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Due to the individual differences controlling brain-computer interfaces (BCIs), the
applicability and accuracy of BCIs based on motor imagery (MI-BCIs) are limited. To
improve the performance of BCIs, this article examined the effect of transcranial electrical
stimulation (tES) on brain activity during MI. This article designed an experimental
paradigm that combines tES and MI and examined the effects of tES based on the
measurements of electroencephalogram (EEG) features in MI processing, including
the power spectral density (PSD) and dynamic event-related desynchronization (ERD).
Finally, we investigated the effect of tES on the accuracy of MI classification using linear
discriminant analysis (LDA). The results showed that the ERD of the µ and β rhythms
in the left-hand MI task was enhanced after electrical stimulation with a significant
effect in the tDCS group. The average classification accuracy of the transcranial
alternating current stimulation (tACS) group and transcranial direct current stimulation
(tDCS) group (88.19% and 89.93% respectively) were improved significantly compared
to the pre-and pseudo stimulation groups. These findings indicated that tES can
improve the performance and applicability of BCI and that tDCS was a potential
approach in regulating brain activity and enhancing valid features during noninvasive
MI-BCI processing.

Keywords: brain-computer interfaces, motor imagery, transcranial alternating current stimulation, transcranial
direct current stimulation, event-related desynchronization

INTRODUCTION

Brain-computer interface technology based on motor imagery (MI-BCI) has played an important
role in improving and restoring human motor function by activating brain plasticity to induce
patients to recover motor control function (Decety and Boisson, 1990). However, studies have
shown that individuals differ in their ability to control the BCI. Approximately 15–30% of people
could not operate the BCI system effectively, which indicated that their accuracy is lower than that
of the majority of people and that they need more training time (Guger et al., 2003). Therefore,
it is very important to find methods to improve the applicability of the MI-BCI system and the
classification accuracy of electroencephalogram (EEG).
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Previous studies have used invasive or noninvasive neural
regulation technology to reversibly regulate the activity state
of the central nervous system, peripheral nervous system, or
autonomic nervous system via electrical stimulation or drug
regulation to enhance the decoding accuracy and applicability of
BCI (He et al., 2015; Cho et al., 2016). Among them, transcranial
electrical stimulation (tES; Kuo and Nitsche, 2012; Bestmann
and Walsh, 2017), as a non-invasive neuromodulation technique,
has attracted considerable attention in recent years. At present,
tES mainly adopts transcranial direct current stimulation (tDCS;
Unal and Bikson, 2018) and transcranial alternating current
stimulation (tACS; Paulus, 2011). According to the polarity of
stimulation, an anode is placed on or inside the cortex for
tDCS and subthreshold direct current stimulation is introduced
to regulate neural activity (Wei et al., 2013; Flöel, 2014).
Studies have found that the application of a weak direct current
through a scalp electrode could affect the action potential
threshold of neurons, increase the activity of spontaneous
neurons and then noninvasively regulate the excitability of the
cerebral cortex (Bindman et al., 1964; Nitsche and Paulus, 2000;
Tsuiki et al., 2019). tACS applies a low-intensity alternating
current to the cerebral cortex to regulate the activity of
the intracranial central nerve (Kasten and Herrmann, 2017).
Ten Hertz tACS stimulation in the primary motor cortex
could promote the excitability of the motor cortex, although
other frequencies had difficulty evoking excitability changes
(Wach et al., 2013).

Studies have shown that tES could effectively regulate
brain activities in working memory (Talsma et al., 2017),
perception, motor learning, motor control, and other cognitive
functions (Nitsche and Paulus, 2000; Angelakis and Liouta,
2011). Therefore, researchers proposed using tES in the BCI
system to enhance the excitability of the cerebral cortex and
improve the performance of the BCI system (Thomas and Roi,
2018). Baxter et al. (2016) used tDCS in an MI-BCI system and
found that although tDCS can improve motor learning ability,
cathode stimulation can reduce the power of the α and β bands
in the process of right-hand imagery tasks. However, anode tDCS
could induce a significant change in the µ rhythm ERD mode,
which can conditionally improve the performance of BCI (Wei
et al., 2013). Also, several articles have studied the modulation
of tACS on motor learning ability (Pollok et al., 2015; Sugata
et al., 2018) and showed that the capacity for motor learning
was significantly increased for 70 Hz tACS (response time was
270 ms) compared to sham stimulation (response time was
340 ms; Sugata et al., 2018). The application of alpha frequency
(7–13 Hz) tACS induced a leftward bias in visuospatial attention
relative to the sham (P < 0.001; Schuhmann et al., 2019). In
addition, applying tACS in the mental rotation task experiment
significantly decreased the subject’s alpha and beta rhythm
stimulation shortened response time (before_alpha = 0.37 s,
before_beta = 0.39 s, after_alpha = 0.3 s, after_beta = 0.34 s;
Zhang et al., 2016).

In conclusion, tES could promote motor learning, motor
control, MI behavior, and other cognitive functions by regulating
the excitability of the cerebral cortex. As a noninvasive
stimulation technology, BCIs may be easily accepted. However,

previous studies only discussed the effectiveness of a single
stimulus mode in BCI systems and did not compare and analyze
the stimulus modes that can improve the applicability and
effectiveness of BCI systems in the same task. In this article, we
designed an experimental paradigm that combines two different
modes of stimuli within the same framework and quantified the
changes in EEG via three measurements from spatial, temporal,
and classification dimensions to detect the type of stimulus that
can effectively enhance ERD and BCI performance during MI.
Here, tDCS and tACS were applied to the Cz position of the
subjects’ brains to regulate brain activity and feature extraction
was combined with power spectral density (PSD; Liu et al.,
2013) and common spatial pattern (CSP; Tariq et al., 2019).
Finally, the two features with the largest power difference were
extracted by CSP, and the feature vectors were classified by linear
discriminant analysis (LDA; Tariq et al., 2020).

EXPERIMENT PREPARATION

Subjects
This experiment recruited 15 male college students (23–25 years
old, average 24.4± 0.44). All the participants were right-handed.
None of them had any history of nervous system disease or
received any acute or chronic drugs that affected the central
nervous system. Written informed consent according to the
Declaration of Helsinki was obtained from all participants. This
study was approved by the Ethics Committee of the University of
Electronic Science and Technology of China (UESTC).

Signal Acquisition
In this experiment, 16 Ag/AgCl electrodes (i.e., Fp1, Fp2, F3, F4,
C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6) were employed
for data recording using a Symtop amplifier (Symtop Instrument,
Beijing, China). The placement of each electrode was determined
by the international 10-20 system electrode position method.
The electrode distribution diagram is shown in Figure 1A. The
reference electrode in this experiment was at the AFz location.
Also, the sampling frequency was 1,000 Hz and the impedance
was kept below 5 K�.

Electrical Stimulation
Before the subjects performed the MI task, they all randomly
underwent three stimulation experiments: tDCS, tACS, and
pseudo stimulation, with each stimulation lasting for 10 min.
Pseudo stimulation was used as the control to eliminate the
placebo effect. The electrode placement position for electrical
stimulation is shown in Figure 1B, where the anode was placed at
Cz and the cathode was placed at the forehead area. The current
intensity of tDCS was 1 mA, the stimulation frequency of tACS
was 10 Hz, and the stimulation intensity was determined by
the specificity of the subjects (increasing the current intensity
gradually in a step size of 0.05 mA from 0 to the intensity at
which the subject indicated a stinging sensation or eye pressure
flashing). Then, the current intensity at that moment was
recorded as the stimulation threshold in the formal experiment
(the intensity was not higher than 2 mA).

Frontiers in Human Neuroscience | www.frontiersin.org 2 March 2021 | Volume 15 | Article 635351

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Xie et al. tES on MI

FIGURE 1 | Electrode distribution and stimulation electrode location map. (A) The 16 Ag/AgCl electrodes were employed for data recording. (B) The anode is
placed at the Cz and the cathode is placed at the forehead area.

Experimental Paradigm
In this article, we designed an experimental paradigm that
combines electrical stimulations with MI-BCIs. The MI
experiment was conducted in an exclusive room with soft
luminance light and a comfortable temperature. One day before
the MI experiment, the experimenter asked the subjects to pay
attention to certain tasks, including having good rest at night,
refusing psychotropic drugs, and maintaining a healthy life.
Before the start of the formal experiment, the subjects were sat
down in front of the lab computer and explained the procedure
of the experiment, and then they signed relevant consent.

To familiarize the subjects with the experimental process, they
were asked to practice the MI experiment with 40 trials before
the formal experiment. During the experiment, participants
performed a total of four 30-min MI task experiments and
received one kind of stimulation, namely, pseudo stimulation,
tDCS, or tACS. The entire experimental flow chart and single-
trial design are shown in Figure 2. First, the subjects performed
a set of motor imagery EEG experiments before tES, which
consisted of 80 trials. The EEG data obtained in this group
were used to determine the baseline level of all subjects. Second,
the subjects randomly received electrical stimulation lasting
for 10 min. During the period of stimulation, there was no
EEG acquisition. After stimulation, the subjects were asked to
perform another group of MI EEG experiments (all MI EEG
experiments’ conditions were the same, including the MI tasks,
experimental trials, and duration time). To avoid the post effect
of tES, the time interval between each stimulation experiment
was at least 24 h.

In one trial, a prompt ‘‘+’’ first appeared on the screen to
remind the subjects that the task was about to start. Second,
pictures of a left- or right-hand fist appeared on the screen

randomly, prompting the subjects to carry out the corresponding
left- or right-hand MI, which lasted 6 s. Finally, the screen
turned black for 3 s, reminding the subjects to take a break. Each
experiment performed a total of 80 trials, including 40 trials for
the left-hand task and 40 trials for the right-hand task.

MATERIALS AND METHODS

To study the effect of tES on ERD based on MI, EEG
data in four different conditions (prestimulation, pseudo
stimulation, tACS, and tDCS) were collected. After EEG
preprocessing, the power spectrum of the EEG was calculated
and used to extract the specific frequency band, which
could represent the greatest difference between the left-
and right-hand MI tasks. Then, dynamic ERD based on
sliding time windows was obtained. The EEG features in
individual EEG frequency bands were extracted using the CSP
algorithm and applied in the following pattern recognition
classification. The classification accuracy of the left- and
right-hand MI of the subjects in each condition was obtained,
and the effect of tES on the performance of the MI-BCI
was evaluated. The overall implementation steps are shown
in Figure 3.

Signal Preprocessing
Preprocessing aims to obtain effective and reliable EEG trials.
The specific steps are as follows: convert the raw data to
average reference; filter the data with a 5–40 Hz bandpass
filter to obtain the relevant frequency band information; set
the threshold to ± 100 µV (according to the EEG amplitude
range, the trial with more than 100 µV is considered as a bad
trial; Goh et al., 2017); reject data with extreme values; process
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FIGURE 2 | Experiment paradigm. (A) The experimental flow chart. (B) The Single-trial experiment process.

FIGURE 3 | Overall diagram of electroencephalogram (EEG) signal processing.

the remaining data by FastICA to avoid interference by the
electrooculogram (EOG) and electromyogram (EMG) artifacts;
segment data within the period of [−1, 9 s], in which [−1, 0 s]
was considered the baseline for data correction; and downsample
the signal to 500 Hz. During the processing of FastICA, the
typical characteristics of EOG and EMG were considered. As for
EOG (Nguyen et al., 2012), the low frequency-dominated power
distribution was always observed in the prefrontal electrodes,
while EMG was distributed above 20 Hz, and can be found in
most electrodes (Goncharova et al., 2003). After the EOG and

EMG components were identified and removed, the pure EEG
data was reconstructed.

Calculation of ∆Power
When imagining the movement of different parts of the body,
differences are observed in the spatial distribution of the ERD
obtained from the EEG signal. For example, when imagining
the movement of the left hand, the ERD phenomenon in
the right motor cortex was more significant, in which the
electrode with maximum discriminatory power was C4, while
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when imagining the movement of the right hand, the ERD
phenomenon prominent area was in the left-brain area, and the
electrode was C3. Therefore, in this article, the µ and β rhythm
power were extracted from the C3 and C4 power spectra for
each trial of each subject and stimulation condition. First, the
PSD of all trials (6 s for each trial) was calculated based on the
Pwelch method (Blankertz et al., 2010). For µ rhythm power,
the frequency range is 8–13 Hz, and for β rhythm power, the
frequency range is 17–25 Hz. Then, we obtained the power
difference of C3 and C4 under the same conditions (tasks,
rhythms, and stimulation were the same), and the calculation was
as follows:

1Power = OSP − SSP (1)

where OSP is the PSD of the contralateral electrode during the MI
tasks, SSP is the PSD of the ipsilateral electrode, and ∆Power is
the difference between the contralateral and ipsilateral sides. For
example, to obtain ∆Power during the left-hand MI task, C4 is
on the contralateral side and C3 is on the ipsilateral side. Then,
normalized ∆Power was obtained:

normalized1 Power =
1Power

OSP+ SSP
(2)

This step aims to eliminate individual differences.

Feature Extraction
The CSP method is currently considered the most suitable
algorithm for processing the two-category feature extraction
of EEG signals (Lu et al., 2010). It is very suitable for
processing multidimensional signals and data. By using the
spatial correlation of the EEG signal synchronously, the noise
of the signal can be eliminated and localization of local cortical
nerve activity can be achieved.

From the PSD results, the power spectra of all channels of the
subjects in the MI task were estimated. Then, to determine the
individual-specific bandpass filter, we calculated the r2 relative to
the two-hand MI tasks for each subject (Xu et al., 2011). r2 was
described as follows:

r2
=

( √
N1N2

N1 + N2

MEAN (P1)−MEAN (P2)

STD (P1UP2)

)2

(3)

where N1 and N2 represent the number of trials (both N1 and N2
are 40); P1 and P2 are the power spectra of EEG data of left and
right hand MI tasks, respectively. In the equation above, a larger
value of r2 corresponds to a greater power difference between
the EEG data of left- and right-hand MI tasks in this frequency
band. In Figure 4, according to the value of r2, we can select the
appropriate bandpass filter frequency band and apply a specific
bandpass filter to the MI EEG data.

The CSP algorithm was used to extract features from the
processed EEG signals. By designing the parameters of the spatial
filter, the best projection matrix W was obtained. The EEG signal
passed through the spatial filter to obtain the feature vectors
that represent the characteristics of left and right signals, one
of which has the largest variance and the other has the smallest
variance. Finally, the two types of signals were classified by

FIGURE 4 | An example of the r2 map. The x-axis represents the frequency,
the y-axis represents the channels.

classification algorithms. The specific algorithm processes are as
follows (Muller-Gerking et al., 1999):

Note: in the following expressions, i represents the MI task
category, i = 1, 2. It is stipulated that i = 1 is left-hand movement,
and i = 2 is right-hand movement.

Assume that X1 and X2 are the single-trial EEG matrices for
the left and right hand MI tasks under the same experimental
conditions. The matrix dimension is N∗T, where N is the number
of EEG channels, and T is the number of sampling points
(N ≤ T). Y1 and Y2 are two types of MI tasks. In the case of
ignoring noise interference, X1 and X2 are expressed as follows:

Xi = [AiAm]
[

Yi
YM

]
, (4)

where YM is the common source signal of two tasks. The
left-hand movement Y1 and right-hand movement Y2 source
signals of these two tasks are assumed to be linearly independent
of each other, and Y1 and Y2 are composed of m1 and
m2, respectively.

The covariance matrix of X1 and X2 is calculated as follows:

Ri =
XiXT

i

tr (XiXT
i )

, (5)

where tr represents the trace of the matrix, which is the sum of
the diagonal elements of the matrix XXT , and Ri is the covariance
matrix of a single trial. According to the total trial ni, the average
covariance matrix R̄ is as follows:

R̄i =
1
ni

ni∑
j = 1

Rij. (6)

The mixed space covariance matrix R is as follows:

R = R̄1 + R̄2, (7)
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where R is a positive definite matrix, and eigenvalue
decomposition is performed on R according to the singular
value theorem:

R = UλUT , (8)

where λ is a diagonal matrix composed of the eigenvalues
arranged in descending order and U is the matrix composed
of the eigenvectors corresponding to the eigenvalues after
decomposition. The whitened matrix P is obtained as follows:

P =
1
√
λ
UT , (9)

Yi = PR̄iPT . (10)

Then, decomposing the principal component of the whitened
matrix obtains the following:

Yi = QiλiQT
i , (11)

where Y1, Y2 have the same eigenvector. The sum of the diagonal
matrix of two eigenvalues λ1 and λ2 is the identity matrix:

λ1 + λ2 = E. (12)

The projection matrix W can be obtained through the
eigenmatrix Q and the whitened matrix:

W = QTP, (13)

where the projection matrix W is the required spatial filter. The
EEG matrix Xi is projected through the spatial filter W, and the
characteristics can be obtained:

Zi = WXi. (14)

To avoid the instantaneous change caused by body motion, the
variance of the feature signal obtained through the spatial filter
is calculated and normalized, and then the feature vector f i is
extracted as follows:

{
Z1 = WXi

fi =
var(Zi)∑
var(Zi)

. (15)

Quantification of ERD
To compare changes in the C3 and C4 amplitudes elicited by
different motor imagery tasks, dynamic ERD was quantified as
the relative amplitude (RA) to reveal the power decrease and
increase in sliding time windows based on the reference baseline
(Jeon et al., 2011); and, we segmented the EEG epochs into 1 s
time windows.

The calculation of ERD in each time window was as follows:

Act(j) =
1
N

N∑
i = 1

y2
ij, (16)

where, yij is the jth sample of the ith trial, N is the number of trials
and Act(j) is the average power at jth sample squared.

R =
1

k+ 1

r0+k∑
j = r0

Act(j), (17)

where R is the average power in the reference interval [r0, r0
+ k]. Due to the great individual difference, in this study, the
reference interval adopted the whole time course during MI
tasks, i.e., [−1 9 s].

RA(j) (%) =

(
Act(j) − R

R

)
× 100%. (18)

Pattern Recognition Classification
Suppose that the dataset D = {(X1, Y1), (X2, Y2), . . ., (Xm, Ym)},
where Xi is an n-dimensional vector, yi ∈ {0, 1}. Here, N j(j = 0, 1)
is the number of samples of type j,Xj(j = 0, 1) is the set,µj(j = 0, 1)
is the mean value, and Σj(j = 0, 1) is the covariance matrix.

The expression of µj is as follows:

µj =
1
Nj

∑
x∈Xj

x, ....j = 0, 1. (19)

The expression of Σj is as follows:

6j =
∑
x∈Xj

(
x− µj

) (
x− µj

)T , ....j = 0, 1. (20)

Since there are two types of data, we only need to project the
data onto a straight line. Assuming that the projection line is
a vector w, the projection of any sample on w is wTxi; the
center points µ0 and µ1 of the two categories, projected on w
are wTµ0 and wTµ1, respectively. The main purpose of LDA
is to maximize the distance between the centers of different
categories of data to maximize ||wTµ0 − wTµ1||

2
2. At the same

time, we need to make the projection points of the same kind
of data as small as possible; that is, the covariance wTΣ0w and
wTΣ1w of projection points between similar samples should be
as small as possible. Therefore, we need to minimize wTΣ0w +
wTΣ1w.

The optimization objective of the LDA algorithm is as follows:

W∗ = argmax
||wTµ0 − wTµ1||

2
2

wTΣ0 w + wTΣ1w

=
wT(µ0 − µ1)(µ0 − µ1)

Tw
wT(Σ0 + Σ1)w

. (21)

The between-class scatter matrix SB is as follows:

SB = (µ0 − µ1) (µ1 − µ0)
T . (22)

The within-class scatter matrix SW is as follows:

SW = Σ0 +Σ1, (23)

Therefore, the W∗ is rewritten as follows:

W∗ = argmax
wTSBw
wTSWw

. (24)
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Since both the numerator and denominator contain the quadratic
term of w, the objective function is independent of the module
length of w. Let:

wTSWw = 1. (25)

The optimization problem is as follows:{
min(w) − wTSBw
s.t. wTSWw = 1 . (26)

The Lagrangian function of the optimization problem is
as follows:

L (w, λ) = −wTSBw+ λ
(
wTSWw− 1

)
, (27)

Then, by finding the first partial derivative of w for equation
(20) and setting it to zero, we can obtain the following:

S−1
W SBw = λw. (28)

By finding the eigenvector of the matrix, we can obtain w.

Statistical Analysis
Group-level statistical tests were conducted for different EEG
measurements, including the normalized ∆Power, dynamic
ERD, and classification accuracy. Before the statistical tests, the
data distribution was first examined based on Mauchly’s test of
sphericity. Then, a repeated measurement variance analysis of
the general linear model was performed for each group to test
the significance among the subjects in different experimental
conditions. For the normalized ∆Power, one-way repeated-
measures analysis of variance (ANOVA) and post hoc t-tests
were performed on the power for the µ and β rhythms of
the left- and right-hand Ml tasks in four conditions. To obtain
the optimal time range, the values of ERD difference between
the contralateral and ipsilateral sides of all the time windows
were compared between pre-and poststimulation in left- and
right-hand sides (paired t-test). For the classification accuracy-
the significance of differences among experimental conditions
was also tested via ANOVA. All statistic thresholds were set to
P < 0.05 without correction.

RESULTS AND ANALYSIS

Analysis of the Power Spectrum
Characteristics
The power change of the µ and β rhythms among the sensory-
motor rhythms (SMRs) during the left- and right-hand MI
tasks was calculated according to the average power spectrum
collected by the C3 and C4 channels for all subjects in the four
experimental conditions. The results are shown in Figure 5.
For the power change of the µ rhythm at 8–13 Hz, during the
right-hand MI tasks, the power of C3 was lower than that of
C4 both in pre-and poststimulation. When subjects performed
left-hand MI tasks, obvious power differences were not observed
between C3 and C4 in the prestimulation and pseudo stimulation
groups. However, after tACS and tDCS, the phenomenon could
be observed obviously. For the β rhythm of 17–25 Hz, the power
change in the C3 and C4 regions was slight.

FIGURE 5 | The average power spectrum of each group. (A) The
prestimulation group, (B) the pseudo stimulation group, (C) the transcranial
alternating current stimulation (tACS) group, and (D) the tDCS group. The
x-axis represents the frequency, the y-axis represents the power.

To compare the power change statistically, in Figure 6,
the µ and β rhythm power were extracted from the C3 and
C4 power spectra for each trial of each subject and stimulation
condition. ANOVAs were performed on the ∆Power for µ

and β rhythm power of left- and right-hand MI tasks in four
experiments to evaluate the reference effects. Significant
differences revealed by ANOVA were further analyzed
for multiple comparisons using Tukey’s post hoc test. For
left-hand tasks, the µ and β rhythms were in line with the
Mauchly sphere test hypothesis (P = 0.05). For the µ rhythm,
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FIGURE 6 | The ∆Power spectrum of each group (Note: ∆Power is the
difference of ipsilateral and contralateral sides). (A) µ rhythm of the left-hand
task, (B) µ rhythm of the right-hand task, (C) β rhythm of the left-hand task,
and (D) β rhythm of the right-hand task. ∗ represents significance P < 0.05.

compared with the pre- and pseudo stimulation groups, the
tDCS group showed significant differences but the tACS
group showed almost no significant change (tDCS-pre:
P = 0.03 < 0.05; tDCS-Pseudo: P = 0.01 < 0.05). For the
β rhythm, tDCS showed significant differences compared
with prestimulation and tACS showed significant differences
compared with pseudo stimulation, while tDCS showed
marginal significance (tDCS-Pre: P = 0.01 < 0.05; tACS-Pseudo:
P = 0.01 < 0.05; tDCS-Pseudo: P = 0.05). For right-hand
tasks, the µ and β rhythms were in line with the Mauchly
sphere test hypothesis (P = 0.05). Neither tDCS and tACS were
significantly different.

Analysis of Event-Related
Desynchronization Features
Figures 7, 8 show the ERD relative amplitude (RA) time
courses of all subjects from [−1, 9 s] [from 1 s before
the MI task (6 s) to 3 s after the task] for the two MI
tasks. A smaller RA of the contralateral side corresponded to
greater desynchronized ERD movement. In this study, different
ERD phenomena were observed. In Figure 7, the duration
of C4 ERD in the tACS and tDCS groups was longer than
that in the pre-and pseudo stimulation groups. Also, the
RA in the tACS and tDCS groups was smaller than that in
pre-and pseudo stimulation groups. In Figure 8, the duration
of C3 ERD in the tACS and tDCS groups was longer than that

in pre- and pseudo stimulation groups. The RA in the tACS
and tDCS groups was smaller than that in pre- and pseudo
stimulation groups.

Also, the optimal time range of ERD was verified. For
the left-hand tasks, we used one-way ANOVA to test the
significance of the RA difference between the contralateral
and ipsilateral sides in different experimental conditions, and
the optimal time window [3, 5 s] was found (tACS-Pre:
P = 0.03 < 0.05; tDCS-Pre: P = 0.03 < 0.05). However,
in the right-hand tasks, the optimal time range was [3–5 s],
with statistical significance (tACS-Pre: P = 0.13 > 0.05;
tDCS-Pre: P = 0.07 > 0.05). Compared with prestimulation,
tDCS presented marginal significance; however, tACS was
not significant.

Analysis of Classification Accuracy
In this article, the LDA classifier was used to train and
test the MI classification of subjects under four different
conditions: prestimulation, pseudo stimulation, tACS, and tDCS.
After preprocessing the data, we determined the individual
specific bandpass filter of the two tasks, and the results
showed that nine subjective specific frequency bands were
from 8–15 Hz, four subjective specific frequency bands were
from 17–25 Hz, and two subjective specific frequency bands
were from 8–30 Hz. Then, the filtered data were extracted by
CSP and the two types of extracted feature vectors f 1 and
f 2 were input into the LDA classifier as training data for
classification. According to the relatively small distance between
similar data points and the relatively large distance between
data points of different classifications, the best separation plane
was obtained. Then the 5-fold cross-validation method was
implemented for training and testing. The final classification
accuracy results of all subjects are shown in Table 1. The average
classification accuracy of the four groups of experiments is shown
in Figure 9.

From the data in the table, the average accuracy of MI was
effectively improved after the subjects received tDCS. For tACS,
the accuracy of subjects 5, 8, and 11 after tACS decreased
compared with that before stimulation. Subjects 1, 3, and 6 had
better accuracy improvement with tACS than those with tDCS.
Among all subjects in the experimental group, the highest
accuracy of 98.75% was found for subject 1 after tACS, and the
lowest accuracy of 75.11% was observed in subjects 8 after tACS.
Figure 9 shows that the overall classification accuracy of the tACS
group and the tDCS group was significantly improved compared
to that of the pre-and pseudo stimulation groups, although the
improvement effect of the tDCS group was higher than that of
the tACS group.

To investigate the effect of the tACS and tDCS proposed
in this article for improving the accuracy of MI classification
tasks, we used one-way ANOVA to test the significance
of the MI classification accuracy of the subjects under
different experimental conditions (P = 0.05). First, we
confirmed the homogeneity of the sample’s variance, which
is consistent with the Mauchly sphere test hypothesis
(P = 0.134 > 0.05), thus demonstrating that the main effect
is significant. Second, the results of tACS and tDCS were
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FIGURE 7 | Event-related desynchronization (ERD) in left-hand tasks. Where the x-axis represents time and the y-axis represents relative amplitude (RA). (A) The
prestimulation group, (B) the pseudo stimulation group, (C) the tACS group, and (D) the tDCS group. The RA in tACS and tDCS groups are smaller than in
prestimulation and pseudo stimulation groups. The optimal time window is [3, 5 s] (tACS: P = 0.03 < 0.05; tDCS: P = 0.03 < 0.05).

FIGURE 8 | ERD in right-hand tasks. Where the x-axis represents time and the y-axis represents RA. (A) The prestimulation group, (B) the pseudo stimulation
group, (C) the tACS group, and (D) the tDCS group. The RA in tACS and tDCS groups are smaller than in pre-stimulation and pseudo-stimulation groups. The
optimal time range is [3, 5 s] (tDCS: P = 0.07 > 0.05).
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TABLE 1 | The classification accuracy of subjects’ motor imagery.

Subjects Pre-stimulation (%) Pseudo-stimulation (%) tACS (%) tDCS (%)

Subject 1 91.25 93.21 98.75 96.88
Subject 2 83.83 85.84 92.50 97.50
Subject 3 74.68 76.25 86.25 80.00
Subject 4 85.00 85.00 89.74 90.06
Subject 5 82.49 85.00 80.00 86.25
Subject 6 77.50 78.64 85.05 82.68
Subject 7 77.61 71.25 81.27 87.49
Subject 8 77.49 77.50 75.11 81.27
Subject 9 88.77 91.28 94.93 96.31
Subject 10 87.5 92.5 94.64 97.5
Subject 11 91.32 92.78 89.64 92.7
Subject 12 84.29 80.2 95 95
Subject 13 83.55 87.34 87.5 90
Subject 14 74.78 82.06 82.5 85
Subject 15 85.12 87.98 90 90.28
Mean ± Standard 83.01 ± 1.43 84.46 ± 1.73 88.19 ± 1.70 89.93 ± 1.56

FIGURE 9 | Average classification accuracy. Where the x-axis represents
experiment modes and the y-axis represents accuracy. The average
classification accuracy of the tACS group and tDCS group was improved
significantly (tACS-Pre: ∗∗P < 0.001; tDCS-Pre: ∗∗P < 0.001; tACS-Pseudo:
∗P < 0.05; tDCS-Pseudo: ∗∗P < 0.001). ∗ and ∗∗ represent significance.

compared with the results of the pre-and pseudo stimulation
groups, respectively. These statistics revealed significant
differences for all accuracies compared with the pre-and
pseudo stimulation groups (tACS-Pre: P < 0.001; tDCS-
Pre: P < 0.001; tACS-Pseudo: P < 0.05; tDCS-Pseudo:
P < 0.05). Therefore, we concluded that the accuracy of
the subjects in the tACS and tDCS groups was significantly
improved compared with that of the pre-stimulation and pseudo
stimulation groups.

DISCUSSION

The main purpose of this article was to study the effect of
tES on ERD based on MI-BCI. Subjects performed the MI
classification experiment under four conditions: prestimulation,
pseudo stimulation, tDCS, and tACS. The effects of tACS
and tDCS on ERD were analyzed from three aspects: power
spectral density, dynamic ERD, and classification accuracy.
Also, the average classification accuracy was used to verify the
improvement of BCI task ability.

Motor imagery was described as imagining a movement
rather than executing a real movement, and this method is
promising for patients with tetraplegia, spinal cord injury,
and amyotrophic lateral sclerosis (ALS; Abiri et al., 2019).
However, the main drawback of the MI was that the
training time could take weeks or months. tACS and tDCS
as noninvasive neuromodulation techniques could provide
alternative ways to enhance the valid metrics by modifying
ERD patterns (Kuo and Nitsche, 2012). Whether for motor
execution or MI, ERD changes in SMRs are always produced
(Jeon et al., 2011; Bauer et al., 2015). Among them, the
µ rhythm and β rhythm among SMRs were considered to
be related to motor ability and motor control (Pfurtscheller
et al., 1994). In the process of the unilateral MI task,
the power of the µ rhythm and β rhythm decreased
in the contralateral motor-sensory area, namely, the ERD
(Pfurtscheller and Neuper, 1994, 1997). Many articles have
indicated that tES could modulate ERD during MI. In this
study, some interesting findings were obtained: (1) tES could
induce both µ rhythm and β rhythm ERD increases in the
left-hand MI task; (2) tES can prolong the ERD duration and
decrease the relative power; and (3) tES can enhance the MI
accuracy effectively.

These findings could provide a reference for related fields.
Studies have indicated that there is differential lateralization of
hand movement neural representation in right- and left-handed
individuals, and handedness is closely linked to the ability
to control an SMR-BCI (Zapała et al., 2020). In the current
study, all the subjects recruited were right-handed, power
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suppression of the µ rhythm occurred during right-hand MI of
all conditions, but there was no significance between pre-and
poststimulation. However, in the left-hand MI task, the power
of the µ rhythm declined obviously after tDCS, and the
∆Power of the µ rhythm decreased significantly compared
with pre-and pseudo stimulation (tDCS-pre: P = 0.03 < 0.05;
tDCS-Pseudo: P = 0.01 < 0.05). These results implied that tES
may evoke a much higher effect on the neural representation
of the non-dominant hand MI task. Also, as one important
motor rhythm, the power of the β rhythm was not significant
in this study. Interestingly, the ∆Power of the β rhythm in
the left-hand MI showed a significant decrease after tDCS
compared with pre-stimulation (P < 0.05), indicating that this
power difference between bilateral electrodes may create the
potential control signal that drives a BCI. Moreover, the relative
amplitude of ERD during MI was enhanced after tACS and
tDCS, indicating that transcranial electrical stimulation can
enhance the excitability of the cerebral cortex and regulate
brain activity (Pellicciari et al., 2013). Although the duration
of ERD in tACS and tDCS seemed to have been prolonged,
not all the whole period of MI in each trial was usable. The
effective response time of MI was different among individuals,
due to the pattern of neural activation (Williams et al., 2012),
and a previous study indicated that the overall optimal time
segment was [4, 6 s] (Gong et al., 2013). In this article,
the optimal time range was [3, 5 s], where the left-hand
relative amplitudes of ERD in tACS and tDCS were significant
(P < 0.05), but the right-hand relative amplitudes of ERD,
which were was also the range of [3, 5 s], were not significant
after tACS.

To verify the influence of tES on MI-BCI task ability, we
compared the classification accuracy of the four conditions. tACS
enhanced motor imagery ability in terms of the µ and β rhythm.
A possible mechanism was that beta rhythm stimulation was
related to the excitability of the primary motor cortex and the
alpha rhythm stimulation was associated with motor educability
(Zhang et al., 2016). tDCS could enhance ERD patterns and
conditionally improve BCI performance in both the online and
offline BCI classification results(Wei et al., 2013). In this study,
we used CSPs to extract the signal features and LDA to classify
the feature vectors (Wang et al., 2005; Sharma and Paliwal, 2015).
The results showed that the average classification accuracy of
the tACS group and tDCS group was improved significantly
(P < 0.001). However, individual differences impacted tACS,
possibly because of the difference of endogenous oscillations
among individuals with tACS frequencies.

In this study, we designed an experimental paradigm that
combines two different modes of stimuli and compared them
with the stimuli to determine the most effective at enhancing
event-related desynchronization during the MI period. In
the same processing framework, the comparison analysis
of the quantified EEG metrics was conducted from three
dimensions including the PSD difference between contralateral
and ipsilateral electrodes (spatial effect), the time-varying ERD
calculation using sliding windows (temporal effect), and the
classification accuracy based on the classical LDA method in
MI-BCI (classification performance). From the results of EEG

metrics and classification accuracy, we speculated that tDCS
has potential in regulating brain activity and enhancing valid
features in noninvasive MI-BCI processing. Moreover, the time
range of [3, 5 s] after MI start-up led to the optimal ERD
combined with tDCS, which may be helpful for the actual BCI
performance improvement. However, this study also has many
limitations in the experimental and analytical methods. For
example, for the experimental design, the duration of electrical
stimulation was 10 min and the anode of the stimulation
position was located in Cz. In subsequent experiments, different
experimental groups could set the stimulation duration to 5, 15,
and 20 min, and implement different placement of the anode of
tES (Kasashima et al., 2012; Mordillo-Mateos et al., 2012; Wei
et al., 2013; Koo et al., 2016). Additionally, the effect of tACS may
change due to differences in the endogenous oscillation among
individuals. Even if the deviation from the internal frequency of
individuals is very small, it may cause other effects or reduce
the modulation effect of tACS (Herrmann et al., 2013). The
preliminary conclusion based on the findings was that tES may
make subjects start MI tasks faster; however, this point requires
further investigation. Moreover, the number of subjects should
be increased in subsequent experiments to verify the results of
the statistical test.

CONCLUSION

In this article, tDCS and tACS were conducted and evaluated
based on the same motor imagery (MI) tasks and subjects. The
two tES methods can effectively enhance the activation of the
cerebral motor cortex, which makes ERD more obvious during
the MI period. Then, we quantified ERD by dynamic time
windows, which can provide the optimal time range of [3, 5 s]
for future MI-BCIs. Moreover, in the case of using the basic
feature extraction and classification algorithm for EEG signal
processing, both kinds of stimulation methods can improve
the performance of MI-BCI using a lower difficulty algorithm
and tDCS showed superiority in regulating activity and evoking
effective features in MI-BCI.
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