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Abstract: Gas chromatography–coupled mass spectrometry (GC–MS) has been used in biomedical
research to analyze volatile, non-polar, and polar metabolites in a wide array of sample types. Despite
advances in technology, missing values are still common in metabolomics datasets and must be
properly handled. We evaluated the performance of ten commonly used missing value imputation
methods with metabolites analyzed on an HR GC–MS instrument. By introducing missing values into
the complete (i.e., data without any missing values) National Institute of Standards and Technology
(NIST) plasma dataset, we demonstrate that random forest (RF), glmnet ridge regression (GRR), and
Bayesian principal component analysis (BPCA) shared the lowest root mean squared error (RMSE) in
technical replicate data. Further examination of these three methods in data from baboon plasma
and liver samples demonstrated they all maintained high accuracy. Overall, our analysis suggests
that any of the three imputation methods can be applied effectively to untargeted metabolomics
datasets with high accuracy. However, it is important to note that imputation will alter the correlation
structure of the dataset and bias downstream regression coefficients and p-values.

Keywords: metabolomics; HR GC–MS; imputation missing values

1. Introduction

Metabolomics describes the systematic identification and quantification of a wide
range of small molecules (<1500 Da) in biological samples (cells, tissues, biological fluids,
etc.). Although the metabolomics field is relatively new compared to other omics fields such
as genomics and proteomics, it has seen steady growth in recent years. This is due, at least
in part, to the rapid development and implementation of new technology platforms in mass
spectrometry (MS) [1], in addition to nuclear magnetic resonance (NMR) spectroscopy [2].
Generally, metabolomics studies utilize targeted and untargeted analyses as the two main
approaches. Untargeted studies tend to focus on global identification and quantification
of as many metabolites as possible, while targeted approaches aim to characterize and
quantify a select set of known metabolites with higher accuracy and sensitivity [1].

One of the technologies used in metabolomics is gas chromatography–coupled mass
spectrometry (GC–MS), which is capable of analyzing volatile, non-polar, and polar metabo-
lites, often with the intent to uncover novel biomarkers that can advance our under-
standing of biological processes and molecular mechanisms in health and disease [3,4].
Among the many areas where MS-based metabolomics have been applied include precision
medicine [5], forensic medicine [6], environmental [7], and food and nutritional sciences [8].
With the large number of metabolites captured and the wide dynamic range of intracellular
metabolite concentrations, missing values are not uncommon in metabolomics datasets.
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However, in order to perform statistical analysis or combine such data with other omics
datasets without simply removing all of the missing data points (which can lead to bias or
reduce the number of metabolites to a small handful), the issue of missing values needs
to be addressed [9]. Missing values in metabolomics can occur for both biological and
technical reasons [10–12]. The three main types of missing values are (a) missing not at
random (MNAR), (b) missing at random (MAR), and (c) missing completely at random
(MCAR). Random missingness related to data acquisition processes such as incomplete
derivatization or incomplete ionization of analytes is defined as MCAR. Unlike MCAR,
MAR values are dependent on other observed variables [13]. An example of this is the
interference of high concentrations of one metabolite causing other metabolites of lower
concentration to go undetected. The missing values of metabolites with low concentrations
below the analytical platform’s limit of detection (LoD) are categorized as MNAR [1,14].
It is challenging to determine the underlying mechanism(s) of missingness that exist in a
dataset as there is not yet a rigorous, straightforward method to diagnose and distinguish
these mechanisms [15], and there is no accepted approach to correct the analysis of data
once the causal mechanism has been defined. Advancements in analytical platforms and
improvements in bioinformatics tools have provided partial solutions to reducing missing
values in metabolomics data [16]. Several imputation algorithms have been established
that can handle missing values in metabolomics data, but there is no consensus on which
imputation method performs best on metabolomics data. In the past, imputation methods
including random forest (RF), k-nearest neighbors (kNN), local least squares (LLS), half min-
imum, average, singular value decomposition (SVD), generalized ridge regression (GRR),
zero, quantile regression (QR), and Bayesian principal component analysis (BPCA) have
been applied to impute missing metabolomics data [13,15]. RF generally handles both
parametric and non-parametric data sets of complex linear and non-linear problems and
normally does not need preprocessing of data. In contrast, BPCA performs better if the
data are transformed first before imputation but is dependent on dimension reduction.
Lastly, the KNN imputation technique can be used for both discrete and continuous data
but has been reported to have low precision when imputing variables and introduces false
associations where they do not exist [17]. While these advanced methods, including KNN,
SVD, BPCA, and RF, have been reported to be good for imputing MCAR/MAR, they are
generally considered to be unsuitable for imputing data with MNAR [3]. Determined
value substitution methods such as Zero, Mean, and HM are fast and simple methods for
handling a limited set of missing values in a dataset, but they underestimate variance,
ignore the relationship with other variables, and bias summary statistics [13]. Regression
methods such as GRR and QR can preserve their correlation with other variables and are
generally considered to be suitable for imputing MNAR, but the variability of missing
values is underestimated [13,18]. Finally, LLS methods are known to estimate missing
values accurately if the data matrix contains rich local structure but perform poorly when
the missing values have a strong correlation with the global rather than local structure [19].

So far, only a few studies have compared the performance and assessed the accuracy
of these various imputation methods on metabolomics data, and these analyses have
all been limited to real biological datasets. Hence, our major motivation for this study
was to systematically evaluate the performance of imputation methods with a dataset
obtained from NIST plasma technical replicates, which were acquired under the same
MS conditions over time. In theory, these datasets should have a similar data structure
(e.g., they are similar in terms of number and patterns of missing data and share the
mechanism underlying missingness of the data) before further validation in real biological
samples. Given the additional sample preparation steps needed to derivatize samples in
preparation for GC–MS, the data often show greater variability when compared to liquid
chromatography–mass spectrometry (LC-MS) data. Therefore, it is important to assess the
performance of imputation algorithms specifically for GC–MS data and use a dataset of
replicate samples that, in theory, should have minimal variation. Missing values may either
mask, or be directly related to, a biological response, and it is important to evaluate the



Metabolites 2022, 12, 429 3 of 17

accuracy of missing data imputation and the impact of the imputed values on downstream
statistical correlation and association analyses.

In this study, we evaluated the performance of multiple imputation strategies for
untargeted high resolution (HR) GC–MS-based metabolomics datasets. This was initially
completed by using technical replicates of the National Institute of Standards and Technol-
ogy (NIST) Standard Reference Material (SRM) 1950 human plasma metabolomics data
generated by an HR GC–MS. With the complete NIST plasma dataset, we introduced
missingness with four missing mechanisms (MCAR, MAR, MNAR, and a combination
of all three: MCAR–MAR–MNAR) at various proportions of missingness (2–70%) and
subsequently evaluated the accuracy of 10 imputation methods. For the most accurate
imputation methods, we then re-evaluated the imputation accuracy and bias in correlation
and downstream statistical analyses in two different datasets (GC–MS metabolomics data
from plasma and liver) collected from non-human primates (NHP) Figure 1.
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Figure 1. Metabolomics imputation study workflow. Diagram detailing metabolomics sample
analysis, evaluation of imputation methods in technical replicate dataset (NIST plasma), and further
validation in real baboon plasma and liver metabolomics datasets.

2. Results

To systematically assess the accuracy of 10 imputation methods commonly applied in
metabolomics studies, replicates of a commercially available NIST plasma sample, baboon
plasma, and liver samples were processed and acquired on a Q-Exactive HRGC Orbitrap-
MS in electron ionization (EI) mode. Following data analysis and metabolite identification,
raw data were separated into either full data (with missing datapoints for individual
metabolites/samples) or complete data without any missing data. Missing values were
incorporated into complete or, in some cases, full datasets using various missingness types
at different missing proportions and with various coefficients of variation (CV) prior to
imputation method evaluations (Figure 1).

2.1. Missing Values Simulation and Imputation Evaluation Using HR GC–MS Metabolomics Data
for Replicates of NIST Plasma

In order to systematically evaluate and assess the performance of various imputation
methods using metabolomics data acquired with an HR Orbitrap GC–MS, ten common
imputation methods (RF, GRR, BPCA, Mean, LLS, SVD, QR, kNN, HM, and Zero) were
initially evaluated for accuracy in the complete NIST plasma dataset with four different
missing mechanisms (i.e., MCAR, MAR, MNAR, and MCAR–MAR–MNAR). Evaluation
of imputation accuracy with RMSE revealed four methods (RF, GRR, BPCA, and Mean)
with comparably low RMSEs (Figure 2). The RMSEs of these methods showed similar
patterns across all four missing value types (Figures S1–S4). Further, to evaluate imputation
methods on the full NIST plasma dataset (i.e., the entire dataset, including the real missing
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values), we imputed with Mean, BPCA, GRR, and RF and assessed imputation performance
on these technical replicate samples based on correlation and Cronbach’s alpha. Here, we
would expect the mean sample-to-sample correlation to be as close to 1 as possible. The
Cronbach’s alpha is a measure of internal consistency that is highly related to the overall
correlation structure. After imputation, RF, GRR, and BPCA all produced the highest
mean sample-to-sample correlations and Cronbach’s alphas. The mean sample-to-sample
correlations are listed along with the respective Cronbach’s alpha in parenthesis for each
method: RF 0.70 (0.986), GRR 0.70 (0.986), BPCA 0.70 (0.988), Mean 0.67 (0.985).
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Figure 2. Initial evaluations of imputation accuracy in the complete NIST plasma for a mixture of
missingness types (MCAR–MAR–MNAR). Methods are listed across the x-axis, and RMSE is shown
on the y-axis. The center line represents the median. The lower and upper box limits represent the
25% and 75% quantiles, respectively. The whiskers extend to the largest observation within the box
limit ± 1.5× interquartile range. Black dots represent single iterations of evaluating RMSE that are
outliers. The number of observations for each method is 22,070.

2.2. Evaluation of RF, GRR, and BPCA Imputation Methods on NHP Plasma

The three most accurate imputation methods (RF, GRR, and BPCA) were subsequently
used for imputation of metabolomics data from baboon plasma samples. Using a mixture
of all three missingness types (MCAR–MAR–MNAR), we evaluated imputation accuracy
based on RMSE at various ranges of missingness and different coefficients of variance (CV)
in the complete metabolomics dataset obtained for baboon plasma samples. We found
significant increases in accuracy when imputing with GRR over the other two methods
for CVs above 0.2 (Figure 3). To assess the correlation between RMSE and CV, we also
performed a simple linear regression analysis with the imputation method adjusted as the
covariant and revealed a significant association between CV and RMSE (estimate = 1.48,
p = 3.9 × 10−13). Similarly, metabolite missingness demonstrated a significant positive
association with RMSE (estimate = 0.44, 4.2 × 10−15).
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Figure 3. Evaluations of imputation accuracy in the complete baboon plasma. Accuracy is evaluated
for levels of missingness types (MCAR–MAR–MNAR). Methods are listed across the x-axis, and
RMSE is shown on the y-axis. The top row compares accuracy across a range of missingness types. The
bottom row compares accuracy across a range of coefficients of variance. The center line represents
the median. The lower and upper box limits represent the 25% and 75% quantiles, respectively. The
whiskers extend to the largest observation within the box limit ± 1.5× interquartile range. Black dots
represent single iterations of evaluating RMSE that are outliers. The p-values are based on pairwise
testing with the Wilcoxon Rank Sum test (* corresponds to p ≤ 0.05; ** corresponds to p ≤ 0.01;
*** corresponds to p ≤ 0.001; **** corresponds to p ≤ 0.0001).

In most scenarios, BPCA was generally the least accurate method. The evaluation of
Cronbach’s alpha to assess the differences between the imputed and real baboon plasma
metabolomics data revealed that BPCA increased the correlations among the imputed re-
sults. Meanwhile, the GRR and random forest imputations decreased the correlations below
truth. No significant differences were noted between random forest and GRR (Figure 4).
To test for biases in downstream statistical analysis, we estimated the differences between
the regression coefficients of the imputed metabolites and the regression coefficients of
the complete, original metabolite data. Regression analysis for this study was computed
as a function of age, where age was the predictor and the metabolite abundance was the
outcome. Pairwise Wilcoxon comparisons of the differences between the true and imputed
regression estimates for each method revealed statistically significant differences when
applying the random forest imputation method (Figure 4).
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Figure 4. Evaluations of Cronbach’s alpha. Methods are listed across the x-axis, and the difference
between the Cronbach’s alphas computed on the complete data and the imputed data is shown on
the y-axis. The top row demonstrates differences in Cronbach’s alpha evaluated in the baboon plasma
samples for 10% and 20% of overall missingness. The bottom row shows the differences in Cronbach’s
alpha evaluated in the baboon liver samples for 10% and 20% overall missingness. The center line
represents the median. The lower and upper box limits represent the 25% and 75% quantiles,
respectively. The whiskers extend to the largest observation within the box limit ± 1.5× interquartile
range. Black dots represent single iterations of evaluating Cronbach’s alpha that are outliers. The
p-values are based on pairwise testing with the Wilcoxon Rank Sum test (* corresponds to p ≤ 0.05;
** corresponds to p ≤ 0.01; *** corresponds to p ≤ 0.001; **** corresponds to p ≤ 0.0001).

When using a one-sample t-test to test for departure from zero in the differences be-
tween the true and imputed regression estimates, all methods showed small but significant
downward biases (Figure 5). We observed similar patterns for each of the methods across all
different types and proportions of missingness (data not shown). These results indicate that,
on average, imputation is decreasing the magnitude of effect sizes. This is to be expected
because when a relationship between a variable exists and then missingness is introduced,
the imputation will generally fail to recapture the full strength of that relationship. This
will be particularly true for imputation in such a high-dimensional sample space where
many variables influence the imputation of a particular value. Using a one-sample t-test to
test for departure from zero in the differences between the true and imputed p-values, all of
the methods showed a significant downward bias (FDR p = 0.02, 0.02, 0.004 for GRR, BPCA,
RF, respectively). GRR demonstrated the smallest shift in these p-value differences, but all
of the methods had mean differences that were slightly below zero. Again, this indicates
that, on average, the p-values after imputation are larger (less significant) than they were
prior to introducing missing values. It is worth noting, however, that while these general
trends occur, there are still frequent occasions where the p-values were much smaller after
imputation for individual metabolites.
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Figure 5. Evaluations of regression coefficient and regression p-value accuracy. Methods are listed
across the x-axis. The differences between the regression coefficients (or p-values) computed on the
complete data and the imputed data are shown on the y-axis. The top row demonstrates differences
in regression coefficients evaluated in the baboon plasma samples for metabolites with <10%, 10–20%,
and 20–30% missingness. The top row demonstrates differences in regression p-values evaluated in
the baboon plasma samples for metabolites with <10%, 10–20%, and 20–30% missingness. The center
line represents the median. The lower and upper box limits represent the 25% and 75% quantiles,
respectively. The whiskers extend to the largest observation within the box limit ± 1.5 × interquartile
range. Black dots represent single iterations of evaluating differences that are outliers. The p-values
are based on pairwise testing with the Wilcoxon Rank Sum test (* corresponds to p ≤ 0.05).

2.3. Evaluation of RF, GRR, and BPCA Imputation Methods Using Metabolomics Data from
Baboon Liver Biopsy Samples

Having evaluated these three imputation methods in baboon plasma metabolomics
data, we then performed a similar analysis on metabolites extracted from liver tissue
samples to assess if the same patterns hold when using a different dataset such as tissue-
derived metabolites. The imputation accuracy evaluated at various missingness thresholds
and CVs in the complete baboon liver samples revealed that as both the CVs and the
proportions of metabolite missingness increase, GRR and RF appear to be the most accurate
methods (Figure 6). A simple linear regression analysis between RMSE and CV revealed a
significant positive correlation between CV and RMSE that holds across all three methods
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(estimate = 1.42, p = 9 × 10−8). Similarly, metabolite missingness demonstrated a significant
positive association with RMSE (estimate = 0.42, 2.7 × 10−12).
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Figure 6. Evaluations of imputation accuracy in the complete baboon liver. Accuracy is evaluated
for a mixture of missingness types (MCAR–MAR–MNAR). Methods are listed across the x-axis,
and RMSE is shown on the y-axis. The top row compares accuracy across a range of missingness
types. The bottom row compares accuracy across a range of coefficients of variance. The center
line represents the median. The lower and upper box limits represent the 25% and 75% quantiles,
respectively. The whiskers extend to the largest observation within the box limit ± 1.5× interquartile
range. Black dots represent single iterations of evaluating RMSE that are outliers. The p-values are
based on pairwise testing with the Wilcoxon Rank Sum test (* corresponds to p ≤ 0.05; ** corresponds
to p ≤ 0.01; *** corresponds to p ≤ 0.001; **** corresponds to p ≤ 0.0001).

The differences in accuracy between the three methods are marginal, but significant
in some cases. Consistent with the baboon plasma metabolomics dataset, the differences
between the Cronbach’s alpha computed on the complete dataset, and the imputed liver
dataset revealed that BPCA increased the correlation above truth, while GRR and random
forest decreased the correlation below truth. No significant differences were noted between
random forest and GRR (Figure 7). Pairwise Wilcoxon comparisons revealed no statistically
significant differences between methods in their differences between the true and imputed
regression estimates. A one-sample t-test to test for departure from zero in the differences
between the true and imputed regression estimates showed a small but significant down-
ward bias in the liver dataset, similar to that reported for the plasma dataset (Figure 7).
This was true for each of the methods across all of the different types and proportions
of missingness (data not shown). In terms of computing the true and imputed p-value
differences using a one-sample t-test to test for departure from zero, we reported that only
the BPCA method showed a significant downward bias (FDR p = 0.11, 7.3 × 10−9, 0.96
for GRR, BPCA, RF, respectively). Random forest demonstrated the smallest shift in these
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p-value differences, but all of the methods had mean differences that were slightly below
zero (Figure 7).
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Figure 7. Evaluations of regression coefficient and regression p-value accuracy. Methods are listed
across the x-axis. The differences between the regression coefficients (or p-values) computed on the
complete data and the imputed data are shown on the y-axis. The top row demonstrates differences
in regression coefficients evaluated in the baboon liver samples for metabolites with <10%, 10–20%,
and 20–30% missingness. The top row demonstrates differences in regression p-values evaluated in
the baboon liver samples for metabolites with <10%, 10–20%, and 20–30% missingness. The center
line represents the median. The lower and upper box limits represent the 25% and 75% quantiles,
respectively. The whiskers extend to the largest observation within the box limit ± 1.5× interquartile
range. Black dots represent single iterations of evaluating differences that are outliers. The p-values
are based on pairwise testing with the Wilcoxon Rank Sum test.

2.4. In-Depth Evaluation of RF Imputation Accuracy at Wide Range of Missingness Using the
Entire Baboon Liver HR GC–MS Metabolomics Dataset

We further examined RF imputation on the full dataset with a wider range of miss-
ingness to assess the limits of meaningful imputation of missing data. The goal of these
analyses was to observe the behavior of RF imputation on data where the global data
structure is as close to reality as possible. To minimize altering the global data structure,
we iteratively inserted only a single missing value into the existing data for a particular
metabolite where there was previously a real value. The full data were then imputed, but
only the difference between the original value and the imputed value at that one data point
was recorded along with the information about the metabolite in which the missing data
point was introduced (e.g., CV, proportion of already missing values, etc.). These analyses
were intended to determine the proportion of missing values in metabolomics data where
imputation begins to introduce strong biases or becomes unreasonably inaccurate. The
majority of the percentage bias (PB) values were below 5%. However, there was an increase
in percentage bias (i.e., decreased accuracy) in metabolites with more than 45% missing data
(Figure 8). The evaluation of Cronbach’s alpha showed that at a low proportion of overall
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missingness, there were small but significant increases in the mean correlations between
metabolites when imputing with random forest. However, as missingness increased, this
pattern diminished and then actually reversed where the correlations between metabolites
decreased when imputing with random forest. We also observed a mean downward bias
in the regression coefficients that grew larger as the amount of missingness increased. In
addition, we observed that with more missingness, the standard deviation of the differences
between the regression coefficients from imputed data and the real values also increased.
Finally, there was a slight mean upward bias in the p-values, which grew larger as the
amount of overall missingness increased (Figure 8).
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Figure 8. In-depth evaluation of RF imputation. Percent bias (accuracy of imputation on raw data) is
shown in the upper left for metabolites in bins of percent missingness between 2–51%. Differences
in Cronbach’s alpha are shown in the upper left for a variety of proportions of overall missingness
between 10–70%. The differences in regression coefficients are shown in the bottom left for a variety
of proportions of overall missingness between 10–60%. The respective differences in p-values are
shown in the bottom right. The center line represents the median. The lower and upper box
limits represent the 25% and 75% quantiles, respectively. Black dots represent single iterations of
evaluating differences that are outliers. The whiskers extend to the largest observation within the box
limit ± 1.5 × interquartile range.

3. Discussion

The metabolomics field continues to advance, primarily due to technological plat-
form improvements and advances in data analysis, but the issue of missing values in
metabolomics datasets still remains a challenge [1]. Simply removing missing values
or imputing missing values with sub-optimal methods can have dire consequences on
downstream statistical analysis [20,21]. In the past, several studies have evaluated the per-
formance of imputation methods, particularly using LCMS data [15]. Generally, evaluations
of different imputation methods for missing data in metabolomics datasets have been based
on simulated datasets or limited biological or clinical study data [1,22,23]. We performed
a systematic evaluation of imputation accuracy and bias-based analysis first on technical
replicate data from a standard sample and then, further, on the performance of the top three
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imputation methods commonly cited in the literature, on baboon plasma and liver tissue
metabolomics data. We utilized metabolomics datasets acquired by an HR Q-Exactive
GC–Orbitrap MS, which, to the best of our knowledge, is the first time such a thorough
imputation analysis using this newest metabolomics platform has been performed.

Ten imputation methods were initially evaluated for accuracy in the complete NIST
plasma dataset, where we introduced four different types of missing values (MCAR, MAR,
MNAR, and a combination of all three: MCAR–MAR–MNAR). Because the NIST plasma
sample dataset included technical replicates, the correlation across samples should be
very high. Therefore, we made the assumption that imputation methods that increased
mean sample-to-sample correlation would be the most optimal. In the NIST plasma
GC–MS dataset, we observed that GRR, RF, and BPCA were all highly accurate and all
improved the sample-to-sample correlation between technical replicates. These patterns
held for all types of missing data regardless of the assumed mechanism that causes them.
However, it is important to note that in our current study LoD, related methods such as
HM and zero performed poorly on MNAR simulated data, which contradicts findings
from previous studies [11,12]. These differences in findings may be, in part, because of
the differences in the nature of data used for simulation. We used technical replicates to
assess imputation algorithm performance, whereas prior studies exclusively used data
from biological replicates [11,12]. We further evaluated these methods for accuracy and
bias in the plasma and liver samples of healthy adult baboons. We pursued these analyses
in this order to specifically examine how imputation methods perform as one moves from
an “ideal” metabolomics dataset to more realistic plasma samples from NHP and then even
into potentially less consistent metabolomics samples extracted from tissue.

The analysis of the adult baboon plasma and liver tissue metabolomics datasets em-
phasized that there does not appear to be a single, superior imputation method. However,
among the three most highly accurate methods observed here, GRR and RF showed im-
proved performance relative to BPCA for some of the assessments. It is worth noting,
though, that the differences between these methods are very minor, and these differences
may change depending on the dataset that is being imputed, as we observe to a small
degree here. In both plasma and liver metabolomics datasets, there was a significant
downward or upward bias, as demonstrated by Cronbach’s alpha, percent bias, p-value,
and regression estimates in all three methods. This means that no matter what imputation
method (unless one is applying multiple imputation) is applied in metabolomics data,
it will alter the correlation structure, regression coefficients, and p-values. As we have
demonstrated in our current study, more often than not, imputation will shrink regression
coefficients, and it is important to note that, in general, such biases grow even stronger
with increased proportions of metabolite missingness. For this reason, we suggest that
imputation should always be applied with caution when making statistical inferences in
downstream analyses and interpretations.

While none of the top three methods in this study show better overall performance
than any of the others, we would like to note that random forest imputation provides
a robust approach to impute missing data from HR GC–MS untargeted metabolomics
datasets. Random forest imputation has also been highlighted in a previous LC–MS study,
where it was suggested as the best method for imputing missing data in metabolomics [15].
Primarily, the RF method benefits from being a non-parametric technique that does not
make distributional assumptions about the data [24]. This is important in metabolomics
data, where the distributions for individual metabolites are not easily categorized and are
likely variable. We note that beyond 40% of metabolite missingness, we do not recommend
random forest imputation (or any imputation), as imputation will lose accuracy and intro-
duce stronger and more significant biases into data, thereby affecting downstream statistical
analyses and interpretation of results. When regressing RMSE on either CV or metabolite
missingness, we identified strong positive associations. As expected, these results imply
that imputation accuracy deteriorates as both metabolite missingness and CVs increase.
Although it is already common practice to filter out such metabolites, we re-emphasize that
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computing analysis with metabolites that have higher CVs and proportions of missingness
should be done with caution. Metabolites with large proportions of missingness should not
be considered for statistical analysis, except in the case where one is interested in testing
differential rates of missingness between groups (i.e., testing if a particular metabolite is
missing more frequently from one group because of a potential biological phenomenon).

This study systematically investigates multiple possible underlying mechanisms lead-
ing to missing data in metabolomics experiments and uses both technical replicates of
a reference sample and sets of real biological samples to determine the best imputation
methods for GC–MS-based metabolomics studies. Despite this comprehensive approach,
there are still limitations, some of which will need to be addressed in future imputation
studies. The current study was limited to only untargeted HR GC–MS metabolomics
analyses. It is important for future studies to extend this to targeted HR GC–MS and other
metabolomics studies, although it is important to note that the RF imputation approach
has also been recommended for the imputation of LC–MS data [15]. Moreover, our study
focused on comparing the accuracy of imputation methods using imputed data generated
from technical replicates and real biological datasets, and future studies will need to extend
these analyses to better understand the impact of imputation on downstream data analysis
and biological interpretation of data. Improper handling of missing values is known to
bias subsequent downstream statistical analysis, including multivariate analysis [12,25,26].
We would also like to emphasize that all methods examined in this study were single
imputation-based methods. We recognize the many benefits of multiple imputations to
provide unbiased results in downstream statistical analyses [27–29]. However, applying
multiple imputations in a high-dimensional setting is complex and exceeds the scope of
this manuscript. It is also likely to be a computationally challenging approach to implement
for most metabolomics researchers; therefore, we restricted our analysis to methods widely
available to scientists in the field.

Unfortunately, for most metabolomics datasets, it is impossible to know what type of
missingness and how much of each type of missingness exists in the data. For example, if
the vast majority of the missing values in the data are only MNAR because the metabolites
that are missing are missing simply due to low abundance, then our results here will
be biased. This is particularly true because we started with the complete data (where
there were no missing values) and then added missingness from there. Even though we
introduced missingness in a way that would be consistent with MNAR (see Methods), we
were imputing back to and comparing against highly abundant values that were really
there in the first place, not metabolites that were actually low abundance metabolites. It is
worth noting, though, that the NIST plasma dataset contained missing values in metabolites
that are actually highly abundant in some technical replicates and missing in other samples
that should be identical. This indicates that missingness is not due only to low abundance,
but can occur for other reasons, too. Lastly, we note that imputation is always a guess (no
matter how informed it may be), and it must be applied carefully. Any discoveries made
by way of imputation should always be validated.

4. Materials and Methods
4.1. Chemicals and Reagents

All solvents for GC–HR Orbitrap MS analysis (HPLC-grade acetonitrile, isopropanol,
pyridine, methanol) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Consum-
ables such as syringes, liners, septa, and filament were purchased from Thermo Scientific
(Madison, WI, USA). GC amber vials, caps, tubes with inserts were purchased from Micro-
solv Technology Corporation (Greater Wilmington, NC, USA).

For this imputation study, we used three independent metabolomics datasets that were
generated using an HR-GC-Orbitrap-MS: the NIST SRM 1950 human plasma purchased
from Sigma-Aldrich (St. Louis, MO, USA) and data obtained from NHP (baboon) plasma
and liver samples while animals were fed a normal chow diet.
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4.2. Sample Processing

Metabolite extraction from NIST plasma and baboon plasma and liver was adapted
from a previously described protocol [30]. In brief, aliquots (15 µL) of plasma or liver
samples were subjected to sequential solvent extraction, once each with 1 mL of acetonitrile:
isopropanol: water (3:3:2) and 500 µL of acetonitrile: water (1:1) mixtures at 4 ◦C [31]. An
internal standard, adonitol (2 µL from 10 mg/mL stock), was added to each aliquot prior
to the extraction. The extracts were dried under vacuum at 4 ◦C prior to chemical derivati-
zation (silylation reactions). Blank tubes without samples were treated similarly to sample
tubes and added to account for background noise and other sources of contamination. Sam-
ples and blanks were sequentially derivatized with methoxyamine hydrochloride (MeOX)
and 1% TMCS in N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) or 1% TMCS
containing N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA), as described
elsewhere [32]. Briefly, the steps involved addition of 20 µL of MeOX (20 mg mL−1) in
pyridine incubated at 55 ◦C for 60 min, followed by trimethylsilylation at 60 ◦C for 60 min
after adding 80 µL MTBSTFA.

4.3. GC-HR Orbitrap MS Data Acquisition and Preprocessing

Metabolites were analyzed by high-resolution/accurate (HRAM) Orbitrap mass spec-
trometry (Q-Orbitrap MS, Thermo Fisher) coupled to gas chromatography (GC). In all
cases, 1 µL of derivatized sample was injected into the TRACE 1310 Gas chromatography
(Thermo Scientific, Austin, TX, USA) in a splitless (SSL) mode at 220 ◦C. The carrier gas
was helium set at a flow rate of 1 mL/min for separation on a Thermo Scientific Trace
GOLD TG-5SIL-MS 30 m length × 0.25 mm i.d. × 0.25 µm film thickness column with an
initial oven temperature of 50 ◦C for 0.5 min, followed by an initial gradient of 20 ◦C/min
ramp rate. The final temperature was 300 ◦C and was held for 10 min. Eluting peaks were
transferred through an auxiliary transfer line temperature of 230 ◦C into a Q Exactive-GC
mass spectrometer (Thermo Scientific, Bremen, Germany). The total run time was 25 min.
Data were acquired in electron ionization (EI) mode at 70 eV energy, emission current of
50 µA with an ion source temperature of 250 ◦C. A filament delay of 5.7 min was selected
to prevent excess reagents from being ionized. High-resolution EI spectra were acquired
using 60,000 resolution (fwhm at m/z 200) with a mass range of m/z 50–650. The transfer
line was set to 230 ◦C, and the ion source was set to 250 ◦C. Data acquisition and instru-
ment control were carried out using Xcalibur 4.3 and TraceFinder 4.1 softwares (Thermo
Scientific). The capillary voltage was 3500 V with a scan rate of 1 scan/s. Finally, raw data
(.raw files) obtained from data acquired by GCMS were converted to .mzML formats using
ProteoWizard’s msConvert tool prior to data preprocessing using open source software,
MS-DIAL 4.6 (Riken, Japan, and Fiehn Lab, UC Davis, Davis, CA, USA). The MS-DIAL 4.6
was used for raw peak extraction, and the data baseline filtering and calibration of the base-
line, peak alignment, deconvolution analysis, peak annotation, and integration of the peak
height essentially followed as described [33]. Key parameters used include a peak width of
20 scan and minimum peak height of 10,000 amplitudes was applied for peak detection,
and sigma window value of 0.5, EI spectra cutoff of 50,000 amplitudes was implemented
for deconvolution. For the annotation setting, the retention time tolerance was 0.5 min, the
m/z tolerance was 0.5 Da, the EI similarity cutoff was 60%, and the annotation score cutoff
was 60%. In the alignment parameters setting process, the retention time tolerance was
0.5 min, and the retention time factor was 0.5. The detailed data preprocessing parameters
were the same for all metabolomics datasets and are found in Supplementary Table S1.
Spectral library matching for metabolite identification was performed using an in-house
and public library consisting of pool EI spectra from MassBank, GNPS, RIKEN, MoNA. All
data were normalized by QC-based LOESS normalization followed by log10 transformation.

The NIST plasma metabolomics dataset consisted of 150 replicate samples which
were acquired in 12 different batches using an untargeted EI–GC–MS approach. The
12 batched datasets were pooled, aligned, and processed using open source software MS-
DIAL (v4.6) [34]. A complete dataset of identified and quantified metabolites containing
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only metabolites with no missing values was created from the full dataset. The complete
dataset was used to evaluate the accuracy of each of the imputation methods. The full
dataset with missing values in some metabolites was used to assess which imputation
method improved sample-to-sample correlation between technical replicates the most.

The second dataset was generated from metabolic profiling of 45 baboon plasma
samples collected from 35 females in the age range of 6–23 years and 10 males in the same
age range. All 45 plasma samples were analyzed using an untargeted EI–GC–MS approach,
as described above.

The third dataset consists of another EI–GC–MS analysis of metabolites extracted from
47 liver biopsy samples collected from the same adult healthy baboons as the plasma, which
included 39 females and 8 males in the age range of 6–23 years. The metabolite extraction
and data processing followed as previously described above.

4.4. Generation of Missing Values

For the initial evaluations of imputation accuracy and performance, only the complete
NIST plasma data (i.e., metabolites with no missingness) were used. This dataset included
complete information on 150 replicate samples with no missing data for 60 metabolites.
Individual missing data were subsequently introduced to the complete data at varying
rates and modeling four different mechanisms—missing completely at random (MCAR),
missing at random (MAR), missing not at random (MNAR), and mixture of all three (MCAR–
MAR–MNAR). Methods for simulating missingness have been previously described [11].
MCAR missing values were introduced simply by removing values at random from the
complete dataset at different proportions of missingness. MNAR values were introduced to
randomly selected metabolites using a chi-squared distribution to sample a percentage of
missingness to introduce to that particular metabolite. From there, all of the lowest values
within a randomly selected metabolite were made missing until the desired percentage of
missingness was achieved. MAR values were introduced by jointly sorting two randomly
selected metabolites based on the abundances of only one of the two metabolites. After
sorting both metabolites, a randomly drawn percentage of values from the other metabolite
not used to do the sorting were removed. Starting with the values where the abundances
of the metabolite used for sorting were highest, we removed values until the percentage
of drawn missingness was achieved. This was done to simulate a situation where high
abundance in one metabolite leads to missingness in another metabolite. For the mixture of
all three missingness mechanisms, each missing type was sequentially added to the data
at equal proportions until the desired rate of missingness was achieved. The mixture of
all three missingness mechanisms (MCAR–MAR–MNAR) was considered most heavily
of all the simulations because all three types of missingness are likely present in most HR
GC–MS data, with all influencing the imputation procedures.

4.5. Evaluation of Imputation Methods

Ten imputation methods were evaluated for accuracy in the complete NIST plasma
dataset. The method names and respective run parameters for each of the ten imputation
methods are provided in Table S2. Percent bias (i.e., the percent difference between the
imputed value and truth, i.e., the original value in the dataset) and RMSE were observed
for each method, for each type of missingness, at different coefficients of variance, and for
varying degrees of metabolite missingness or global missingness. We also examined the
correlation structure after imputation in the full dataset of NIST plasma samples. Because
the NIST plasma samples were technical replicates, it is expected that the correlation across
each sample should be very high. Therefore, we made the assumption that imputation
methods that increased the mean sample-to-sample correlation the most are better.

We selected three highly accurate methods (GRR, BPCA, and random forest) for further
evaluation for accuracy and bias in the plasma and liver biopsy samples of healthy, aging
baboons. Percent bias and RMSE were computed on each of the three datasets. Data were
reduced to only metabolites with no missing data present (i.e., the complete data) before
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missing data were purposefully introduced. The data were then imputed with each of the
methods of interest, and the differences between the imputed result and the true data were
used to compute Percent bias and the RMSE as commonly computed when evaluating
imputation methods.

For the comparison of regression coefficients, we first introduced missing values into
the complete dataset, and then the data were merged with the available age information
for each sample, and, subsequently, the missing values were imputed. A simple regression
analysis was computed between age and each metabolite’s abundance, treating the imputed
values as truth. The differences between the regression coefficients and p-values from
models using the complete dataset and regression coefficients from the models using the
imputed data were recorded for each iteration of missingness that was introduced into the
complete dataset. This was computed for global missingness rates of 10% and 20% and
each of the four missingness types. For each method, we computed pairwise Wilcoxon
Rank Sum tests to compare each of the methods and a one-sample t-test on the differences
between the imputed and true regression coefficients and p-values to test for departures
from zero.

We also compared the Cronbach’s alpha (a measure of internal consistency) between
the imputed results and the truth. The Cronbach’s alpha was computed with the complete
dataset, and then missing values were introduced and imputation completed. Cronbach’s
alpha was again computed on the imputed results and compared with the true Cronbach’s
alpha. The difference between the two measures was recorded, and the process was
repeated iteratively for global missingness rates of either 10% or 20% and each of the four
missingness types. For each method, we computed pairwise Wilcoxon Rank Sum tests
to compare each of the methods and a one-sample t-test on the differences between the
imputed and true Cronbach’s alphas to test for departure from zero.

A more in-depth evaluation of accuracy and bias was carried out for the random
forest method in the liver samples to determine the amount of missingness at which the
method’s accuracy starts to deteriorate and where it begins to introduce biases, such as
increased or decreased correlations. For this evaluation of accuracy, we attempted to
maintain the data structure as close to reality as possible. We used the full dataset after
removing metabolites with >75% missing data and randomly selecting only a single non-
missing data point at a time, setting it to missing, and then imputing it along with all
of the other already present missing values. This was done iteratively for 10,000 of the
possible 15,620 non-missing values present in the data. For each iteration, the true value
was recorded along with the imputed value as well as the percentage of missing data in
the metabolite being imputed. These data were analyzed to determine if there was a clear
drop-off in the accuracy of imputation as the proportion of missing values increases for a
specific metabolite. In addition to these evaluations, we also computed Cronbach’s alpha
and regression coefficients for the random forest method. These were computed in an
identical fashion to how they were computed for all methods, just across wider ranges of
overall missingness rates (10–70%).

5. Conclusions

Our study demonstrates that three imputation methods (RF, GRR, and BPCA) can
be applied with high accuracy to untargeted HR GC–MS-derived metabolomics datasets.
While the imputation of missing data was highly accurate, imputation altered the data
correlation structure and biased both downstream regression coefficients and p-values.
These biases grow stronger with increasing proportions of metabolite data missingness.
Therefore, we suggest that imputation should only be applied when necessary and should
always be applied with caution when making statistical inferences downstream.
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