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Multiscale consensus habitat 
modeling for landscape level 
conservation prioritization
Erin E. Poor1, Brian K. Scheick2 & Jennifer M. Mullinax1*

Globally, wide-ranging carnivore populations are imperiled due to human-caused habitat 
fragmentation. Where populations are fragmented, habitat quantification is often the first step in 
conservation. Presence-only species distribution models can provide robust results when proper 
scales and data are considered. We aimed to identify habitat for a fragmented carnivore population at 
two scales and aid conservation prioritization by identifying potential future habitat fragmentation. 
We used location data and environmental variables to develop a consensus model using Maxent and 
Mahalanobis distance to identify black bear (Ursus americanus floridanus) habitat across Florida, 
USA. We compared areas of habitat to areas of predicted sea level rise, development, and protected 
areas. Local-scale models performed better than state-scale models. We identified 23,798 km2 of 
habitat at the local-scale and 45,703 km2 at the state-scale. Approximately 10% of state- and 14% 
of local-scale habitat may be inundated by 2100, 16% of state- and 7% of local-scale habitat may be 
developed, and 54% of state- and 15% of local-scale habitat is unprotected. Results suggest habitat is 
at risk of fragmentation. Lack of focused conservation and connectivity among bear subpopulations 
could further fragmentation, and ultimately threaten population stability as seen in other fragmented 
carnivore populations globally.

Globally, wildlife is now being lost faster than at any other point in history, largely due to habitat degradation and 
fragmentation1–4. Because wide-ranging large mammals, such as carnivores, occur at low population densities 
and require large expanses of habitat, they may be more affected by habitat loss than other taxa5. When human 
development and infrastructure fragments the landscape, carnivore populations may also be fragmented, result-
ing in isolated subpopulations, which may accelerate local or global extinction6–11.

Past declines in large carnivore populations, such as cougars (Puma concolor), grey wolves (Canis lupus), 
and black bears (Ursus americanus), have resulted in large landscapes lacking carnivores across North America. 
Increased education and carnivore-friendly wildland management have aided in the population recovery of 
some of these traditionally persecuted species, particularly the black bear. However, while many local black bear 
populations may be increasing12–14, these population increases are not consistent across the species’ range. Popula-
tions in southeastern and southwestern U.S. and Mexico remain fragmented15, with uncertain future population 
trajectories. Recovery of all isolated subpopulations and subspecies, such as the genetically distinct Florida black 
bear (Ursus americanus floridanus), can help increase genetic diversity of the species as a whole, thus safeguard-
ing the population from future environmental heterogeneity due to direct human impacts or climate change16.

The Florida black bear originally ranged throughout Florida and the southern portions of neighboring states17. 
The estimated pre-European settlement bear population in Florida was ~ 11,500 individuals18, but the black bear 
population began to decline after European colonization, largely from direct persecution and extensive land clear-
ing. Since 1974, when Florida listed the black bear as Threatened, the bear population has been slowly increas-
ing. Yet still today, the statewide range covers only half of what it once did19, distributed in several distinct and 
recently reconnected areas (Fig. 1;19,20). These subpopulations vary in size from ~ 18 to 1198 individuals21,22 with 
a recent statewide estimate of ~ 4000 bears19. Differences in subpopulation size and density are likely due in part 
to naturally occurring differences in food availability and distribution across a biologically diverse state. To better 
manage such inherent diversity, the Florida Fish and Wildlife Conservation Commission created bear manage-
ment units (BMUs) in 2012 (Fig. 1;23) based on geographic commonalities and human population distribution, 
and the likely impact of those characteristics on bear management. Black bear dispersal is naturally restricted 
by the peninsular geography of Florida, and future sea level rise may threaten dispersal and habitat distribution 
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for coastal subpopulations. Dispersal and habitat will likely be further threatened in the future by significant 
human development, as Florida has the third largest and third fastest growing human population in the U.S.24.

Identifying and protecting existing habitat is often one of the first steps of wildlife conservation. For carni-
vores, identifying habitat at a sufficiently large scale (such as at the population or subpopulation level) can be 
problematic due to inconsistencies or lack of data, differing regional wildlife management or policies, or lack 
of specific knowledge of habitat requirements25,26. Furthermore, species absence information is usually lacking, 
given the large home ranges and long dispersal capabilities in sometimes seemingly sub-par habitat27. As such, 
presence-only species distribution models (SDM) that indicate habitat suitability across individuals throughout 
populations28 have been frequently used. Stand-alone presence-only models have come under some scrutiny due 
to their sensitivity to inputs, scale, and accuracy measures28–30. Nevertheless, these models can provide robust 
information about habitat distribution, especially when multiple models are used to identify a habitat ‘consensus’ 
and thus limit the uncertainty due to one specific model type31,32. Furthermore, using presence-only models at 
multiple scales, such as at a landscape scale and at a localized scale, allows identification of population and sub-
population level species distributions and subpopulation-specific requirements based on local environmental 
variability33,34.

Landscape scale habitat conservation for the fragmented bear population in Florida requires knowledge 
of habitat distribution within a broader context, beyond habitat selection at the individual scale as provided 
by previous resource selection studies. While local, home range habitat selection has been studied for most 
subpopulations in Florida35–40, statewide habitat identification using robust multivariate quantitative methods 
has not been completed. Thus, as a major step in the statewide black bear habitat conservation effort, we aim 
to identify and quantify Florida black bear habitat (1) at the landscape scale across all of Florida, and (2) at the 
local, subpopulation scale, using the BMU extent, by applying consensus presence-only SDMs. For conservation 
prioritization, we then identify areas of suitable habitat that will be threatened by projected sea level rise or by 
projected future development and areas that are currently protected.

Figure 1.   Florida black bear (Ursus americanus floridanus) locations. Location of study bear locations, major 
roads, cities and bear management units (BMUs) throughout Florida. Created using ArcMap 10.4 (Esri 2015).
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Methods
Study area.  Florida is a biodiverse state and spans four ecoregions41. The East Gulf Coastal Plain on Florida’s 
panhandle is characterized by longleaf pine-dominated uplands, pine flatwoods and savannas, and bottomland 
hardwood forests, with sandy, clay, and silty soils. The South Atlantic Coastal Plain, in Florida’s northeast, con-
tains longleaf pine (Pinus palustris) forested flood plains with rainfall of 52–64 in per year. The Peninsular Flor-
ida ecoregion can be characterized by a temperature ranging from 23° to 95° F, approximately 65 in of rainfall 
per year, and heavy urbanization in the Tampa and Orlando areas, with some hardwood forests. Finally, South 
Florida has a true tropical climate, with temperatures ranging from 47° to 90° F, an average of 60 in of rainfall per 
year, large areas of agriculture and urbanization, and most of the remaining scrub oak, sand pine, and Everglades 
ecosystems.

The diverse, unique ecosystems of Florida have been heavily impacted by the human population. Florida has 
the eighth highest human density of any state in the United States, (~ 136 people/km2), the third largest growth 
rate, and the third largest population in the United States, with projected growth to reach 23 million by 203042. 
Florida’s Growth Management Act (GMA), implemented in 1985, is recognized as one of the nation’s ‘best prac-
tices’ in an attempt to curtail sprawl43. However, the GMA has inadvertently resulted in an increase in housing 
in suburban and rural areas44. Consequently, development of natural, agricultural, and rural areas continues. The 
Florida 2070 Project recently created development scenarios under a business-as-usual scenario and an alterna-
tive scenario with more compact development. Under the business-as-usual scenario, 1/3 of Florida’s land will 
eventually be developed for human use in a low-density pattern24.

Species data.  We used historic, non-systematic locations of black bears collected via VHF and GPS col-
lars from a variety of researchers from 1983–2018 (Fig. 1)17,35,36,38,39,45–53. We screened the data and removed 
bears < 4 years old because we were interested in modeling habitat for resident adults, not juvenile dispersers54. 
We also removed bears with fewer than 30 locations within a 12-month window or with locations collected 
across < 3 months in a 12-month period. From the remaining bears, we removed all GPS locations with low 
precision as indicated by fix status, or position dilution of precision > 755,56, as well as all capture and mortality 
locations. To reduce spatial autocorrelation and bias from differing fix frequencies between individuals and col-
lar types and to retain information on multiple locations at different times per day, we subsampled GPS collar 
data to locations every 5 h57–60. We used R package amt61 to sub-sample the GPS data. Because we were interested 
in identifying general black bear habitat, we combined male and female bears, as well as all seasons.

Environmental data.  We created 17 habitat variables based on a literature review of Florida black bear sub-
populations (Supplementary Material Table 1)17,37,39,40,48,62,63. Variables represented characteristics of vegetation, 
water, anthropogenic features, and topography. Where we calculated local density variables, we used 0.5 km as 
the moving window radius, based on the average daily movement of a female black bear64, because we wanted to 
capture habitat features that might be directly available to any bear.

We included several measures of natural vegetation and forage-specific vegetation17,62. We defined “natural” 
vegetation as any vegetation not identified as agricultural, urban, or suburban as defined by the Florida Coop-
erative Land Cover Dataset65 and “forage” vegetation as that identified by state bear biologists as important food 
sources for bears (Supplemental Material Table 1). We calculated Euclidean distance to natural vegetation and 
forage vegetation, forage vegetation neighborhood (1.5 km radius moving window) and local (0.5 km) density, 
and area-weighted natural vegetation contiguity and shape area index in Fragstats v. 466. Shape index was the 
normalized ratio of edge to area compared to a square patch. A value of 1 indicated a square patch, and > 1 indi-
cated a more complex patch shape. Patch contiguity was calculated by weighting orthogonally connected patch 
cells and summing across a local window (0.5 km2).

We included topographic ruggedness index (TRI)67 and elevation68 as measures of topography from the 2016 
National Elevation Dataset at 30 m resolution69. We calculated TRI by taking the square root of the average 
squared differences in elevation from a center pixel and its eight neighboring elevation pixels67. Higher values 
of TRI indicated areas that were more rugged.

Florida black bear subpopulations vary in their use of agriculture39,46. Use and avoidance of these areas likely 
depends on a variety of factors, including sex, agriculture type and availability on the landscape, and available 
land cover alternatives70. We tested two different measures of agricultural areas: density of agricultural patches 
and Euclidean distance to agriculture. We used the USDA National Agricultural Statistics Service 30 m raster 
to identify agricultural areas71.

Areas of urban development and roads can negatively impact black bear habitat selection, movement, and 
survival39,72 and we included population density73 and distance to nearest major city center. Because bears may 
use areas of varying road densities and traffic volumes differently74, we included primary, secondary, and tertiary 
roads as separate road density variables, derived from U.S. Census Bureau TIGER/Line 2016 data75. Primary and 
secondary roads were defined as highways, interstates, and major roads (S1100 and S1200 MTFCC) and tertiary 
roads were defined as local neighborhood roads, rural roads, city streets, and smaller roads (S1400, S1500, S1640, 
S1710, S1730, S1740, S1820, S1830 MTFCC).

Riparian zones, swamps, and creeks can positively influence bear habitat selection39,48. Therefore, we included 
the density of rivers and flowlines (e.g., rivers, creeks, canals) as defined by the National Hydrology dataset76 as 
well as density of freshwater forested and shrub wetland patches. We used the National Wetlands Inventory77 to 
identify all other wetland areas.

Variables were created at or rescaled to 120 m × 120 m resolution to capture conditions within bear home 
ranges and daily movements64, projected to Florida 1983 GDL Albers, and then screened for correlation. We 
prepared data in R statistical software version 3.678 and ArcGIS 10.479.
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Habitat modeling.  While location data from collars may also be used to create resource selection or 
step selection functions, our goal was to identify black bear habitat across the entire state. From the available 
bear presence data, few of the subpopulations had high-resolution GPS collar data and the VHF collar data 
across the state was inconsistent and infrequently collected, thus, we determined SDMs were the best method to 
identify population-wide habitat suitability. From the many options for presence-only habitat models80, we chose 
maximum entropy (Maxent) and Mahalanobis distance habitat suitability models68,81,82.

We chose Maxent due to its popularity in the literature30, its ease of use, and its ability to model complex 
relationships among covariates lacking in other methods83,84. Additionally, Maxent performs consistently well 
across ecosystems, species, and scales32,80,85–90. Maxent models attempt to approximate the probability of a species 
presence, conditioned on environmental variables, using presence-only data supplemented with model-generated 
background locations83. Simply put, conditional probability is calculated across the study area using the condi-
tional density of transformed covariates and their interactions at the presence locations and the unconditional 
background locations (See Elith et al.83 for a complete explanation).

Mahalanobis distance modeling provides an alternative to Maxent which is more straightforward68,91. 
Mahalanobis distance is the distance measured in standard deviations in multivariate space from the value of one 
sample to the average of the distribution92. When applied to habitat suitability modeling, Mahalanobis distance 
is the difference between environmental covariate values across the study area and the ‘ideal’ covariate values 
found at the species’ locations58. Mahalanobis distance habitat modeling is a true presence-only model, requiring 
no background samples, unlike Maxent. We chose to include Mahalanobis distance here due to its prior use on 
bears, relative simplicity compared to Maxent, and ability to perform well across species and ecosystems26,32,68,93,94.

We created Maxent and Mahalanobis distance models at two scales: (1) the bear management unit (BMU), as 
a local-scale, to provide detailed habitat information for specific subpopulations throughout the state, and (2) at 
the broader state-scale, to provide a general statewide habitat identification and assessment. We restricted local 
models to BMU boundaries buffered by 20 km. The buffer reduced any introduced bias at BMU edges resulting 
from mosaicking models together.

We ran Maxent version 3.4.1 with default settings, including hinge features, jackknifing, response curves, 
and 10,000 random background locations81. We created Mahalanobis distance models using the mahasuhab 
function of the adehabitatHS R version 3.6 package, with the output type as ‘probability’78,82. To reduce spatial 
sampling bias with the creation of background locations in Maxent at the state-scale, we created a 95% kernel 
density estimate (KDE) utilization distribution for all filtered bear locations using the adehabitatHR package in 
R with the href smoothing factor82. Then, we used the resulting polygon as the boundary within which Maxent 
selected background locations83,95. For Maxent and Mahalanobis model training and testing, we used tenfold 
cross-validation. For each model iteration, we wrote the Maxent background locations to file, for later use in 
model accuracy assessment. We used a modified reverse step-wise approach for model selection for both Max-
ent and Mahalanobis models. We first included all variables, then selected those variables that had a percent 
contribution > 1 and were uncorrelated, in Maxent. For Mahalanobis models, we iteratively removed variables 
and identified variable contributions using principal components analysis in the stats R package78. In Maxent 
models, if two correlated variables were included in the same model, we retained the variable with the higher 
percent contribution.

For accuracy assessment, we calculated five accuracy measures. First, we calculated two threshold-independ-
ent accuracy measures—AUC and the Boyce index96–99—for each of the 10 Maxent and Mahalanobis continuous 
model outputs for each modeling extent (seven BMUs and one statewide extent). We used the background loca-
tions created from the Maxent models to calculate AUC for the Mahalanobis outputs using the ROCR package in 
R100. We calculated the Boyce index in the ecospat R package with the default moving window for both Maxent 
and Mahalanobis outputs101. Next, we calculated three threshold-dependent accuracy measures. To do so, we 
used the maximum sensitivity and specificity value from Maxent iterations to select thresholds on which to base 
binary habitat maps102 of each model iteration for each extent. Using these binary maps and the background 
locations identified by each Maxent iteration, we calculated the true skill statistic (TSS). The TSS is a threshold-
dependent accuracy measure which takes sensitivity and specificity into account, and is independent of species 
prevalence29. The TSS, like the Boyce index, ranges from -1 to 1, where 1 indicates perfect model accuracy, and 0 
indicates a model no better than random29. Finally, to identify errors of omission and commission, we calculated 
sensitivity and specificity for each thresholded model output. A full list of accuracy measure results for each 
model iteration may be found in Supplementary Material Tables 2–9.

We then averaged the continuous outputs created from the models (for each extent 10 Maxent and 10 
Mahalanobis models) to create one continuous output for each extent (seven BMUs and one statewide output). 
Next, we mosaicked the continuous local-scale models in ArcGIS 10.479 to create one local-scale map for the 
entire state. We applied the averaged maximum sensitivity plus specificity value to each averaged continuous 
model and then mosaicked the thresholded model outputs to create a statewide binary map depicting local-scale 
habitat. Finally, we summed the local-scale and state-scale binary maps to create an output depicting 3 habitat 
categories; local-only habitat, state-only habitat, and habitat identified at both scales. For display purposes, from 
the continuous, averaged outputs, we created a cumulative frequency distribution from the bear locations at 10% 
intervals (each interval contained a cumulative percentage of the bear locations)103,104.

Threats and protection.  To provide conservation prioritization guidance, we identified habitat areas 
within future sea level rise inundation areas, areas of projected future development, and unprotected areas. 
We used the high certainty areas of the mean high water 30 cm and 305 cm sea level rise estimated to occur 
by 2100105 as best- and worst-case scenarios for inundation and calculated areas of overlap with the categorical 
habitat maps. We next overlaid the categorical maps with the Florida 2070 Project’s 2070 Development Scenario 
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geospatial data24, to determine amount and distribution of habitat which may be threatened by future develop-
ment. Finally, we compared the categorical output to all protected lands in Florida to determine how much habi-
tat is not currently under local, state, or federal protection65. These analyses were conducted in ArcGIS 10.479.

Results
Species and environmental data.  After data screening, we included 86,604 bear locations (of 277,766) 
from 236 (of 262) adult bears (Fig. 1). Wetland density and TRI (r = − 0.73), river density and creek density 
(r = 0.73), neighborhood food vegetation density and local food vegetation density (r = 0.99) and contiguity and 
shape index (r = 0.99) were highly correlated and not included in the same Maxent models.

Modeling outputs.  On average, the local-scale models performed slightly better than the state-scale model, 
but both had relatively high accuracies (Table 1; Supplementary Material Tables 2–9). Final variable inputs and 
relationship direction varied by model (Table 2). Most habitat was identified along the northern gulf coast, the 
higher elevation areas of central Florida, and the southern Gulf Coast (Figs. 2 and 3a).   

Table 1.   Accuracy assessment measures, area under the curve (AUC), Boyce Index, true skill statistics (TSS), 
sensitivity, and specificity for each black bear species distribution averaged across model iterations, using 
two habitat suitability models, Maxent and Mahalanobis distance, for a state-scale model and for seven bear 
management units.

Maxent Mahalanobis

AUC​ Boyce Index TSS Sensitivity Specificity AUC​ Boyce Index TSS Sensitivity Specificity

Big Bend 0.92 0.97 0.86 0.93 0.93 0.95 0.95 0.76 0.83 0.94

Central 0.80 0.99 0.46 0.80 0.65 0.82 0.98 0.46 0.66 0.80

Eastern Panhandle 0.84 0.98 0.56 0.81 0.76 0.93 0.99 0.67 0.76 0.91

North 0.84 0.98 0.83 0.96 0.87 0.93 0.99 0.78 0.83 0.95

South Central 0.87 0.98 0.83 0.95 0.88 0.93 0.99 0.70 0.79 0.91

South 0.82 0.99 0.78 0.91 0.86 0.9 0.98 0.62 0.74 0.88

Western Panhandle 0.91 0.95 0.76 0.93 0.83 0.86 0.9 0.57 0.82 0.75

State 0.76 1.00 0.36 0.79 0.57 0.71 0.99 0.31 0.76 0.55

Table 2.   Variable ranks and directions (in parentheses) for black bear habitat suitability models created at a 
state-scale and bear management unit scale with Maxent and Mahalanobis distance modeling methods.

Variable

Big Bend BMU Central BMU
Eastern 
Panhandle BMU North BMU South BMU

South Central 
BMU

Western 
Panhandle BMU State-scale

Maxent MD Maxent MD Maxent MD Maxent MD Maxent MD Maxent MD) Maxent MD Maxent MD

Agriculture density – – 4 – 4 – – – – 8( +) 5 – – – 5 7( +)

Distance to agriculture – 3( +) – 9(−) – 5( +) 5 2(−) – – – 2(−) – – – –

Elevation 1 2(−) – 1(−) – 8( +) 2 9(−) 5 2(−) 2 3( +) 2 2(−) – 5( +)

TRI – – – – – – – – – – – – – – – –

Distance to cities – 8(−) – 8( +) – 3( +) – 1( +) 4 6(−) 3 7(−) – 7(−) – –

Population density 3 – – – – – 1 – – – – – 1 – – –

Distance to flowline 5 – – – – 9(−) – 8( +) – 9( +) – – 4 5(−) – –

Distance to rivers – 5( +) – 6(−) – – – – 6 – – 8( +) – – – 6( +)

Primary road density – 6(−) 3 – 3 – – – – – – – – – 3 8( +)

Teritiary road density 7 – – 3(−) – 2(−) – 6(−) – 5(−) – 5( +) 5 4( +) – –

Distance to natural vegeta-
tion – 7( +) 1 5(−) – 4(−) – 4(−) 3 1( +) – 6( +) – – 1 1(−)

Natural vegetation contigu-
ity – – – – 2 1( +) 4 3( +) – 3(−) 4 – – – – –

Natural vegetation shape 
index 6 9( +) – 7(−) – – – – – – – 9(−) – 6(−) 2 3( +)

Distance to forage vegeta-
tion – – 2 – – – – – – – – – – – – 2(−)

Local density of forage 
vegetation 2 4( +) – 4( +) – 7( +) – 7(−) – 4(−) 1 4(−) – 3(−) – –

Neighborhood density of 
forage vegetation – – – – – – – – 1 – – – 3 – – –

Wetland density 4 1( +) 5 2( +) 1 6( +) 3 5( +) 2 7( +) – 1(−) – 1(−) 4 4(−)
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Nearly all models included measures of vegetation configuration, hydrology, elevation, agriculture, and human 
influence. To create the binary habitat maps, we used cutoff values of 0.530 and 0.349, which corresponded to 
the averaged maximum sensitivity plus specificity thresholds for the state- and local-scale Maxent models, 
respectively. Using these thresholds, we identified 45,703 km2 of habitat at the state-scale and 23,798 km2 of local 
habitat, and, of these areas, 17,160.94 km2 were identified as habitat by both models (Figs. 2 and 3a, Table 3).

The largest habitat patches identified by both scales were located around the Apalachicola subpopulation in 
the Eastern Panhandle BMU, the Ocala subpopulation in the Central BMU, and the South Florida subpopula-
tion in the South BMU. Within the local-scale model, the largest patches were 1512.4 km2, 1960.0 km2, 3011.7 
km2, respectively. The largest patches identified in the state-scale model measured 4130.1 km2, 2497.60 km2 and 
1571.50 km2, respectively (Figs. 1 and 3a).

Threats and protection.  Under a worst-case 305 cm sea level rise scenario, our models identified a com-
bined total of 5428.80 km2 of state and local black bear habitat area which may be lost due to inundation. Of 
this total area, 43.29% was habitat identified by both state and local models. Of all local habitat, 13.88% may 
be lost, and 9.8% of state habitat may be inundated (Table 4, Fig. 3b). However, the best-case, 30 cm scenario, 
predicted ~ 1% of both state and local habitat could be affected. With a business-as-usual development scenario, 
15.57% of all state habitat, and 6.81% of local habitat may be lost to development. Of the 8733.25 km2 habitat 
identified as possibly under development threat by state and local models combined, 32.05% was identified as 
habitat under development pressure by both models (Fig.  3c). When overlaid with county, state, and feder-
ally protected lands, we found 53.64% of state habitat, 14.55% of local habitat were unprotected, and 25.69% 
of all unprotected habitat combined was identified by both state and local models as unprotected. Of the area 
of unprotected habitat, 27.63% of state habitat and 43.29% local habitat overlaps with projected development. 
Under the worst-case sea level rise scenario, 6.54% and 1.20% of unprotected state and local habitats could be 
inundated, respectively (Fig. 3d).

Discussion
Our models provide the first comprehensive, statewide habitat distribution model for black bears in Florida. 
We created models using some of the best practices for SDMs, taking into account scale and spatial biases. Our 
results provide robust insights for statewide and local conservation efforts, with high accuracy. The local-scale 
models had higher accuracies, with a tradeoff of identifying less habitat than the state-scale models (Table 3). In 
general, we found high habitat suitability along the Gulf Coast of Florida, along the eastern edge of Florida, and 
throughout south Florida, with differences in environmental predictors at the state- and local-scales.

The State of Florida has been focused on female black bear conservation and their role in population expan-
sion, due to their philopatric nature and low reproductive rates106. Most of the GPS collar data collected and 
used here was from female bears, and we therefore had more female than male locations in our models (about 
a 5:1 ratio), likely giving rise to a female bias in the habitat suitability we identified. While it is important to 
identify potential habitat for females, we expand the knowledge of Florida black bear preferences by including 

Figure 2.   Modeled Florida black bear (Ursus americanus floridanus) habitat throughout Florida. Consensus 
model of black bear habitat suitability as modeled statewide (a) and at the bear management unit, or local-scale 
(b) using Maxent and Mahalanobis distance models. Cumulative frequency distribution values in 10% intervals, 
(each interval contained a cumulative percentage of the bear locations). For example, the 80% binned cells are 
10% more likely to contain a bear location than the 70% bin and 70% more likely to contain a bear location than 
the 10% bin. Created using ArcMap 10.4 (Esri 2015).
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Figure 3.   Florida black bear (Ursus americanus floridanus) habitat and impacts of inundation, development, 
and projection. Florida black bear habitat identified at the state- and local-scale using an average maximum 
testing sensitivity plus specificity threshold from Maxent habitat models (a), areas of all combined habitat 
potentially inundated under 30 cm and 305 cm sea level scenarios (b), habitat that intersects with potential 
development, from a 2070, business-as-usual scenario (c), and habitat that is not under county, state, or federal 
protection (d). Created using ArcMap 10.4 (Esri 2015).
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males, and we recommend identifying movement habitat for dispersing male bears in any future connectiv-
ity work. In addition, species distribution models assume independent samples, and though we took steps to 
reduce autocorrelation and bias within our data, we recognize these models may still be biased towards specific 
individuals or subpopulations.

Local‑scale models.  The variables in the top subpopulation models varied (Table 2), reflecting the general 
habitat requirements of black bears, their behavioral plasticity, and the different environments across Florida in 
which bears are found. Our results indicated that suitable bear habitat varied by location and included both natu-
ral areas and areas of high human influence. In some areas suitability likely does not represent preference; bear 
subpopulations existed while the human population and development expanded, with bears adapting behavio-
rally to their modified environment. In some subpopulations, Maxent and Mahalanobis models had opposite 
results, depending on relationships with individual variables. We interpret this as moderate suitability for that 
area, and support for our use of a consensus model. For example, north of the Tampa Bay area, in the Big Bend 
BMU, suitable bear habitat included areas farther from agriculture and low primary roads density, but also areas 
closer to tertiary roads, cities, and higher population densities (Fig. 3a). These seemingly conflicting suitabilities 
likely reflected bears’ relatively restricted range. Bears are limited to the locally protected areas contiguous with 
the Chassahowitzka Wildlife Management Area near the coast in this BMU and would need to cross a major 
state highway eastward to access agricultural areas (Fig. 3a).

Differences can be seen across subpopulation habitats when comparing central Florida subpopulations with 
those in the northern and southern parts of the state. Suitable habitat for bears in central Florida included areas 
of high agricultural density and areas close to cities. These bears were located in a series of natural areas with 
abundant waterways, agriculture, and primary roads. Central Florida has a high human population density, 
and over half of occurrences of human-bear conflicts are reported from this area13. Bears may be attracted to 
neighborhoods with abundant food sources in this region, and our models indicated that bear habitat here was 
relatively abundant but appears fragmented, with larger protected lands bisected by highways. However, in the 
low human density areas of northern and southern Florida, natural areas were key components of bear habitat 
at the local-scale models (Fig. 3a). Here, habitat included areas farther from human development and high in 
natural vegetation contiguity. Both of these subpopulations occupied part of the large protected areas (Fig. 3a) 
and habitat suitability reflected the low-elevation natural areas that are common in these areas.

State‑scale model.  As expected, the state-scale models were more general and identified more habitat, 
more evenly dispersed across Florida (Table 3, Figs. 2 and 3a). Distance to natural vegetation had the highest 
impact on habitat suitability. Across the state, areas of higher habitat suitability were located closer to natural 
vegetation, farther from roads, in areas with higher agriculture density and moderate wetland density, and far-
ther from rivers. Statewide, only five variables contributed to the Maxent model, while the Mahalanobis model 
identified three additional variables (Table 2). Accuracies were slightly lower than the local-scale model, which 
may in part be due to differences in habitat among subpopulations. If several subpopulations have different 
habitat associations, as in Eglin and Osceola, for example40, fewer variables may have similar values amongst all 
subpopulations and thus fewer variables may be able to explain habitat suitability. As seen by the TSS, sensitivity, 
and specificity measures, the state-scale models were better at identifying habitat than discerning non-habitat. 
This is likely related to the more general nature of these models, and the fact that we were unable to obtain true 

Table 3.   Amount (km2), and percent of black bear habitat in each bear management unit as identified by 
local- and state-scale consensus habitat suitability consensus models, with a threshold of the maximum 
sensitivity plus specificity values as identified by Maxent (0.349 and 0.530, respectively).

Big Bend 
BMU Central BMU

Eastern 
Panhandle 
BMU North BMU South BMU

South 
Central BMU

Western 
Panhandle 
BMU Total

Local-scale 
model 483.68 (2%) 10,253.16 

(43%) 4415.34 (19%) 870.15 (4%) 3419.3 (14%) 2603.18 
(11%) 1704.82 (7%) 23,749.63

State-scale 
model 5126.14 (11%) 11,010.42 

(24%)
10,307.06 

(23%) 3903.69 (9%) 5003.73 (11%) 7985.75 
(17%) 2358.03 (5%) 45,694.82

Table 4.   Amount (km2) and percent of total respective areas of Florida black bear habitat identified local- 
and state-scale habitat models, that may overlap two sea level rise scenarios, projected development, and area 
unprotected. In total, local-scale models identified 23,749.63 km2 and state-scale models identified 45,694.82 
km2 of black bear habitat throughout Florida.

Threat Local model State model

Habitat (km2) flooded at 30 cm sea level rise 226.67 (0.95%) 3298.44 (13.89%)

Habitat flooded with 305 cm sea level rise 19.70 (1.14%) 4480.27 (9.8%)

Habitat overlapping projected development 1616.86 (6.81%) 7116.39 (15.57%)

Unprotected habitat 3456.46 (14.55%) 24,511.99 (53.64%)
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absence data for accuracy assessment. However, because this is a growing and expanding black bear population, 
identifying habitat that is currently unoccupied but suitable is important for management and outreach consid-
erations. In these areas, the state-scale model could be used as a general guide, and conservation of specific areas 
could then be informed by local-scale models. This underscores the need for a multiscale modeling effort, which 
can identify habitat unique to particular subpopulations.

Effects of different scales and extents.  The use of models at different scales allowed us to identify fac-
tors contributing to habitat distribution at both statewide and subpopulation scale which otherwise would have 
been missed. While we prepared environmental variables at different scales, we did not restrict the types of vari-
ables or alter the resolution at either scale in either model. In preliminary model testing, we restricted models 
to variables describing local and state conditions, but model accuracy improved when we allowed inclusion of 
any variable. Our model accuracies show that our variable selection process was thorough enough to describe 
environmental associations across scales.

We did not account for spatial bias in the local-scale models because environmental conditions within BMUs 
were more similar than across the state-scale, and we wanted to capture potential bear habitat across BMUs that 
could be important for future conservation. However, although slight, the higher accuracies in the local-scale 
models may in part be due to this difference in spatial sampling and extent107.

Effects of consensus modeling.  However robust, these results, like all presence-only SDM results, should 
be interpreted with caution. Results represent potential habitat suitability, not occupancy or habitat selection30. 
All habitat suitability models have pros and cons80, and averaging multiple models can reduce uncertainty31. We 
believe this to be the case in this study, with our individual model results providing different habitat distribu-
tions. Maxent and Mahalanobis calculate suitability differently and thus identify different areas as suitable, often 
either over- or under-predicting habitat68,83,87. There are other methods in combining multiple SDMs to improve 
model outcome, but our models have consistently high accuracy and we recommend considering model averag-
ing in future modeling efforts, especially when dealing with wide-ranging carnivores.

Effects of threshold selection.  There are many ways in which thresholds are selected to display a con-
tinuous SDM output as a binary habitat/non-habitat result108. In choosing a threshold selection method in this 
study, we aimed to maximize the probability of true positives (sensitivity) and negatives (specificity) and to 
ensure that future conservation efforts included all areas where bears may be located, while reducing conserva-
tion costs by discriminating low-likelihood areas of suitability. The maximum sensitivity plus specificity thresh-
old has been shown to successively discriminate between true presence and random locations, is independent of 
species prevalence102, and we suggest its use in future efforts when a binary threshold is desired. We recognize 
that black bears use a wide range of habitats, and we recommend using these thresholds only as guides.

Threats and protection.  Globally, sea levels are likely to rise 0.3–1.2 m by 2100109. Given the relatively 
low elevation of Florida and the concentration of bears near coastal areas (Fig. 3b), bear habitat could be further 
restricted by sea level rise in the near future. We identified 13.88% of local-scale habitat and 9.80% of state-scale 
habitat in areas of inundation under a worst-case ~ 3 m sea level rise scenario (Table 4). While this may be a 
liberal projection, we did not account for storm surges, which may have an even more severe impact on habitat 
quality and distribution and should be taken into account during planning efforts in this system110.

Not only will bears be more restricted geographically by sea level rise, but 15.57% of state and 6.81% of local 
bear habitat overlaps with projected development (Fig. 3c). There are county-wide development plans in place, 
with attempts to curtail further sprawl, but effectiveness of these plans is unclear44. While the bear population in 
Florida is currently expanding23, their available habitat is decreasing, which could lead to a future where human-
bear conflicts increase, support for bear conservation decreases, and a bear population in parts of Florida that 
stabilizes or even decreases.

Despite these threats, a large amount of bear habitat is protected (Fig. 3d). The lowest amount of protection 
we found was among the habitat identified only by the state-scale model. State-scale habitat could be critical in 
future dispersal and immigration/emigration among subpopulations, as the population in general continues to 
rebound. There appears to be a lack of protection for this type of habitat in the area between Tallahassee and 
Gainesville (Fig. 3d) and this area could provide important movement corridors to bears in the Apalachicola 
and Osceola/Ocala subpopulations. Considering the swift development rate in Florida, natural lands that are 
not protected are likely vulnerable to development.

Unfortunately, the lack of protection and potential black bear habitat losses are not unique in the Anthro-
pocene, and are often more severe for carnivore habitat globally111. For example, Bengal tiger (Panthera tigris 
bengalensis) habitat in the Sundarbans is likely to be lost to sea level rise by 2070112, central Sumatran tigers 
(Panthera tigris sumatrae) may lose > 50% of their habitat by 2050113, summer polar bear (Ursus arctos) habitat 
may decline by 68% by 2090–2099114, and in southern California development will reduce puma (Puma concolor) 
natal den sites by 20% by 2065115. Despite declining global populations and habitats, carnivores can be resilient 
and adapt to modified environments. Recent efforts to model future habitat and responses to development 
can provide managers with the tools to mitigate habitat loss or degradation and promote coexistence116–119. 
Conservation of carnivore populations globally will require clear and effective communication by scientists 
and the support of communities and governments. This may be more realistic in some areas than others. In 
much of the US, communities are beginning to recognize the value of intact ecosystems, including sustainable 
carnivore populations. Fortunately, the Florida black bear has been prioritized for conservation by the State of 
Florida, and populations have already increased since their historic low in the 1970s19. With continued support, 



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17783  | https://doi.org/10.1038/s41598-020-74716-3

www.nature.com/scientificreports/

mitigation of projected habitat loss, identification of landscape corridors using the best available science from 
various initiatives, and effective communication with communities and urban planners, black bear populations 
can continue to grow and expand.

Conclusions and management recommendations.  Continued development could have significantly 
negative consequences on wildlife globally111 and identifying habitat of species vulnerable to anthropogenic 
impacts should be one of the first steps in conservation and landscape planning. Subsequent connectivity plan-
ning across landscapes can increase persistence probabilities for fragmented populations or subpopulations8. 
While sprawl in the U.S. seems to be beginning to decrease120, that is not the case in Florida, where the human 
population is growing and wildlife habitat is increasingly fragmented due to anthropogenic impacts and/or cli-
mate change.

We provide these results to guide landscape conservation for Florida black bears, and this research under-
scores the point that while species may recover in population size and distribution, conservation efforts should 
not wane in the face of projected human population growth and development. In Florida, we suggest that 
managers focus generally on wetland areas at higher elevation, particularly in unprotected areas in the South 
Central and Central BMUs. Areas that are isolated based on functional connectivity and bear dispersal abili-
ties should be identified and conserved to maintain and/or create corridors. It is imperative that the remaining 
subpopulations are connected to allow sustainable bear population growth and improved genetic exchange as 
outlined in the 2019 Florida Black Bear Management Plan19. Without continuing statewide habitat conservation 
based on these results, the population increases and range expansion of the Florida black bear may stall before 
subpopulations are fully reconnected or exceed the social carrying capacity of the area. Carnivores are at risk, 
and our results serve as a reminder that even species that are considered recovered may face future threats to 
conservation without adequate habitat conservation.
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