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Abstract: Various microorganisms have been widely applied in nutraceutical industries for the
processing of phytochemical conversion. Specifically, in the Asian food industry and academia,
notable attention is paid to the biocatalytic process of ginsenosides (ginseng saponins) using
probiotic bacteria that produce high levels of glycosyl-hydrolases. Multiple groups have conducted
experiments in order to determine the best conditions to produce more active and stable enzymes,
which can be applicable to produce diverse types of ginsenosides for commercial applications.
In this sense, there are various reviews that cover the biofunctional effects of multiple types of
ginsenosides and the pathways of ginsenoside deglycosylation. However, little work has been
published on the production methods of probiotic enzymes, which is a critical component of
ginsenoside processing. This review aims to investigate current preparation methods, results on
the discovery of new glycosylases, the application potential of probiotic enzymes and their use for
biocatalysis of ginsenosides in the nutraceutical industry.

Keywords: ginsenoside; probiotics; enzyme conversion; biocatalysis; whole cell conversion;
enzyme preparation

1. Ginsenosides

Ginseng (Panax ginseng C.A. Meyer), a popular Asian value-added plant medicine, contains
various saponins called ginsenosides, which act as the major functional ingredient. Ginseng products
have dominated the nutraceutical market in Asian countries as one of the highest selling functional
food products for the last decade [1]. With its beneficial effects, ginseng continues to grow
in sales. Various health benefits of ginsenosides have been introduced by multiple researchers;
the major functionalities of ginsenosides include: (i) anti-cancer [2]; (ii) immunomodulatory [3];
(iii) anti-obesity [4]; (iv) energy boosting [5]; (v) liver and brain function [6,7]; and (vii) antioxidant
effects [8]. Currently, more than 40 kinds of ginsenosides have been reported [1]. Based on the
types, number and/or location of the sugars on it, the functional effects and types of ginsenosides are
varied [9]. Full chemical names of multiple ginsenosides are shown in Table 1.

Conventionally, ginseng has been consumed orally as a root itself or it can be consumed in energy
beverages, teas and functional supplements as a powder or extract. However, the oral ingestion
of ginseng is regarded as an ineffective way to absorb major ginsenosides because of: (i) poor
gastrointestinal tissue permeability [10]; (ii) low solubility in saliva [11]; (iii) different cleavage rates
by stomach acid [12]; and (iv) different types of naturally-occurring microbiota in an individual [13].
According to Hasegawa, the biological usage rates of orally-ingested glycosylated ginsenosides in the
intestinal tracks are notably low (about Rb1, 0.1% to 4.4%; Rb2, 3.7%) [14], and these ginsenosides are
easily moved out through the biliary or urinary systems [15,16].
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Table 1. Examples of the ginsenosides present in ginseng and their chemical names. Adapted and
modified from Chi et al. [17,18].

Ginsenosides Chemical Names

Rb1 3-O-[b-D-glucopyranosyl-(1-2)-b-D-glucopyranosyl]-20-O-[b-D-glucopyranosyl-(1-6)-b-D-
glucopyranosyl]-20(S)-protopanaxadiol

Rb2 3-O-[b-D-glucopyranosyl-(1-2)-b-D-glucopyranosyl]-20-O-[a-L-arabinopyranosyl-(1-6)-b-D-
glucopyranosyl]-20(S)-protopanaxadiol

Rc 3-O-[b-D-glucopyranosyl-(1-2)-b-D-glucopyranosyl]-20-O-[a-L-arabinofuranosyl-(1-6)-b-D-
glucopyranosyl]-20(S)-protopanaxadiol

Rd 3-O-[b-D-Glucopyranosyl-(1-2)-b-D-glucopyranosyl]-20-O-b-D-glucopyranosyl-20(S)-protopanaxadiol

Re 6-O-[a-L-rhamnopyranosyl-(1-2)-b-D-glucopyranosyl]-20-O-b-D-glucopyranosyl-
20(S)-protopanaxatriol

Rg1 6-O-b-D-glucopyranosyl-20-O-b-D-glucopyranosyl-20(S)-protopanaxatriol
Rg2 6-O-[a-L-rhamnopyranosyl-(1-2)-b-D-glucopyranosyl]-20(S)-protopanaxatriol
Rh1 6-O-b-D-glucopyranosyl-20(S)-protopanaxatriol
Rh2 3-O-b-D-glucopyranosyl-20(S)-protopanaxadiol
F1 20-O-b-D-glucopyranosyl-20(S)-protopanaxatriol
F2 3-O-b-D-glucopyranosyl-20-O-b-D-glucopyranosyl-20(S)-protopanaxadiol

Compound K 20-O-b-D-glucopyranosyl-20(S)-protopanaxadiol

Compound O 3-O-b-D-glucopyranosyl-20-O-[a-L-arabinopyranosyl-(1-6)-b-D-glucopyranosyl]-
20(S)-protopanaxadiol

Compound Y 20-O-[a-L-arabinopyranosyl-(1-6)-b-D-glucopyranosyl]-20(S)-protopanaxadiol
Mc 20-O-[a-L-arabinofuranosyl-(1-6)-b-D-glucopyranosyl]-20(S)-protopanaxadiol

2. Biocatalytic Process of Ginsenosides Using Probiotic Enzymes

In terms of designing a biocatalytic process, multiple aspects should be considered:
(i) determination of the phytochemicals to be catalyzed; (ii) selection of substrates; (iii) pathways or
chemical reactions [19]. For enhanced absorption rates and in vivo activities, the structural conversion
of glycosylated ginsenosides into aglycone forms has been proposed by several scientific reports;
conversion to aglycone forms results in a higher permeability into the human plasma across the
intestinal tissues, enabling health-promoting properties [20,21]. Due to the significant functionality of
aglycone-type ginsenosides, various pharmaceutical and nutraceutical companies have attempted to
produce ginseng products containing high contents of ginsenoside aglycones [22]. A representation of
ginsenoside catalysis to produce ginsenoside aglycones using a microbial enzyme is shown in Figure 1.
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Multiple processing methods, including chemical reactions (i.e., acid or alkaline cleavages), were
developed for the purpose of deglycosylation of ginsenosides [23–25]. However, these methods do not
selectively hydrolyze sugar moieties on ginsenosides and cause side reactions, including epimerization,
hydration and hydroxylation, as well as the formation of by-products [25,26]. In order to address these
issues, multiple groups in the food industry and academia have tried to develop novel protocols
for effective catalysis using microbial enzymes to convert ginsenoside glycosides into aglycone
forms [22]. To synthesize the desired end products, enzymatically-catalyzed ginsenoside conversion
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is superior to chemically-catalyzed approaches due to high enzymatic selectivity in hydrolyzing the
sugar moieties [27]. Unlike ruminants that effectively digest herb-derived components, humans show
limited utilization of the phytochemicals in their small intestine; ginsenosides move into the large
intestine and structurally degrade to utilizable forms by naturally-occurring microbiota residing in the
intestinal lining [28]. Even though gut microorganisms hydrolyze glycosylated ginsenosides in the
intestinal track, the clinical efficacy of glycosylated ginsenosides is varied, since the naturally-occurring
gut microbiota in the host is different for each individual [29]. Therefore, artificial deglycosylation of
the ginsenoside before oral absorption is an effective way to promote the health benefits of ginseng [30].

One of the key characteristics of microorganisms for producing deglycosylated ginsenosides as
a food or food ingredient is their GRAS (generally regarded as safe) status. The U.S. Food and Drug
Administration (FDA) offers the list of regularly-approved GRAS microorganisms [31]. Specifically, the
use of probiotic bacteria and their enzymes has shown profound potential with pragmatic applications
in the food industry. According to WHO and FAO, probiotics are defined as “live microorganisms
which when administered in adequate amounts confer a health benefit on the host” [32]. Heyman and
Ménard explained probiotics as “a live microbial feed supplement which beneficially affects the
host by improving its intestinal microbial balance” [33]. Because of functional effects on their hosts,
probiotics are commonly used in the functional food and feed industry given their application to
human nutraceuticals and animal feeds. Given these beneficial effects, market analysts have estimated
the size of the global probiotics market to grow at a compound annual growth rate of 7.7% and
to reach USD 52.3 billion by 2020 [34]. Among the various probiotic bacteria, Lactobacillus and
Bifidobacterium spp. are known to synthesize various glycosidases (EC 3.2.1), including β-glucosidase
(EC 3.2.1.2), cellulase (EC 3.2.1.4), β-galactosidase (EC 3.2.1.23), α-L-arabinofuranosidase (EC 3.2.1.55),
α-L-arabinopyranosidase (no EC number) and β-xylosidase (E.C. 3.2.1.37), which are necessary for the
deglycosylation of ginsenosides. These microorganisms are known to have evolved from inside of
the host’s intestinal tracks where indigestible dietary fibers are their major carbon sources, producing
a variety of glycosidases, which can effectively convert glycosides into aglycones [35].

3. Commercial Application

According to Baeg and So, the value of the global ginseng market is worth USD 2.08 billion,
with South Korea attributed with over half (1.14 billion USD) of the market value, making it the
primary ginseng production county in the world [36]. The use of ginseng and ginsenosides continues
to appear in an extending spectrum of markets due to the recognition of potential applications in
multiple new industrial sectors (e.g., cosmetics, beverage, nutraceuticals, processed food and liquor).
Recently, to dominate the ginseng market, multiple bio-venture businesses and food conglomerates
have applied for patents related to biocatalysis of ginsenosides using probiotic enzymes [22].
These popular food conglomerates include: Nongshim, Lotte Chilsung, Chong Kun Dang, Korea
Yakult, Daesang and Woongjin Foods. Various probiotic strains have been screened on the basis of
their biocatalytic properties for various ginsenosides, as determined by thin-layer chromatography
and/or high-performance liquid chromatography analysis. Recently, to be differentiated in the market,
various companies have launched and developed fermented ginseng products that use the indigenous
functional abilities of the probiotics and the catalytic effects of probiotic enzymes. By combining
probiotics and ginsenoside in a single product, companies gain both technical and marketing
advantages by denoting the exact concentration of deglycosylated ginsenosides on the package.

4. Recombinant Glycosylase Expression in Escherichia coli

Current progress in biocatalytic technology focuses on using microbial enzymes to produce
various nutraceutical products from ginseng [29,30]. Specifically, probiotic bacteria constitute
an important source for enzyme preparation. Microorganisms are easily influenced by environmental
conditions and produce a variety of metabolites as a response. As a result, a variety of research groups
have conducted experiments to determine the best conditions for microbial enzyme production with
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commercial applications [27]. To address this, the use of transgenic microorganisms has been proposed
to enable the use of additional tools for producing glycosyl hydrolases.

The use of recombinant bacteria is a common trend for ginsenoside conversion due to the
significant efficacy of biotransformation via recombinant enzymes. As a result, extensive studies have
been carried out to minimize processing time and to reduce cost [37]. Enzyme production processes
from microorganisms should achieve a balance between cell biomass and enzyme productivities
for biotechnological applications [38]. Normally, in practical industrial applications, the use of
aerobic microorganisms is more accepted to reduce cost and facilitate enzyme manufacturing scale-up,
since growth rates are faster and enzyme productivity is greater than anaerobic microorganisms.
Additionally, culturing of aerobic bacteria is much simpler than that for anaerobic microorganisms,
since anaerobic conditions and special microbial media are not necessary [39].

Common microorganisms containing foreign gene expression for the purpose of effective
production of enzymes and ginsenoside conversion are E. coli. [37]. Specifically, the genome of
E. coli is very easy to modify due to its simplicity (i.e., 4400 genes) and also multiplies exponentially.
Under a suitable environment (i.e., enriched culture media), the germination time for normal wild-type
E. coli is less than 30 min. In the biotech domain, these characteristics are highly advantageous [40].
Additional uses include transgenic E. coli, which expresses human genes and has been successfully used
for human growth hormone and insulin production in the pharmaceutical and medicine manufacturing
industry [41].

Many researchers have attempted to structurally transform glycosylated ginsenosides
using various recombinant β-glucosidase overexpressed in E. coli. For example, ginsenoside
Rb1 was converted into compound K by the recombinant β-glucosidase cloned from
Microbacterium esteraromaticum [42]. Hong et al. [43] also used recombinant β-glucosidase from
Flavobacterium johnsoniae to produce ginsenoside Rd and F2. Cui et al. [44] hydrolyzed ginsenoside
Re and Rg1 into Rg2 and Rh1 using recombinant β-glucosidase cloned from Actinosynnema mirum.
Ginsenoside Rb1 and Rd were also structurally transformed into F2 by recombinant β-glucosidase
from Paenibacillus mucilaginosus [45]. Other glycosyl hydrolases were cloned and overexpressed
in addition to β-glucosidase. Recombinant α-arabinofuranosidase and α-arabinopyranosidase from
Bifidobacterium longum H-1 were applied to hydrolyze ginsenoside Rc and Rb2 [46]. β-Xylosidase cloned
from Bifidobacterium breve K-110 was used to transform ginsenoside Ra1 into ginsenoside Rb2 [47].
All of the above-mentioned recombinant enzymes were overexpressed in the E. coli system.

E. coli recombinant enzyme technology will likely be applied to medical or pharmaceutical
industries to produce ginsenoside aglycones. However, for the pragmatic application into the
nutraceutical and food industry, the use of these bacteria will likely be a sensitive issue in regards to
product marketing, since the majority of consumers identify E. coli as a common inedible bacteria.
Some Microbacterium and Flavobacterium spp. are also reported as a food, feed and/or water
contaminant [43,48,49]. The food market, especially nutraceuticals, is fundamentally different from the
biomedical or pharmaceutical market [50].

5. Recombinant Glycosylase Expression in Probiotic Bacteria

The use of transformed probiotic bacteria with recombinant plasmids might be an alternative
approach to the E. coli system in the nutraceutical industry for several reasons: (i) probiotics are
appropriate to produce food-grade expression of glycosylases; (ii) the price of commercially-available
media (i.e., de Man, Rogosa and Sharpe media (MRS)) for probiotics is only three-fold more
expensive than culture media for E. coli; (iii) probiotic bacteria have been considered as GRAS in
multiple food products already [51,52]. However, only a few cases using genetically-engineered
probiotics have been applied to biotransformation of ginsenosides. For instance, Youn et al. [53] have
characterized the recombinant β-glucosidase cloned from Bifidobacterium animalis and expressed
in Bifidobacterium bifidum BGN4 to produce ginsenoside aglycones from ginsenoside Rb1 and
Rb2. This enzyme showed a broad substrate specificity towards phytochemicals (i.e., isoflavones,
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quercetins and disaccharides) with enhanced enzyme activity compared to those of its unaltered strain.
Li et al. [54] discussed the biocatalysis of ginsenoside Rb1 and Rd into F2 by recombinant β-glucosidase
expressed in Lactococcus lactis NZ9000 and cloned from Paenibacillus mucilaginosus. They evaluated
the molecular mass of purified β-glucosidase and the resultant recovery percentage of ginsenoside
F2. The authors highlighted codon optimization to reduce unfavorable codons, resulting in effective
β-glucosidase production.

However, the application of recombinant probiotic bacteria in the nutraceutical industry has
struggled due to consumer’s substantial resistance. In the market, food customers continue to
show negative responses with respect to the use of GM organisms in foods. According to recent
reports, 70% of respondents showed significant awareness of GM organisms in their food, and 92% of
respondents stated that food packaging should require notification of the use of GM organisms [55–57].
Because of many factors, the application of GM organisms as a major or minor ingredient in food has
become a significant barrier for food manufacturers and marketers alike [57,58].

6. Classical Probiotic Enzyme Preparation

To overcome the barrier of GM and/or non-edible bacteria controversies, multiple groups
are looking for novel probiotic strains and cell culture conditions to produce glycoside hydrolases
using classical enzyme production methods. Classical methods generally depend on the indigenous
properties of probiotic bacteria after downstream processing (e.g., purified enzyme, cell-free extracts
and disrupted cell suspensions) or as it is (e.g., whole cell). In terms of designing a biotransformation
process of ginsenoside using probiotic enzymes, an important consideration is the discovery of
an appropriate probiotic strain or enzyme using screening processes. One of the fundamental
methods for screening glycoside hydrolase-producing microorganisms is the use of physical
(e.g., homogenizing, sonication, bead-beating and cell disruptor), chemical (cell lysis cocktail) or
non-chemical (i.e., endopeptidase, carboxypeptidases, lysozymes and lytic transglycosylases) breakage
methods for releasing cytosolic enzymes. Because of the presence of biological barriers, such as cell
membranes, some glycosides have shown a limited penetration ratio, resulting in the restriction of
desirable catalytic reactions [54]. By mixing the collected enzymes from disrupted bacteria with
artificial substrates, such as p-nitrophenyl glycosides, the physicochemical characterization of the
microbial enzyme can be examined by evaluating the released p-nitrophenol levels.

For example, Chi et al. [17,18,59] used cell-free extracts obtained from multiple probiotic strains
for ginsenoside biocatalysis. When using intracellular enzymes, it is critical for ginsenoside glycosides
to permeate the microbial cell wall and membrane effectively. To accomplish this, cell disruption
or sonication processes were used to open and degrade outer cell membranes for the purpose of
extracting intracellular glycosyl hydrolases. Using the centrifugation step, they removed cell debris
intentionally and then only used supernatants as crude microbial enzymes.

In their work, through Bifidobacterium spp. Int57 and Bifidobacterium spp. SJ32, ginsenoside
Rb2 was transformed into compound K via ginsenoside Rd and F2. The crude enzyme extracted
from Bifidobacterium spp. Int57 also catalyzes Rb2 into Rd or F2, while it catalyzes Rb1 into
Rd, F2 and compound K [17,59]. Lactobacillus delbrueckii was used to produce ginsenoside
Rh2 from Rb2. Bifidobacterium sp. SH5 enzyme successfully transformed Rb2 into F2 via
Rd. Both Leuconostoc paramesenteroides and Lactobacillus delbrueckii transformed ginsenoside
Rb1 and produced F2 and Rh2, respectively. Bifidobacterium spp. Int57, Bifidobacterium spp.
SJ32, Lactobacillus delbrueckii and Leuconostoc paramesenteroides transformed ginsenoside Rb1 into Rh2
via Rd and F2. Bifidobacterium sp. SH5 hydrolyzed ginsenoside Rb1 to F2. Ginsenoside Re was
converted to Rh1 using Bifidobacterium spp. Int57 and Bifidobacterium spp. SJ32 [17,18].

Quan et al. [60–62] employed different approaches to screen enzyme-producing probiotic
bacteria. They first screened naturally-occurring lactic acid microbiota from Korean Kimchi and
then carried out colorimetric assays to isolate Lactobacillus and Leuconostoc spp., which produce
extracellular-β-glucosidase. Because all of the screened cells produced exoenzymes, they simply used



Molecules 2016, 21, 645 6 of 11

protein precipitation to collect enzymes from media instead of physical or chemical cell disruption
processes. The screened Leuconostoc citreum LH1 successfully transformed ginsenoside rb1 into
compound K [61]. Ginsenoside Rb1 and ginsenoside Rd were hydrolyzed into gypenoside XVII
and compound K, respectively, by Lactobacillus paralimentarius LH4 [62]. Using the extracellular
β-glucosidase of Lactobacillus pentosus DC10, compound K was produced from ginsenoside Rd [60].

For commercial applications, some researchers have utilized the strategy of whole-cell
probiotic conversion with surface-displayed enzymes to hydrolyze glycosylated ginsenosides.
When intracellular enzymes are collected using mechanical or chemical approaches, not only target
enzymes, but also non-target metabolites can be extracted during the cell breakage process. In some
cases, non-target metabolites can act as inhibitors for enzyme reactions [63]. Moreover, physicochemical
treatments are likely to generate unwanted target-enzyme degradation. In addition, in order to collect
and employ extracellular enzymes, time-consuming and labor intensive processes, such as protein
separation, are necessary.

According to de Carvalho [64], the use of whole-cell catalysis is advantageous to save labor,
production cost and/or maintenance costs. Furthermore, this process eliminates undesirable reactions
generated by intracellular cell metabolites. Park et al. [65] transformed ginsenosides Rb1, Rc, Rd and
F2 into compound K using whole cell Leuconostoc mesenteroides KFRI 690, Leuconostoc paramesenteroides
KFRI 159 and Lactobacillus delbrueckii KCCM 35486. Both whole cell and disrupted cell homogenates of
Bifidobacterium longum RD47 (Rd47) were utilized to hydrolyze ginsenoside Rb2 and Rc into ginsenoside
Rd [22]. In their work, both α-L-arabinopyranosidase and α-L-arabinofuranosidase were detected
from Rd47 and expressed notable resistance against sonication process. Similar work was done by
both whole cell and disrupted cell homogenates of Lactobacillus delbrueckii Rh2 to produce baicalein
and wogonin from baicalin and wogonoside [66]. They also employed whole cell β-glucosidase of
Lactobacillus rhamnosus GG to transform ginsenoside Rb1 to Rd [67].

7. The Use of Modified MRS for Enzyme Production

Many researchers have attempted to culture probiotic bacteria in conventional MRS media
containing glucose as an enriched nutrient, the key carbon source and metabolic precursor for
microbial germination [68,69]. Generally, in the food and dairy industry, manufacturers have
tried to enhance cell biomass productivity during the fermentation process to follow company
guidelines and federal regulations. For instance, The National Yogurt Association has recommended
a standard for commercial yogurts (e.g., at least 107 CFU/g of active cultures, pH 4.6 or lower, the
use of safe and suitable sweeteners, etc.) [70]. To achieve their goal, manufacturers generally use
simple sugar or sucrose as a major ingredient to reduce cost and increase microbial nutrient supply.
For bench, lab and pilot-scale experiments, multiple in-house and commercially-available media
(i.e., LBS (Lactobacillus selective) and MRS) containing glucose have been used for Lactobacillus and
Bifidobacterium spp. enrichment.

However, if the goal is to enhance the productivity of glycoside hydrolase from probiotic
bacteria rather than enhancing the cell biomass productivity, then high levels of glucose can
significantly inhibit glycosidase production [22,67,71,72]. During the cell enrichment process, media
ingredients become enzyme substrates or substrate analogs, acting as significant enzyme inducers [73].
Specifically, when some media ingredients use sugar conjugates, such as disaccharides, oligosaccharide
and polysaccharide, as a source of carbon, some probiotics produce glycosylases to effectively intake
glucose after hydrolysis [35,74].

There are some examples that used composition-dependent systems, which introduce multiple
carbon sources in the media and/or glucose-limited culture conditions. A recent report showed that
Lactobacillus rhamnosus GG cultured in modified MRS containing cellobiose instead of glucose had
25-times higher β-glucosidase productivity compared to those cultured in conventional MRS [67].
The productivity of α-L-arabinofuranosidase and α-L-arabinopyranosidase of Bifidobacterium longum
RD47 were significantly increased by additional supplements of 2% (w/v) ascorbic acid in



Molecules 2016, 21, 645 7 of 11

MRS media [22]. In these works, the enhanced glucose or other sugar contents in the
media resulted in significantly decreased activities of β-glucosidase, α-L-arabinofuranosidase and
α-L-arabinopyranosidase from Lactobacillus rhamnosus GG and Bifidobacterium longum Rd47 compared
to those cultured at controlled media conditions. This Bifidobacterium longum Rd47 was also cultured in
in-house media containing soybean oligosaccharides instead of glucose and showed increased α- and
β-galactosidase productivities [75]. Lactobacillus delbrueckii Rh2, cultured in MRS containing galactose
instead of glucose, showed increased β-glucuronidase activity [66].

Commercial application of whole cell enzymes from probiotic bacteria is still limited mainly
due to a lack of methods, expertise and information about probiotic enzymes and their regulation.
Therefore, further employing of controlled culture conditions using unconventional carbon sources
and/or glucose-limited media is likely necessary to investigate microbial potential for certain enzyme
production. An overall summary of enzyme preparation and its use for biocatalysis of glycosidated
ginsenosides is shown in Figure 2.
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identification and screening systems. The enhanced efficacy of probiotic enzymes still needs to be 
adapted to the special needs of manufacturing processes. Recent reports also show that it is possible 
to use modified MRS to increase microbial enzyme productivities. These attempts have been made 
to enhance the productivity of glycosylases, which are applicable for the biotransformation of 
glycosylated ginsenosides. However, further improvements are necessary, including: (i) exploiting 

Figure 2. Application of probiotic enzymes prepared by multiple methods for the biotransformation of
ginsenoside glycosides. The TLC profile was adapted and modified from Ku et al. [67].

8. Conclusions

Multiple structurally-similar ginsenosides with diverse numbers and locations of hydroxyl
groups exhibit significantly different bioactive properties; specifically, ginsenoside glycosides
have shown poor absorption rates in the body. In this regard, intentional biocatalysis of
ginsenosides using probiotic enzymes is of significant industrial and scientific interest for the
purpose of enhancing and standardizing their nutraceutical properties. Structural modification of
glycosylated ginsenosides has been successfully achieved with higher productivity by ginsenoside
aglycones. In the pharmaceutical and nutraceutical industry, there is a great potential for the use
of genetically-engineered and conventionally-screened probiotic bacteria and their enzymes for the
production of ginsenoside aglycones.

Although various probiotic enzymes have already been used for large-scale applications, various
challenges of enzyme preparation from probiotic microorganisms possibly exist, including limited
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biomass productivity, uneconomical bioreaction and bioseparation and demanding rapid identification
and screening systems. The enhanced efficacy of probiotic enzymes still needs to be adapted to
the special needs of manufacturing processes. Recent reports also show that it is possible to use
modified MRS to increase microbial enzyme productivities. These attempts have been made to enhance
the productivity of glycosylases, which are applicable for the biotransformation of glycosylated
ginsenosides. However, further improvements are necessary, including: (i) exploiting broad food-grade
hosts for transformation; (ii) enhancing cell biomass and enzyme productivity; (iii) utilizing and
determining the optimal media compositions for enzyme induction.
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