
METHODS
published: 10 December 2021

doi: 10.3389/fcvm.2021.759675

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 December 2021 | Volume 8 | Article 759675

Edited by:

Zahra K. Motamed,

McMaster University, Canada

Reviewed by:

Nuno Moreno,

Hospital Pedro Hispano, Portugal

Farhad R. Nezami,

Brigham and Women’s Hospital and

Harvard Medical School,

United States

*Correspondence:

Ghassan S. Kassab

gkassab@calmi2.org

Specialty section:

This article was submitted to

Cardiovascular Imaging,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 16 August 2021

Accepted: 03 November 2021

Published: 10 December 2021

Citation:

Dabiri Y, Yao J, Mahadevan VS,

Gruber D, Arnaout R, Gentzsch W,

Guccione JM and Kassab GS (2021)

Mitral Valve Atlas for Artificial

Intelligence Predictions of MitraClip

Intervention Outcomes.

Front. Cardiovasc. Med. 8:759675.

doi: 10.3389/fcvm.2021.759675

Mitral Valve Atlas for Artificial
Intelligence Predictions of MitraClip
Intervention Outcomes
Yaghoub Dabiri 1, Jiang Yao 2, Vaikom S. Mahadevan 3, Daniel Gruber 4, Rima Arnaout 5,6,7,8,9,

Wolfgang Gentzsch 4, Julius M. Guccione 10 and Ghassan S. Kassab 11*

1 3DT Holdings LLC, San Diego, CA, United States, 2Dassault Systemes Simulia Corp, Johnston, RI, United States,
3Department of Medicine, University of California, San Francisco, San Francisco, CA, United States, 4 The UberCloud,

Sunnyvale, CA, United States, 5Division of Cardiology, Department of Medicine, University of California, San Francisco,

San Francisco, CA, United States, 6 Bakar Computational Health Sciences Institute, University of California, San Francisco,

San Francisco, CA, United States, 7Center for Intelligent Imaging, University of California, San Francisco, San Francisco, CA,

United States, 8 Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, United States,
9Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, United States, 10Department of

Surgery, University of California, San Francisco, San Francisco, CA, United States, 11Department of Medicine, California

Medical Innovations Institute, San Diego, CA, United States

Severe mitral regurgitation (MR) is a cardiac disease that can lead to fatal consequences.

MitraClip (MC) intervention is a percutaneous procedure whereby the mitral valve (MV)

leaflets are connected along the edge using MCs. The outcomes of the MC intervention

are not known in advance, i.e., the outcomes are quite variable. Artificial intelligence

(AI) can be used to guide the cardiologist in selecting optimal MC scenarios. In this

study, we describe an atlas of shapes as well as different scenarios for MC implantation

for such an AI analysis. We generated the MV geometrical data from three different

sources. First, the patients’ 3-dimensional echo images were used. The pixel data from

six key points were obtained from three views of the echo images. Using PyGem, an

open-source morphing library in Python, these coordinates were used to create the

geometry by morphing a template geometry. Second, the dimensions of the MV, from

the literature were used to create data. Third, we used machine learning methods,

principal component analysis, and generative adversarial networks to generate more

shapes. We used the finite element (FE) software ABAQUS to simulate smoothed particle

hydrodynamics in different scenarios for MC intervention. The MR and stresses in the

leaflets were post-processed. Our physics-based FE models simulated the outcomes

of MC intervention for different scenarios. The MR and stresses in the leaflets were

computed by the FE models for a single clip at different locations as well as two and

three clips. Results from FE simulations showed that the location and number of MCs

affect subsequent residual MR, and that leaflet stresses do not follow a simple pattern.

Furthermore, FE models need several hours to provide the results, and they are not

applicable for clinical usage where the predicted outcomes of MC therapy are needed in

real-time. In this study, we generated the required dataset for the AI models which can

provide the results in a matter of seconds.
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1. INTRODUCTION

MitraClip (MR) is a percutaneous procedure to treat severe
mitral regurgitation (MR), a disease with a prevalence of 4million

in US and an incidence of 250,000 patients each year (1, 2). This
intervention is most appropriate for patients who cannot tolerate

surgery because of other diseases or poor health conditions (2).
The short-term and long-term benefits of MC has been reported
in clinical studies (3–5).

Despite the benefits of MC implantation, the positioning of

the clips is based on echocardiographic parameters including
color doppler which does not accurately predict reduction of
MR. Particularly, the location of the MC along the leaflet edges

and the number of MCs has a direct role in the effectiveness
of MC therapy. Currently, there is no systematic approach to

determine the location and number of MCs that minimize MR.
On the other hand, leaflet injury can occur as a result of MC
intervention (6, 7), which is another consideration for an optimal

MC therapy.
An ad-hoc approach to implant the MC in an optimal

scenario would be to try different locations and number
of MC, but this is not practical. Computational modeling
including finite element (FE) analysis can be used to create
in-silico models of MC procedure (8–11). Using FE, different
scenarios can be virtually evaluated for a subject, and the
best strategy is implemented during the MC intervention.
FE computations are time-consuming, however, making FE
models inappropriate for clinical usage. Artificial Intelligence
(AI) and its subcategory Machine learning (ML) is being
used in cardiovascular medicine and technology (12) and
presents an opportunity to speed MC simulations compared to
FE modeling.

To use AI for MC interventions, an atlas of shapes as
well as different scenarios for MC implantation, namely
the location and number of MCs is required. Notably, the
dataset should cover the diversity in MV geometry for
different subjects. The MV geometry can be acquired by
different imaging modalities such as magnetic resonance
imaging (MRI), CT scan, and echocardiography (Echo).
Although Echo modality contains less details compared
to MRI and CT scan, it is more convenient for patients.
Since there are hand-held Echo imaging devices in
development, this imaging modality is more likely to be
used in future mobile technologies and internet of things
(IoT) technology.

The aim of this paper is to introduce a methodology for
creating an atlas that can be used for MV AI applications.
Particularly, the data generation methods presented can be
used to mine the MC intervention based on AI algorithms.
Shapes and FE models of the MV are created where the
geometries of the models are based on Echo images of
the MV, the morphological data in the literature, principal
component analysis (PCA), and generative adversarial networks
(GANs). For each geometry, 7 scenarios were created whereby
the MR in untreated MV, and 6 locations for the MC
were simulated. We also show results for 2 and 3 MCs
for comparison.

2. METHODS

2.1. MV Geometry
To create the MV geometries, we morphed a template geometry
using data from several key points. The key points were obtained
from different sources as described below. The template MV
geometry was adopted from another study (13). For morphing
the geometry, PyGem, an open-source library in Python was
used. We used Radial Basis Functions (RBF) in this package (14).
We removed some chords from the original template (888 out
of 4,971 total chordal elements). This was necessary to cause
MR for some geometries obtained from normal valve data (as
described below).

2.1.1. Data From Patients

We obtained 3-dimensional (3D) echocardiographic image data
from University of California San Francisco (UCSF). The images
obtained were in accordance with UCSF Institutional Review
Board (number 19-27738). We used Echo images from UCSF to
create a portion of the dataset. An example Echo image is shown
in Figure 1. We used ImageJ software (version 1.53e, National
Institutes of Health) to manually obtain the pixel coordinates
of several key points (Figure 1) in each image. The pixel data
obtained in three views from the images, were used to morph
the template geometry (Figure 2). In total, we reconstructed
geometries from 29 patients.

It should be noted that the MV geometries pertain to patients
that were approved forMC intervention at UCSFMedical Center.
Thus, the geometries obtained from these images represent
pathological MVs that require MC intervention.

2.1.2. Data From Literature

Another source for creating the geometry is from data in the
literature. We used the statistics provided by Krawczyk-Ozóg
et al. for the leaflets [Figure 2; (15)]. A normal distribution
for the leaflet parameters was used in our study. Using the
mean and standard deviation from the dataset provided by
(15), we calculated the respective data for 5, 50, 95% percentile
of population. The template geometry was morphed using
the data for each datapoint to create respective geometry.
The resulting values are shown in Table 1. For each of
the aorto-mural and inter-commissural diameters, five values
were used while other morphological parameters were fixed
(Table 1).

This part of the dataset represents normal MV morphologies.
MV geometries that require MC could have characteristics that
are not seen in normal MV (such as the length of leaflets
and annulus diameter). In some patients with MR, however,
the MV morphology may be normal (16, 17). Unlike imaging
data, the geometries created from these data source were not
directly obtained from patients. Rather, they were used for
data augmentation.

2.1.3. Data From PCA

We used PCA to generate more virtual patients’ data using the
data we had. The coordinates from UCSF patients’ data and data
from literature were used for this purpose. We used the following
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FIGURE 1 | A sample 3D echo image. Six key points used in the morphing are shown with stars. The pixel data from these key points were obtained manually in

ImageJ, and they were used to create the respective geometry by morphing a template geometry. The shape on the right is the respective patient geometry after

morphing.

FIGURE 2 | The dimensions of six key points were computed from literature. The diameters of the annulus (two dimensions) and the leaflet edge dimensions (four

points) were adopted from data in the literature (15). A sample geometry created from literature data is shown.

equation for this purpose:

X ∼= XPCA = X̄ +

M
∑

m=1

αm

√

λmWm (1)

where X̄ is the mean shape, and {Wm} and {λm} are
the eigenvectors and eigen values of the covariance matrix,
respectively, {αm} is the shape code, andM is number of principal
components (18–20). We used three components as they could

describe over 90% of total shape variation (21). We used linear
algebra library in Python to apply singular value decomposition
on the MV dataset, and then, PCA computations followed. In
total, the valve dataset used for PCA contained 180 shapes.

The geometries obtained from PCA were a combination
of MVs from patients and normal MVs. Similar to the
geometries created from literature (section Data From
Literature), the geometries obtained from PCA were used for
data augmentation.
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2.1.4. Data From GANs

After creating the dataset from image dataset and literature, we
had a dataset from different geometries. Using this dataset, we
generated more images using GANs (22). This algorithm has
two parts. One part generates the geometries (the generator) and
the other part tries to distinguish the generated geometry from
a real geometry (discriminator). Initially, the discriminator can
recognize the generated image from the real image, but as the
generator trains, the discriminator has difficulty in separating
the generated image from the real images. To implement
this algorithm, we treated the geometries as images. A deep
learning (DL) model in TensorFlow was adopted for this
purpose (23). We used TensorFlow for computations in Google
Collaboratory with Graphics Processing Units (GPUs), with
following specifications: name: Tesla P100-PCIE-16GB, driver
version: 460.32.03, memory: 16280 MiB.

2.2. Computational Set Up
After the geometries for the MVs were developed, they were used
to conduct FE simulations. The FE model included the MV, its
chords and the left ventricle (LV), as indicated in Figure 1. As

TABLE 1 | The values used for the leaflet morphological parameters.

Parameter Values (mm)

AML 13.63, 20.6, 27.57

P1 6.85, 11, 15.15

P2 8.25, 12.9, 17.55

P3 6.08, 10.4, 14.72

Aorto-mural diameter 21.5, 22.0, 22.5, 23.0, 23.5

Intercommissural diameter 17.65, 18.15, 18.65, 19.15, 19.65

For the variations in diameters, other parameters were fixed at following values: AML =

13.63mm, P1 = 6.85mm, P2 = 8.25mm, P3 = 6.08 mm.

mentioned above, the MV geometry was adopted from another
study (13). The blood flow was modeled using Smoothed Particle
Hydrodynamics (SPH) where particles represent the red blood
cells. The MC was simulated by connecting respective points on
the MV leaflet edges (Figure 3).

The leaflet materials were modeled using hyperplastic fiber-
reinforced material, as below (24, 25):

9dev =
a

2b
eb(I1−3) +

∑

i=f ,t

ai

2bi

{

ebi(I4i−1)2 − 1
}

(2)

+
aft

2bft

{

ebft
(

I8ft
)2

− 1
}

9vol =
1

D

(

J2 − 1

2
− ln (J)

)

where a and b are isotropic stiffness of the tissue; af and bf are
tissue stiffness in the fiber direction, at and bt are tissue stiffness
in the (transverse) plane perpendicular to the fiber direction,
and aft and bft are shear rigidity between fibers and transverse
plane. I1, I4i and I8ft are invariants, as follows:

I1 : = tr(C)

I4i : = C :(f0 ⊗ f0)

I8fs : = C : sym(f0 ⊗ t0) (3)

C is the right Cauchy-Green tensor, f0 and s0 are vectors that
define the fiber and trans-fiber directions, respectively. J is the
deformation gradient invariant and D is a multiple of the Bulk
Modulus K ( 2K ).

FIGURE 3 | The FE model (left) and the MV (right). The six locations for MC are shown.
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We used LV (including papillary muscles) as the surrounding
geometry for the blood flow and did not consider deformations in
the LV nodes. The MV annulus changed for different geometries,
but the LV geometry was the same. This caused a mismatch
between LV and MV annulus. To avoid leakage between LV and
MV due to this mismatch, a surface was placed to seal the gap.
This surface did not affect the deformations of the MV and only
sealed the gap between MV and LV. The blood flow was enforced
by a plate in the LV side of the MV that moved toward the
MV. A pressure was applied to the leaflets to close them. The
MV annulus motions were adopted from the literature. The SPH
methodology is similar to previous publications (24, 26).

The FE simulations were conducted in several steps: (1) SPH
particles entered the LV and subsequently the model replicated
an LV filled with blood; (2) MC was implemented by connecting
respective nodes from two leaflets; (3) Pressure load was applied
to close the leaflets; and (4) Particles were forced to move toward
the MV, using a plate.

The FE software Abaqus Unified FEA (Part of
3DEXPERIENCE SIMULIA software Suite, Dassault Systemes,
Providence, RI, USA) version 2020 was used for computations.
For leaflets, we used a material available in Abaqus Living Heart
license that is based on Equation 2. The leaflets element type
was C3D8I (8-node linear brick, incompatible modes); the
chords element type was T3D2 (linear 3-D truss), and the blood
particles element type was C3D8R (8-node linear brick, reduced
integration with hourglass control). The Abaqus explicit solver
was used with automatic time incrementation, and mass scaling
was used. The general contact (including self-contact) was used
for interaction between the model components including blood
particles, leaflets, LV, and the plate which was used to move the
particles toward atrium. The FE computations were conducted
on the UberCloud platform using Google Cloud Platform
computational nodes. We used C2 instances (Cascade Lake) with
30 cores and 240 GB of main memory for computations. The
average runtime for each FE model was 6 h.

3. RESULTS

We created 55 geometries from image data, 106 geometries
based on leaflet parameters in the literature, and 20 geometries
using PCA (Figure 4). Although GANs could generate additional
shapes (Figures 5, 6), we did not use it to create more
geometries, as it required more computational costs. The GANs
algorithm required several epochs to generate MV models
that were similar to the dataset (Figure 5). Although in the
initial epochs the geometries provided by GANs were randomly
distributed, the generated geometries became closer to the
MV (Figure 5). The output from GANs was not directly
useable for FE modeling, but it provided coordinates of 6
key points which could be used to morph the template FE
model (Figure 6). The result shown in Figure 6 was obtained
from 81 geometries based on geometrical parameters from
the literature.

The blood flow through the MV was simulated by
the FE models. The MR was different for different

geometries (Figures 7–10). As well, other parameters were
affected including the deformations in the leaflets and
stress distributions.

With one MC, with different MC locations, the MR was
altered, and the alterations in MR was more noticeable for
some MC locations (Figures 8, 9). Other parameters, including
the stress distributions and leaflet deformations changes with
MC location.

Simulation scenarios with two and three MCs showed the MR
with more than one clip. More than one MC led to lower MR
compared to one MC, but the reduction in MR depended on the
locations of the MCs. When two MCs are used, the locations of
the two MCs with respect to each other, affects MR and stresses.
The results for three MCs could lower the MR compared to two
MCs. The stresses in the leaflets were altered with three MCs
(Figures 10, 11). The number of MCs noticeably affected the
orifice area. As the number of MCs increased, theMV orifice area
became smaller (Figure 11).

4. DISCUSSION

We presented a methodology to generate an atlas for prediction
ofMC intervention outcomes. Our approach is based on different
data-generation methods, namely patients’ data, literature
reports, PCA, and GANs. In case the data from patients is
limited, our approach can be used to generate/augment the data.
We used echo images as one source of data generation as this
modality is more available and safer than other modalities, and
it is less expensive. Our FE modeling simulated fluid-structure
interaction (FSI) for different scenarios for MC interventions.

The patient data that we used are based on Echo images. There
are different modalities for MV imaging including MRI and CT.
We used Echo modality because this imaging method is more
readily available, less costly and safer. There are patients who
cannot tolerate MRI; e.g., those with pacemakers. On the other
hand, hand-held Echo cardiac imaging devices are progressing
to the clinics (27). Therefore, our approach is compatible
with current efforts for personalized imaging methods. These
technologies that are integrated in mobile devices will expand
Internet of Things (IoT) technologies, providing patient-oriented
medicine and more effective treatments. On the other hand,
working with Echo images is more complicated than MRI.
The Echo images do not come in a regular DICOM format
that can be directly used for geometrical reconstruction. Some
vendors have provided software modules that makes it possible
to convert DICOM data to 3D Cartesian format (Philips),
but particularly, Siemens machines do not provide such a
module. Our methodology contributes to using Echo images for
MV simulations.

The outputs of PCAwere directly appropriate for FEmodeling
(Figure 4). The GANs could provide a tool for MV data
augmentation. In comparison to PCA, GANs were recently
introduced (22). This deep learning algorithm has been used in
many domains, particularly for computer vision. The outputs of
GANs were not directly appropriate for FE modeling, but they
provide the information to generate FE models; e.g., coordinates
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FIGURE 4 | A model created from literature data and a model created using PCA.

FIGURE 5 | The GAN model was able to produce MV geometries after several epochs.

of key points that we used for morphing. Given that GANs
provided the shapes after several epochs (Figures 5, 6), we used
PCA for the data generation in this study.

Our study emphasizes using ML analysis for MC intervention
optimization. First, it is not feasible to experiment with MC
location to determine the optimal MC implantation strategy.
Furthermore, stresses in the leaflets cannot be measured
experimentally. The FE modeling can be used to virtually
simulate the outcomes of different MC intervention scenarios.
FE modeling (especially when FSI is considered), however, can
be challenging. For some patients, the geometry of the leaflets
deviates from a normal geometry such that the distortions in
FEs cause numerical instability. This implies that FE modeling

is limited in terms of numerical convergence for some patients.
Moreover, FE modeling is time-consuming especially when FSI
is involved. Even after FE computations are complete, they do
not directly lead us to MC intervention improvements. Notably,
based on the results, for the same MV geometry the alterations
in MR does not follow a pattern that can be intuitively extracted
from the data (Figure 9). Similar toMR, results for leaflet stresses
also do not show a pattern by a simple analysis. In other words,
the interplay between factors that affect MR and leaflet stress is
complicated, making it difficult to provide a rule of thumb for
optimal MC intervention.

On the other hand, ML models do not suffer from FE
modeling limitations mentioned above. Once a ML model is
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FIGURE 6 | The GAN-generated geometries became more similar to real MVs after several epochs.

FIGURE 7 | The MR and leaflet stress for two different subjects.

developed, it can provide the results in much shorter time than
FE modeling (25, 28), and it can provide the results for the
MV parameters that are within the data distribution (results
will be provided except for outliers). In this paper, we described
data generation, an important step in using ML analysis for MC
outcomes prediction.

Because our data generation is founded on FE models, we
aimed to use a FE modeling approach that captures import
information about MV dynamics and at the same time is
computationally efficient. Our FE model has two important
aspects that makes it more advanced compared to previous
studies. First, it includes the LV as the surrounding geometry
for blood whereas in our previous report, we used a cylinder
(26). Because FSI models are relatively complex, inclusion of LV

is important from a FE modeling standpoint. Second, our FE
modeling approach is adaptable for different parameters of the
MV, including geometrical parameters. This aspect is important
because FSI models are typically sensitive to variations in model
parameters. Moreover, we modeled not only the MV and LV
but also the MC and different scenarios for MC implantations
were considered. The average runtime for our FE models made
it possible to use them for our data generation workflow (∼6 h).
We are not aware of a previous study that provided a workflow to
create a dataset of MV FSI models for different scenarios of the
MC intervention.

The MR and leaflet stress are important parameters for MC
intervention. In particular, the locations and number of MCs
are crucial factors for the outcome of the intervention. Our
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FIGURE 8 | The MR for “No Clip” and 6 locations for a single MC (the same geometry).

FIGURE 9 | Histograms that show percentage of MR reduction in the MV for each MC location. These histograms were plotted only for scenarios where MR reduced

after MC intervention.

simulations show that when one MC is used, the stress and MR
is different for each MC location (Figure 8). Similarly, when the
number of MCs increased to 2 and 3, the MR and stresses were
altered (Figures 10, 11). For the model shown in Figures 10, 11,
with one clip (location 3), the reduction inMRwas 40%, with two
clips it was 83% (A) and 61% (B), and with three clips it was 95%.
The maximum von Mises stress in the leaflets for one clip was
15.1 MPa, for two clip it was 13.2 MPa (A) and 11.2 MPa (B),
and with three clips it was 17.0 MPa. Moreover, the geometry
of the MV is another factor that plays a role in the outcomes
of MC intervention (Figure 7). The maximum von Mises stress

was 8.3 and 2.2 MPa for subjects A and B, respectively,
in Figure 7.

Another important aspect of MC intervention is the
alterations in the orifice area caused by MC(s) (29). Based on
patient’s background and preexisting pressure gradients, typically
two or more clips run the risk of causing mitral stenosis (30).
Our FE models simulate the effects of MCs on the orifice area
as number of MCs change (Figure 11). Specifically, for the
geometry in Figure 11, in relation to one clip scenario, two clips
reduced the orifice area by 54% (A) and 23% (B). With respect
to one clip, however, three clips reduced the orifice area by 72%.
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FIGURE 10 | The MR for two and three MCs. For two clips, (A) represents clips at locations 3 and 4, and (B) represents clips at locations 3 and 5.

FIGURE 11 | Leaflet von Mises stresses for one, two, and three MCs. These

figures show the implantation of the MC. For two clips, (A) represents clips at

locations 3 and 4, and (B) represents clips at locations 3 and 5.

Therefore, our results also show that 3 MCs have noticeably
higher effects on the MV orifice area.

The average MR reduction obtained by implanting a MC in
locations 1 (45%), 3 (39%), 4 (39%), and 5 (48%) were relatively
similar to each other. The average MR reductions obtained by
implanting aMC at locations 2 (19%) and 6 (23%), however, were
noticeably lower (Figure 9). The histograms for MR reductions
for locations 2 and 6 are relatively similar. The similarity between
MR reduction for locations 2 and 6 can be explained based on
the vicinity between these two locations, and that they are both

closer to the posterior commissure than the anterior commissure.
Figure 9 demonstrates that the average values of MR should be
interpreted with caution. Notably, for some geometries, a MC
implanted in location 2 or 6 led to a larger reduction in MR
than other locations. As such, it is important to determine the
optimal MC scenarios based on each patient’s parameters rather
than average data.

5. LIMITATIONS

The MV has a wide range of parameters that can be different
for each patient. These parameters include (but are not limited
to) the geometrical specifications of the annulus and leaflets, the
chords, the material properties, and the functional/degenerative
type of the disease. The methodology we present in this paper
is a proof of concept study that can be used for different types
of MV diseases. Once the dimensions of the MV for a patient
is extracted from the respective images, they can be used to
drive the FE geometry using the morphing process explained
in “Methods” section. As mentioned above, FE models do not
converge for all geometries, but ML models can provide the
results for that patient as long as the geometry distribution is
within the dataset distribution range. As such, for a data set
generation methodology, it is important to include data with a
wide range of variance, as much as information is available.

We presented several methods to create the MV geometries
including echo images, morphological data (from literature),
PCA, and GANs. Each method provides a different approach to
generate data. As such, the proposed methodology can utilize
information in the form of either images or MV dimensions
to create the dataset and utilize PCA and GANs to augment
the data. In this study, the size of available images was limited.
As such, morphological data from normal MVs were used to
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augment the data. This is a limitation in terms of data distribution
because normal MVmorphologies can be different from patients’
morphologies. This limitation related to the available data, can
be addresses as we collect more patient images or morphological
data from pathological MVs (that need MC) becomes available.
It should be noted that MR can be caused by chordae or papillary
muscle rupture (17), in which case the MVmorphology might be
normal. Therefore, a comprehensive dataset for MC intervention
needs to include MVs with normal morphology.

ForML simulations, a larger training data set is generallymore
desirable. Because the echo images provide the specifications of
the patients’ geometries directly applicable to MC therapy, there
is a need to collect more images from a wide variety of patients.
A larger patient images dataset can improve the distribution of
geometries and the size of the training dataset. The former will
cover more patients’ geometries and the latter will improve the
ML model accuracy. We are collecting more MV images from
patients that need MC intervention.

We did not use GANs for creating additional parts for our
dataset in this paper, but we showed that GANs are trainable for
generating MV geometries. This result is important because PCA
and GANs are two different approaches. The former finds pattern
in data by looking at directions of largest orthogonal variances,
but the latter finds a complex non-linear function between
the inputs and outputs. Therefore, GANs can provide virtual
geometries that are not created by PCA. In our future work,
GANs can be used to augment geometries from patient data.

An additional limitation is that the LV was considered as
the surrounding geometry for the blood flow simulations, which
did not consider deformations of the LV; i.e., the LV geometry
remained unchanged. In our simulations, we found the FSI
convergence is sensitive to the model geometrical specifications.
Amodel that uses a rigid LV geometry is more likely to encounter
convergence failure than a model that uses a rigid cylinder. Thus,
we included a rigid LV geometry since it is a step closer to a
more evolvedMVmodel. Futuremodels require FSI that involves
both MV and LV. The LV deformations should be considered
in future models where the contraction of the LV will cause
the ejection of the blood. This future work can integrate our
LV models (25, 28) with our MV and MC modeling approach.
The MV will be a part of the LV in such a way that the plate

used to seal the gap between MV and LV will not be required.
Also, annulus deformations will be caused by LV deformations,
and the motions at the annulus will not be applied as boundary
conditions. It should be noted that such a model likely requires
tremendous computational resources, particularly if it is used for
data generation.

Since the effects of MC on MR and MV dynamics do not
follow simple patterns or rules, an AI tool is needed for such
an analysis. This paper described a methodology to generate the
dataset for AI-based tools for MC intervention improvements,
but we did not present an AI tool. The next step in the AI analysis
is to apply AI models on the data. Analysis of the data and
applying AI models for prediction of MC outcomes can be topics
of future publications.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because of limitations in data access policy in corresponding
institutes. Requests to access the datasets should be directed
to gkassab@calmi2.org.

AUTHOR CONTRIBUTIONS

YD, JG, and GK designed the study. YD conducted the
simulations and analyzed the results. JY contributed to
ABAQUS model development. DG and WG contributed
to running the models. VM and RA contributed to data
preparation and analysis. All authors read and revised
the manuscript.

FUNDING

This work was supported in part by the SBIR grant number
R43 HL145896.

ACKNOWLEDGMENTS

We thank Dr. Andrew Wisneski in the Department of Surgery,
University of California, San Francisco, for assistance with
image analysis.

REFERENCES

1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone

G, et al. Heart disease and stroke statistics - 2010 update: a report

from the American heart association. Circulation. (2010) 121:948–54.

doi: 10.1161/CIRCULATIONAHA.109.192666

2. St. Goar FG, Fann JI, Komtebedde J, Foster E, Oz MC, Fogarty

TJ, et al. Endovascular edge-to-edge mitral valve repair: short-

term results in a porcine model. Circulation. (2003) 108:1990–3.

doi: 10.1161/01.CIR.0000096052.78331.CA

3. Mauri L, Foster E, Glower DD, Apruzzese P, Massaro JM, Herrmann HC,

et al. 4-Year results of a randomized controlled trial of percutaneous repair

versus surgery for mitral regurgitation. J Am Coll Cardiol. (2013) 62:317–28.

doi: 10.1016/j.jacc.2013.04.030

4. De Bonis M, Lapenna E, Pozzoli A, Giacomini A, Alfieri O. Edge-

to-edge surgical mitral valve repair in the era of mitraClip: what if

the annuloplasty ring is missed?. Curr Opin Cardiol. (2015) 30:155–60.

doi: 10.1097/HCO.0000000000000148

5. Sorajja P, Vemulapalli S, Feldman T, Mack M, Holmes DR, Stebbins A,

et al. Outcomes with transcatheter mitral valve repair in the united states:

an STS/ACC TVT registry report. J Am Coll Cardiol. (2017) 70:2315–27.

doi: 10.1016/j.jacc.2017.09.015

6. Rahhab Z, Ren B, Oei F, de Jaegere PPT, Van Mieghem NM. Mitral valve

injury after mitraclip implantation. JACC Cardiovasc Interv. (2016) 9:e185–6.

doi: 10.1016/j.jcin.2016.07.007

7. Maisano F. Leaflet injuries after percutaneous edge-to-edge repair: a challenge

to avoid∗. JACC Case Reports. (2021) 3:74. doi: 10.1016/j.jaccas.2020.

12.003

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 December 2021 | Volume 8 | Article 759675

mailto:gkassab@calmi2.org
https://doi.org/10.1161/CIRCULATIONAHA.109.192666
https://doi.org/10.1161/01.CIR.0000096052.78331.CA
https://doi.org/10.1016/j.jacc.2013.04.030
https://doi.org/10.1097/HCO.0000000000000148
https://doi.org/10.1016/j.jacc.2017.09.015
https://doi.org/10.1016/j.jcin.2016.07.007
https://doi.org/10.1016/j.jaccas.2020.12.003
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Dabiri et al. Mitral Valve Atlas

8. Zhang Y,Wang VY,Morgan AE, Kim J, HandschumacherMD,Moskowitz CS,

et al. Mechanical effects of MitraClip on leaflet stress and myocardial strain in

functional mitral regurgitation - a finite element modeling study. PLoS One.

(2019) 14:e0223472. doi: 10.1371/journal.pone.0223472

9. Caballero A, Mao W, McKay R, Hahn RT, Sun W. Comprehensive

engineering analysis of left heart dynamics after mitraclip in a

functional mitral regurgitation patient. Front Physiol. (2020) 11:432.

doi: 10.3389/fphys.2020.00432

10. Kong F, Caballero A, McKay R, Sun W. Finite element analysis of MitraClip

procedure on a patient-specific model with functional mitral regurgitation. J

Biomech. (2020) 104:109730. doi: 10.1016/j.jbiomech.2020.109730

11. Al Amri I, Debonnaire P, van der Kley F, Schalij MJ, Bax JJ, Marsan NA,

et al. Acute effect of MitraClip implantation on mitral valve geometry in

patients with functional mitral regurgitation: insights from three-dimensional

transoesophageal echocardiography. EuroIntervention. (2016) 11:1554–61.

doi: 10.4244/EIJY15M09_09

12. Quer G, Arnaout R, Henne M, Arnaout R. Machine Learning and the future

of cardiovascular care: JACC state-of-the-art review. J Am Coll Cardiol. (2021)

77:300–13. doi: 10.1016/j.jacc.2020.11.030

13. Votta E, Caiani E, Veronesi F, Soncini M, Montevecchi FM, Redaelli A. Mitral

valve finite-element modelling from ultrasound data: a pilot study for a new

approach to understand mitral function and clinical scenarios. Philos Trans R

Soc A Math Phys Eng Sci. (2008) 366:3411–34. doi: 10.1098/rsta.2008.0095

14. TezzeleM,DemoN,Mola A, RozzaG. PyGeM: python geometrical morphing.

Softw Impacts. (2021) 7:100047. doi: 10.1016/j.simpa.2020.100047

15. Krawczyk-Ozóg A, Hołda MK, Sorysz D, Koziej M, Siudak Z, Dudek D, et al.

Morphologic variability of the mitral valve leaflets. J Thorac Cardiovasc Surg.

(2017) 154:1927–35. doi: 10.1016/j.jtcvs.2017.07.067

16. McCarthy KP, Ring L, Rana BS. Anatomy of the mitral valve: understanding

the mitral valve complex in mitral regurgitation. Eur J Echocardiogr. (2010)

11:i3–9. doi: 10.1093/ejechocard/jeq153

17. Watanabe N. Acute mitral regurgitation. Heart. (2019) 105:671–7.

doi: 10.1136/heartjnl-2018-313373

18. Liang L, Liu M, Martin C, SunW. A deep learning approach to estimate stress

distribution: a fast and accurate surrogate of finite-element analysis. J R Soc

Interface. (2018) 15:20170844. doi: 10.1098/rsif.2017.0844

19. Zhang S, Zhan Y, Metaxas DN. Deformable segmentation via sparse

representation and dictionary learning. Med Image Anal. (2012) 16:1385–96.

doi: 10.1016/j.media.2012.07.007

20. Heimann T, Meinzer HP. Statistical shape models for 3D medical

image segmentation: a review. Med Image Anal. (2009) 13:543–63.

doi: 10.1016/j.media.2009.05.004

21. Liang L, Liu M, Martin C, Elefteriades JA, Sun W. A machine learning

approach to investigate the relationship between shape features and

numerically predicted risk of ascending aortic aneurysm. Biomech Model

Mechanobiol. (2017) 16:1519–33. doi: 10.1007/s10237-017-0903-9

22. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S,

et al. Generative adversarial networks. Commun ACM. (2014) 63:139–44.

doi: 10.1145/3422622

23. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: A

System for Large-Scale Machine Learning. (2016). Available online at: https://

research.google/pubs/pub45381/ (accessed June 29, 2020).

24. Dabiri Y, Yao J, Sack KL, Kassab GS, Guccione JM.

Tricuspid valve regurgitation decreases after mitraclip

implantation: fluid structure interaction simulation. Mech Res

Commun. (2019) 97:96–100. doi: 10.1016/j.mechrescom.2019.

04.009

25. Dabiri Y, Van der Velden A, Sack KL, Choy JS, Kassab GS, Guccione JM.

Prediction of left ventricular mechanics using machine learning. Front Phys.

(2019) 7:117. doi: 10.3389/fphy.2019.00117

26. Kamakoti R, Dabiri Y, Wang DD, Guccione J, Kassab GS. Numerical

simulations of mitraclip placement: clinical implications. Sci Rep. (2019)

9:15823. doi: 10.1038/s41598-019-52342-y

27. Chamsi-Pasha MA, Sengupta PP, Zoghbi WA. Handheld echocardiography.

Circulation. (2017) 136:2178–88. doi: 10.1161/CIRCULATIONAHA.117.

026622

28. Dabiri Y, Van der Velden A, Sack KL, Choy JS, Guccione JM, Kassab GS.

Application of feed forward and recurrent neural networks in simulation of

left ventricular mechanics. Sci Rep. (2020) 10:22298. doi: 10.1038/s41598-020-

79191-4

29. Biaggi P, Felix C, Gruner C, Herzog BA, Hohlfeld S, Gaemperli O,

et al. Assessment of mitral valve area during percutaneous mitral

valve repair using the MitraClip system: comparison of different

echocardiographic methods. Circ Cardiovasc Imaging. (2013) 6:1032–40.

doi: 10.1161/CIRCIMAGING.113.000620

30. Neuss M, Schau T, Isotani A, Pilz M, Schöpp M, Butter C. Elevated mitral

valve pressure gradient after MitraClip implantation deteriorates long-term

outcome in patients with severe mitral regurgitation and severe heart failure.

JACC Cardiovasc Interv. (2017) 10:931–9. doi: 10.1016/j.jcin.2016.12.280

Conflict of Interest: YD is an employee of 3DT Holdings LLC. JG is a consultant

for, and JY is an employee of, Dassault Systèmes Simulia Corporation (Johnston,

RI, USA). VM is PI for clinical research with Abbott, Edwards Life Sciences and

GORE. WG and DG are employees of the UberCloud.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Dabiri, Yao, Mahadevan, Gruber, Arnaout, Gentzsch, Guccione

and Kassab. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 11 December 2021 | Volume 8 | Article 759675

https://doi.org/10.1371/journal.pone.0223472
https://doi.org/10.3389/fphys.2020.00432
https://doi.org/10.1016/j.jbiomech.2020.109730
https://doi.org/10.4244/EIJY15M09_09
https://doi.org/10.1016/j.jacc.2020.11.030
https://doi.org/10.1098/rsta.2008.0095
https://doi.org/10.1016/j.simpa.2020.100047
https://doi.org/10.1016/j.jtcvs.2017.07.067
https://doi.org/10.1093/ejechocard/jeq153
https://doi.org/10.1136/heartjnl-2018-313373
https://doi.org/10.1098/rsif.2017.0844
https://doi.org/10.1016/j.media.2012.07.007
https://doi.org/10.1016/j.media.2009.05.004
https://doi.org/10.1007/s10237-017-0903-9
https://doi.org/10.1145/3422622
https://research.google/pubs/pub45381/
https://research.google/pubs/pub45381/
https://doi.org/10.1016/j.mechrescom.2019.04.009
https://doi.org/10.3389/fphy.2019.00117
https://doi.org/10.1038/s41598-019-52342-y
https://doi.org/10.1161/CIRCULATIONAHA.117.026622
https://doi.org/10.1038/s41598-020-79191-4
https://doi.org/10.1161/CIRCIMAGING.113.000620
https://doi.org/10.1016/j.jcin.2016.12.280
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles

	Mitral Valve Atlas for Artificial Intelligence Predictions of MitraClip Intervention Outcomes
	1. Introduction
	2. Methods
	2.1. MV Geometry
	2.1.1. Data From Patients
	2.1.2. Data From Literature
	2.1.3. Data From PCA
	2.1.4. Data From GANs

	2.2. Computational Set Up

	3. Results
	4. Discussion
	5. Limitations
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


