CaM-1 from flagella, and CAM-2 from cell bodies--were all 
equally effective in activating the phosphodiesterase, and in- 
distinguishable from bovine brain calmodulin. The activation 
required Ca 2÷ and the extent of activation was dose dependent 
(Fig. 5). Similar quantities of CAM-1 and CAM-2 gave com- 
parable activation, which indicates that both these polypep- 
tides have calmodulin activity, i.e., that minor contamination 
of one with the other cannot be responsible for the stimulation 
of phosphodiesterase. These results are typical of those ob- 
tained with other calmodulins. Pure Dictyostelium calmodu- 
lin, for example, is also indistinguishable from vertebrate 
calmodulin in the activation of phosphodiesterase (21, 31). 
The sensitivity to EGTA and titration of activity with increas- 
ing calmodulin rule out artifactitious activation such as can 
be caused by proteolytic cleavage of phosphodiesterase (24, 
40). 

Diverse antisera to vertebrate calmodulin have been found 
to react only with calmodulin. We assessed the immunoreac- 
tivity of flagellate calmodulin-like proteins in a competitive 
radioimmune assay using antibodies to rat testis calmodulin 
and bovine brain calmodulin as the competing antigen. All 
three preparations of flagellate proteins reacted with the anti- 
sera (Fig. 6). CaM-l from flagella, or the mixture of CAM-1 
and -2 from flagellates, competed similarly, and gave 50% 
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Figure 6. Immunoreactivity of Naegleria calmodulins. Dilutions of 
each of the following proteins were assayed for their ability to compete 
for the binding of bovine brain calmodulin to antibodies against rat 
testis calmodulin. (O) Bovine brain calmodulin; (O) calmodulins from 
whole flagellates; (A) CaM-l from flagella; (T) CAM-2 from cell 
bodies; and (r'q) troponin C. 

inhibition of binding at ~ 12 ng protein. CAM-2 from cell 
bodies reproducibly reacted somewhat less, and in this exper- 
iment required 46 ng for 50% inhibition. Both were less 
immunoreactive than homologous vertebrate calmodulin, 
which gave 50% inhibition at 1.1 ng. In a similar radioim- 
mune assay, Dictyostelium calmodulin was found to require 
~25-fold more protein than brain calmodulin for 50% inhi- 
bition (1). In our assays, the brain calmodulin also competed 
more completely than did either of the Naegleria calmodulins 
(Fig. 6), which suggests that perhaps 20-30% of the anti- 
calmodulins in this polyclonal antiserum were antibodies that 
did not recognize Naegleria calmodulins. Troponin C, most 
closely related to calmodulin among the known calcium- 
binding proteins (24), did not compete in the radioimmune 
assay, even at 360 ng. 

The radioimmune assay was used to estimate the amount 
of calmodulin in flagellates. The soluble proteins in a heat- 
stable extract of flagellates required 26 ug of protein for 50% 
inhibition, which is equivalent to 0.12 ug calmodulin per mg 
of total flagellate protein, or to calmodulin as ~0.012% of the 
total protein of a flagellate. The final yield of calmodulin 
from whole flagellates was 0.005 % of the total protein (Table 
II), so based on the value obtained from radioimmune assay, 
the recovery of calmodulin was roughly 40%. Radioimmune 
assay of heat-stable extracts of amebas indicated that they 
contain ~20% as much calmodulin antigen as do extracts of 
flagellates. Extracts of both amebas and flagellates were able 
to compete 70-80% of the vertebrate calmodulin, as were the 
purified Naegleria calmodulins. 

Translatable mRNAs for the Two Calmodulins 
Increase and Decrease in Abundance during 
Differentiation Concurrently with Those for 
Flagellar Tubulin 
To assess the relative abundance of translatable mRNAs for 
CaM- 1 and CAM-2 during differentiation, total RNA isolated 
at successive times during differentiation was translated at a 
rate-limiting concentration of RNA to minimize competition 
(28), and the heat-stable products were resolved by SDS PAGE 
under the conditions used for Fig. I. After the methionine- 
labeled radioactive products were localized by autoradiogra- 
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and for flagellar tubulin during differentiation, (©) Flagellar tubulin, 
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tracted at successive times during differentiation and assay of flagellar 
tubulin in the product were as described (28). The calmodulins were 
assayed by heating the translation products, analyzing the superna- 
tants as in Fig. l, and then determining the amount of radioactivity 
in the bands formed by CAM-1 and -2 in the presence of Ca 2÷. Each 
lane was loaded with 1.5 × l06 cpm of heat-stable translation product. 
The lane containing the 0-min translation product showed no detect- 
able CaM- l or -2 (see Fig. 1 ), but contained 21,9 l0 and 21,625 cpm, 
respectively, in the excised bands. These background counts, low for 
any region of lanes containing translation product, were subtracted 
from all other counts so the 0-min values for translatable calmodulin 
mRNAs are 0%, and no accurate estimate can be made of the extent 
of increase. If these background values were not subtracted, translat- 
able mRNA for CaM-1 increased at least 6.2-fold, and CAM-2 at least 
threefold. The two major translation products are normalized to 
100% at 60 min, when flagellar tubulin amounts to ~5% of the 
radioactivity in the product (28) and CaM-I to ~1.5% (Table I). 

phy, the calmodulin bands were excised from the lanes con- 
raining Ca 2÷ and their radioactivity was determined. The same 
RNA samples were translated and quantitatively immunopre- 
cipitated using polyclonal antibodies reactive to both subunits 
of flagellar tubulin, as described previously (28). The results 
are presented in Fig. 7. The amounts of the translation 
products for the two calmodulins, and therefore the abun- 
dance of their translatable mRNAs, reached a maximum at 
-60  min--just  as the flagella were being assembledkand 
then declined markedly by 100 min. The rise and fall in 
abundance of translatable mRNAs for these two calmodulins 
was contemporaneous with the similar change in abundance 
of translatable mRNAs for the flagellar tubulin subunits. 

Discussion 

The evidence is compelling that the two polypeptides, isolated 
from flagellates, are both calmodulins. Some attributes are 
shared with other small calcium-binding proteins, including 

thermal stability, acidity, Ca2÷-dependent mobility shift in 
SDS PAGE, and binding to phenyl-Sepharose. No protein 
other than calmodulin, however, is known to activate cap 
modulin-dependent phosphodiesterase in a Ca 2÷- and dose- 
dependent manner, or to react with antibodies to vertebrate 
calmodulin. All these criteria, considered together, are suffi- 
cient to define CaM-I and CAM-2 as calmodulins. Because 
these proteins amount to such a minute fraction of the total 
cell proteinb~0.01% together--preparing the proteins for 
more extensive characterization, such as amino acid sequenc- 
ing, would be a major challenge. We think it more promising 
to first approach matters such as the extent to which the 
sequences of these calmodulins match other calmodulins via 
DNA cloning and sequencing. 

The two calmodulins differ in apparent molecular weight 
which, along with the difference in intracellular location, 
could easily arise from posttranslational processing of a single 
polypeptide. However, two calcium-binding proteins with the 
same electrophoretic mobilities are synthesized in the wheat 
germ, cell-free system directed by mRNA from differentiating 
cells. In addition they are synthesized in about the same 
proportion, 3:1, that CAM-1 and CAM-2 are found in flagel- 
lates. If one proposed that their differences arise by posttrans- 
lational modification of a single polypeptide, then such proc- 
essing must occur, to a comparable extent, in the wheat germ 
extracts and in differentiating Naegleria. It is more likely that 
they are the independent products of different transcripts, 
although one can only conjecture whether such transcripts 
arise from one gene or two. DNA cloning and sequencing 
also offer a promising way to dissect the nature of the two 
calmodulins and their gene or genes. 

Calmodulins migrate anomalously in SDS PAGE (3, 24). 
Protozoan and plant calmodulins appear smaller than verte- 
brate calmodulins (4, 24), but in at least Dictyostelium, Tet- 
rahymena, and spinach calmodulins, the change in apparent 
molecular weight is not due to a comparable change in 
polypeptide chain length (31, 41, 42). We conclude that the 
difference in apparent molecular weight of CaM- 1 and -2 does 
not justify inferences about possible differences in polypeptide 
chain length. 

Considerable evidence supports the conclusion that a eu- 
karyote usually contains only a single calmodulin, even 
among all the different tissues of a vertebrate (24). The 
chicken has only a single calmodulin gene (34), although 
recently a related but considerably diverged intronless gene 
has been expressed in bacteria to produce a calmodulin-like 
protein (35). Xenopus has two calmodulin genes, possibly the 
consequence of total genome duplication during evolution, 
but these two genes encode a single calmodulin (10). The 
ciliate Tetrahymena and the alga Chlamydomonas each ap- 
pear to share a single calmodulin between cell bodies and 
flagella (17, 22, 23, 33, 36, 39, 42), although a calmodulin- 
like protein, which failed to active phosphodiesterase, has also 
been reported in Chlamydomonas flagella (39). The only clear 
exception to one calmodulin per organism, other than our 
report, is the finding of two calmodulins in the egg of the sea 
urchin Arbacia punctulata (2). These two calmodulins differ 
in electrophoretic mobility and in other attributes, including 
extent of immunoreactivity and amino acid composition. 
Sperm of the same species, and eggs and sperm of another 
sea urchin, Strongylocentrotus purpuratus, contain a single 

The Journal of Cell Biology, Volume 102, 1986 1676 



calmodulin (2); it is unclear why Arbacia eggs contain two. 
Our finding is the first report of  two calmodulins in a unicel- 
lular organism. Since the only readily detected difference 
between CaM-1 and -2 is in apparent molecular weight, it is 
quite possible that other organisms may have multiple cal- 
modulins which do not show a difference in electrophoretic 
mobility, i.e., that have not been detected. 

The roles of  these two calmodulins in the flagellate are not 
known. Calmodulins have been found in cilia and flagella, 
and are presumed to be important in some aspect of  regulation 
of flagellar motility (24, 30); perhaps CAM-1 has such a role. 
The cell body calmodulin, CAM-2, possibly might be involved 
in the calcium-regulation of cell morphogenesis described 
previously (12). Since both are found in flagellates, roles for 
each either in differentiation or in the flagellate phenotype 
are likely. 

Differential localization of these two calmodulins in flag- 
ellates is provocative, and raises questions not only about the 
role of  the two calmodulins but also about how the segregation 
arises during differentiation. The segregation places the major 
concentration of calmodulin in the flagella. High concentra- 
tions of calmodulin have also been found in Tetrahymena 
cilia (32). 

The evidence strongly suggests that these two calmodulins 
are synthesized during differentiation. The increase in abun- 
dance of translatable calmodulin mRNA during the first hour 
of differentiation, and the subsequent decrease, both parallel 
the changes in abundance of flagellar tubulin mRNA, which 
has been rigorously shown to be synthesized during differen- 
tiation (15, 26). Estimates by radioimmune assay indicate 
roughly a fivefold increase in calmodulin antigen during 
differentiation of amebas to flagellates. At the peak, 2% of 
the methionine radioactivity in the translation product is in 
CaM-I and -2, but at the end of this rapid differentiation, 
these proteins amount to only 0.01% of  the protein of the 
flagellate. This discrepancy of quantities is to be expected if 
these calmodulins are synthesized during this brief interval. 

In numerous attempts, we have failed to isolate calmodulin 
from amebas. The radioimmune assay indicates that some 
calmodulin is present in amebas, as is likely from the ubiq- 
uitous distribution of calmodulin among eukaryotes. The 
matter of  the presence of calmodulin in Naegleria amebas 
and especially whether, if present, it is CaM-I, -2, or an 
undescribed CAM-3, remain unresolved. 

There have been few studies of  calmodulin synthesis and 
mRNA abundance. Van Eldik et al. (38) described an assay 
for translatable mRNA for spinach calmodulin, using a dif- 
ferent method to enrich for the product. Calmodulin (6, 30, 
43) and calmodulin mRNA (43) are elevated about twofold 
in transformed versus normal vertebrate cells. Changes in 
intracellular calmodulin levels during the cell cycle of  mam- 
malian cells is accompanied by a 50% decrease and then a 
fourfold increase in calmodulin mRNA (8). Ours is the first 
report of  a major developmental change in abundance of 
calmodulin mRNA. 

In addition to our finding of two calmodulins in this 
unicellular organism, their segregation in flagellates, and the 
programmed change in abundance of their mRNAs during 
differentiation, we are excited by the contemporaneous rise 
and fall in abundance of translatable mRNAs for the two 
subunits of  flagellar tubulin and for the two calmodulins. This 

result suggests the possibility that the expression of the genes 
for these unrelated proteins are under coordinate control 
during differentiation. 
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