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Background: Dynamic preload indices may predict fluid responsiveness in end-stage liver 
disease. However, their usefulness in patients with altered vascular compliance is uncertain. 
This study is the first to evaluate whether dynamic indices can reliably predict fluid respon-
siveness in patients undergoing liver transplantation with a high femoral-to-radial arterial 
pressure gradient (PG). 

Methods: Eighty liver transplant recipients were retrospectively categorized as having a nor-
mal (n = 56) or high (n = 24, difference in systolic pressure ≥ 10 mmHg and/or mean pres-
sure ≥ 5 mmHg) femoral-to-radial arterial PG, measured immediately after radial and femo-
ral arterial cannulation. The ability of dynamic preload indices (stroke volume variation, 
pulse pressure variation [PPV], pleth variability index) to predict fluid responsiveness was 
assessed before the surgery. Fluid replacement of 500 ml of crystalloid solution was per-
formed over 15 min. Fluid responsiveness was defined as ≥ 15% increase in the stroke vol-
ume index. The area under the receiver-operating characteristic curve (AUC) indicated the 
prediction of fluid responsiveness. 

Results: Fourteen patients in the normal, and eight in the high PG group were fluid respond-
ers. The AUCs for PPV in the normal, high PG groups and total patients were 0.702 (95% 
confidence interval [CI] 0.553–0.851, P = 0.008), 0.633 (95% CI 0.384–0.881, P = 0.295) 
and 0.667 (95% CI 0.537–0.798, P = 0.012), respectively. No other index predicted fluid 
responsiveness. 

Conclusions: PPV can be used as a dynamic index of fluid responsiveness in patients with 
end-stage liver disease but not in patients with altered vascular compliance. 

Keywords: End stage liver disease; Fluid therapy; Hemodynamic monitoring; Liver trans-
plantation.

INTRODUCTION 

Patients with end-stage liver disease who undergo liver 

transplantation have hyperdynamic circulation with in-

creased cardiac output (CO) and low systemic vascular re-

sistance (SVR) [1]. Liver transplantation increases the risk of 
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massive bleeding and sudden hemodynamic changes 

during surgery [2]. Although fluid management plays an im-

portant role in maintaining blood pressure during liver 

transplantation, excessive fluid loading may worsen postop-

erative outcomes. In general, the goal of fluid therapy in he-

modynamically unstable patients is to increase CO and opti-

mize tissue perfusion [3,4]. 

Various indices have been used to predict individual re-

sponses to fluid therapy. It has been found that dynamic in-

dices such as stroke volume variation (SVV) and pulse pres-

sure variation (PPV) are more reliable than static indices 

such as central venous pressure (CVP) or pulmonary arterial 

occlusion pressure (PAOP) [5–7]. Several studies have shown 

that use of SVV or PPV is beneficial, especially in hemody-

namically unstable patients in intensive care units and in 

patients undergoing cardiac surgery [8,9]. The pleth variabil-

ity index (PVI) is also as accurate as SVV in predicting fluid 

responsiveness, and intraoperative fluid management based 

on the PVI has been shown to reduce intraoperative and 

postoperative lactate levels [10]. 

However, there is a lot of debate about the usefulness of 

dynamic indices as an indicator of need for intraoperative 

fluid therapy in patients with end-stage liver disease under-

going liver transplantation [11–14]. The predictability of dy-

namic indices may be affected by vascular compliance; SVV 

did not predict fluid responsiveness in patients with coro-

nary artery disease who had a wide pulse pressure ( >  60 

mmHg) [15]. Differences in the femoral-to-radial arterial 

pressure are often observed during liver transplantation [16]. 

However, no study has determined the ability of dynamic in-

dices to predict fluid responsiveness in this condition. The 

aim of this study was to evaluate whether or not dynamic in-

dices can reliably predict fluid responsiveness in patients 

undergoing liver transplantation with a high femoral-to-ra-

dial arterial pressure gradient (PG). 

MATERIALS AND METHODS 

Study population 

The study protocol was approved by the Institutional Re-

view Board (IRB) of Severance Hospital, Yonsei University 

Health System (no. 4-2019-0034). Patient records and infor-

mation were anonymized before analysis; hence, the re-

quirement for written informed consent to access medical 

records was waived. We retrospectively identified 91 patients 

over 20 years of age who underwent elective living donor liv-

er transplantation at our hospital between August 1, 2017, 

and January 31, 2019. Patients with preoperative arrhythmia, 

reduced left ventricular function (ejection fraction <  40%), 

valvular heart disease, pulmonary hypertension, pulmonary 

disease (asthma, chronic obstructive pulmonary disease, 

history of lung resection), or chronic renal disease were ex-

cluded along with those who had incomplete medical re-

cords. 

Anesthesia and hemodynamic monitoring 

All patients underwent our institution’s standard anesthe-

sia protocol for living donor liver transplantation. Routine 

non-invasive monitoring (5-lead electrocardiography, pulse 

oximetry, non-invasive blood pressure, and the bispectral 

index) was applied. The Masimo Radical 7 co-oximeter 

probe (MasimoSET® Rainbow, Masimo Corp., USA) was 

placed on the patient’s index finger and covered with a 

shield to eliminate light interference, as recommended by 

the manufacturer. Anesthesia was induced with intravenous 

propofol, sufentanil, and rocuronium and maintained with 

desflurane and a continuous infusion of sufentanil and ro-

curonium. After tracheal intubation, mechanical ventilation 

was started in volume-controlled mode with a tidal volume 

of 8 ml/kg, a respiratory rate of 10–15 breaths/min, and 5 cm 

H2O of positive end-expiratory pressure. Arterial catheters 

were inserted into the right radial artery and left femoral ar-

tery, and a Flotrac/Vigileo system (Edwards Lifesciences, 

USA) was connected to the radial arterial cannula. A pulmo-

nary artery catheter (Swan-Ganz CCOmbo, Edwards Life-

sciences) was inserted through the right internal jugular vein 

and connected to a Vigilance monitor (Edwards Lifescienc-

es) for continuous measurement of CO. A central venous 

catheter was inserted in the left internal jugular vein or sub-

clavian vein. All transducers were zeroed at the mid-axillary 

level. After induction of anesthesia and before the start of 

surgery, fluid loading was performed with 500 ml of bal-

anced crystalloid solution (Plasma Solution-A®, CJ Health-

Care, Korea) through a central line for 15 min following our 

institution’s routine liver transplantation anesthesia proto-

col. This fluid loading was performed to prevent hypoten-

sion during anesthesia and to confirm the patient’s fluid re-

sponsiveness. However, such crystalloid administration was 

excluded in patients with pre-existing lung disease, pulmo-

nary hypertension, or chronic kidney disease, which was 

consistent with the exclusion criteria of the present study. A 

continuous infusion of norepinephrine was used to main-
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tain a mean arterial pressure (MAP) >  60 mmHg. 

Acquisition of demographic and hemodynamic 
data 

Preoperative characteristics, including age, sex, body mass 

index, left ventricular ejection fraction, and the model for 

end-stage liver disease score was collected from the elec-

tronic medical records. The following hemodynamic param-

eters were obtained from the anesthesia records: heart rate, 

radial arterial pressure, femoral arterial pressure, CVP, PAOP, 

PPV, PVI, CO, cardiac index, end-diastolic volume index 

(EDVI), right ventricular ejection fraction (RVEF), SVR, SVR 

index (SVRI), and stroke volume index (SVI). Each parame-

ter was noted at the value 1 min before (baseline) and the 

value 5 min after the fluid loading was completed. CO, cardi-

ac index, EDVI, RVEF, SVR, SVRI, and SVI were collected 

from the Swan-Ganz CCOmbo/Vigilance monitor, and SVV 

was obtained by the FloTrac/Vigileo system. The PPV and 

PVI were automatically measured using a patient monitor 

(Philips Intellivue, MX700, Philips, The Netherlands) and 

Masimo monitor with PVI software, respectively. 

Patients were considered fluid responders if their SVI in-

creased by at least 15% (from Swan-GanzCCOmbo/Vigi-

lance) after fluid loading [17,18]. Furthermore, the femo-

ral-to-radial arterial PG was calculated to compare the effect 

of vascular tone on the ability of dynamic indices to predict 

fluid responsiveness. The difference between the femoral 

and the radial arterial blood pressures was measured imme-

diately after radial and femoral arterial cannulation. A signif-

icant femoral-to-radial arterial PG was defined as a differ-

ence of 10 mmHg in systolic arterial pressure (SAP) and/or 5 

mmHg in MAP [19]. According to the femoral-to-radial arte-

rial PG, patients were divided into the normal PG group (a 

difference in SAP <  10 mmHg and MAP <  5 mmHg) and the 

high PG group (a difference in SAP ≥  10 mmHg and/or MAP 

≥  5 mmHg). 

Statistical analysis 

To compare the demographic and hemodynamic data be-

tween the two groups (normal PG and high PG), continuous 

variables were analyzed using a Student’s t-test and categor-

ical variable was analyzed using a chi-square test. Continu-

ous variables were examined for normality by the Kolmog-

orov–Smirnov test. Variables that did not deviated from nor-

mal distribution were presented as mean and standard devi-

ation, and were compared using the independent sample 

t-test. Variables that were not normally distributed were pre-

sented as median and interquartile range, and were com-

pared using the Mann–Whitney U test. A paired t-test was 

used to compare hemodynamic variables of baseline and af-

ter fluid loading. The ability of the preload parameters (CVP, 

PAOP, SVV, PPV, and PVI) to predict fluid responsiveness was 

evaluated using receiver-operating characteristic (ROC) 

curves. Static preload parameters (CVP and PAOP) and dy-

namic preload parameters (SVV, PPV, and PVI) obtained 1 

min before fluid loading were used to analyze ROC curves. 

The area under the ROC curve (AUC) of each value was cal-

culated, and the respective values were compared with a val-

ue of 0.5. The comparison of AUC between the two groups of 

normal PG and high PG was analyzed using a z-test. The op-

timal cut-off values for preload variables were determined by 

considering the values that yielded the Youden index (Sensi-

tivity + Specificity – 1) for predicting fluid responsiveness. 

Statistical analyses were performed using SPSS (version 23, 

IBM Corp., USA) and SAS (version 9.4, SAS Inc., USA). A P 

value <  0.05 was considered statistically significant. 

RESULTS 

Data for 80 of the 91 patients were available for the final 

analysis. Fifty-six of these 80 patients were in the normal PG 

group and 24 were in the high PG group. There was no sig-

nificant between-group difference in the patient characteris-

tics (Table 1). 

Hemodynamic data of baseline and after fluid replace-

ment are listed in Table 2. After fluid replacement, radial 

MAP, femoral MAP, CVP, PAOP, CO, cardiac index, and EDVI 

were significantly increased whereas SVV and PPV were sig-

nificantly decreased in the normal PG group. In the high PG 

group, the CVP, PAOP, CO, and cardiac index were signifi-

cantly increased and the SVV was significantly decreased af-

ter fluid replacement. 

The baseline hemodynamic data for the fluid responders 

and non-responders in each group are listed in Table 3. 

Fourteen patients in the normal PG group and eight in the 

high PG group responded to fluid replacement. In the nor-

mal PG group, baseline SVR, SVRI, and PPV were higher in 

the responders, whereas CO, CI, and SVI were lower in the 

responders than those in the non-responders. However, 

there was no significant difference in the baseline hemody-

namic data between responders and non-responders in the 

high PG group. 

362 www.anesth-pain-med.org

Anesth Pain Med Vol. 16 No. 4



K
S

TA

The AUCs for the ability of several preload indices to pre-

dict an increase in SVI of ≥  15% are shown in Fig. 1. The 

AUCs for PPV as a predictor of fluid responsiveness were 

0.702 (95% confidence interval [CI] 0.553–0.851, P =  0.008), 

0.633 (95% CI 0.384–0.881, P =  0.295) and 0.667 (95% CI 

0.537–0.798, P =  0.012) in the normal PG group, high PG 

group and whole cohort of patients, respectively. The thresh-

old PPV value of 6% discriminated between responders and 

non-responders to fluid replacement with a sensitivity of 

86% and a specificity of 45% in the normal PG group. There 

were no statistically significant between-group differences 

in the AUCs for CVP, PAOP, SVV, or PVI (Table 4). 

DISCUSSION 

In this study, we analyzed the ability of dynamic preload in-

dices to predict fluid responsiveness in patients undergoing 

elective liver transplantation. We divided patients into two 

groups according to their femoral-to-radial arterial PG and 

investigated whether or not the predictive ability of these dy-

namic indices is affected by vascular compliance. Thirty per-

cent of patients showed a significant femoral-to-radial arterial 

PG (difference in SAP ≥  10 mmHg and/or MAP ≥  5 mmHg). 

Only PPV was found to be a reliable predictor of fluid respon-

siveness in the patients with normal PGs, whereas no dynam-

ic preload index appeared to be sensitive enough to predict 

fluid responsiveness in patients with high PGs. 

Table 1. Patient Characteristics

Variable Normal PG (n= 56) High PG (n= 24) P value

Age (yr) 54.8 ±  9.2 55.8 ±  10.5 0.671

Sex, male 40 (71.4) 17 (70.8) 0.957

Height (cm) 168 (161, 171.5) 167 (157.5, 172) >  0.999

Weight (kg) 69.2 ±  11.6 65.1 ±  14.3 0.185

BMI 24.9 ±  3 23.7 ±  3.7 0.129

MELD 10.79 (7.92, 14.58) 12.52 (8.98, 19.48) 0.156

LVEF (%) 68.7 ±  5.6 69.3 ±  5.8 0.686

Creatinine (mg/dl) 0.74 ±  0.27 0.76 ±  0.29 0.696

Values are expressed as the mean ± SD, number of patients (%), or median (1Q, 3Q). BMI: body mass index, LVEF: left ventricular ejection 
fraction, MELD: model for end-stage liver disease, PG: pressure gradient.

Table 2. Hemodynamic Data of Before and After Fluid Replacement

Variable
Normal PG (n= 56) High PG (n= 24)

Before After P value Before After P value

HR (beats/min) 69 ±  11 77 ±  16 <  0.001 72 ±  15 78 ±  15 0.041

Radial MAP (mmHg) 80 ±  14 91 ±  18 0.001 83 ±  20 88 ±  15 0.104

Femoral MAP (mmHg) 82 ±  14 92 ±  19 <  0.001 89 ±  20 91 ±  14 0.596

CVP (mmHg) 10 ±  4 12 ±  5 <  0.001 10 ±  4 12 ±  4 0.035

PAOP (mmHg) 13 ±  5 16 ±  6 <  0.001 15 ±  6 19 ±  6 0.003

CO (L/min) 6.5 ±  2.4 7.2 ±  2 0.008 6.1 ±  2.3 7.2 ±  3 0.002

CI (L/min/m2) 3.7 ±  1 4.1 ±  1 0.013 3.5 ±  1 4.1 ±  1.5 0.002

EDVI (ml/m2) 153 ±  40 160 ±  37 0.027 139 ±  36 144 ±  29 0.469

RVEF (%) 36 ±  10 34 ±  9 0.059 35 ±  11 34 ±  7 0.844

SVR (dynes/sec/cm5) 966 ±  364 1,005 ±  388 0.379 1,112 ±  462 1,027 ±  392 0.217

SVRI (dynes/sec/cm5/m2) 1,713 ±  705 1,629 ±  631 0.346 1,860 ±  745 1,696 ±  670 0.163

SVI (ml/m2/beat) 52 ±  15 52 ±  13 0.719 47 ±  14 50 ±  15 0.226

SVV (%) 7 ±  3 5 ±  3 <  0.001 6 ±  3 4 ±  2 <  0.001

PPV (%) 7 ±  3 5 ±  2 <  0.001 7 ±  4 5 ±  2 0.060

PVI (%) 11 ±  5 12 ±  6 0.276 10 ±  6 11 ±  5 0.723

Values are expressed as the mean ± SD. CI: cardiac index, CO: cardiac output, CVP: central venous pressure, EDVI: end-diastolic volume 
index, HR: heart rate, MAP: mean arterial pressure, PAOP: pulmonary artery occlusive pressure, PG: pressure gradient, PPV: pulse pressure 
variation, PVI: pleth variability index, RVEF: right ventricular ejection fraction, SVI: stroke volume index, SVR: systemic vascular resistance, 
SVRI: systemic vascular resistance index, SVV: stroke volume variation.
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Table 3. Hemodynamic Data before Fluid Replacement in Fluid Responders and Non-responders

Variable
Normal PG (n= 56) High PG (n= 24)

Responders 
(n= 14)

Non-responders 
(n= 42) P value Responders 

(n= 8)
Non-responders 

(n= 16) P value

HR (beats/min) 70 ±  9 69 ±  12 0.699 78 ±  18 69 ±  13 0.182

Radial MAP (mmHg) 78 ±  12 81 ±  15 0.484 71 ±  19 88 ±  19 0.051

Femoral MAP (mmHg) 80 ±  12 82 ±  14 0.609 79 ±  17 95 ±  19 0.059

CVP (mmHg) 9 ±  4 10 ±  4 0.192 11 ±  6 10 ±  4 0.752

PAOP (mmHg) 11 ±  4 14 ±  5 0.050 14 ±  7 16 ±  6 0.474

CO (L/min) 5.5 ±  1.4 6.9 ±  2.5 0.011 6.6 ±  3.5 5.9 ±  1.5 0.566

CI (L/min/m2) 3.2 ±  0.7 3.9 ±  1.2 0.035 3.7 ±  1.5 3.4 ±  0.8 0.574

EDVI (ml/m2) 146 ±  37 156 ±  41 0.449 150 ±  51 134 ±  27 0.434

RVEF (%) 32 ±  10 37 ±  9 0.124 32 ±  16 36 ±  8 0.490

SVR (dynes/sec/cm5) 1,158 ±  414 902 ±  326 0.021 961 ±  530 1,188 ±  423 0.265

SVRI (dynes/sec/cm5/m2) 2,212 ±  856 1,547 ±  567 0.015 1,564 ±  635 2,008 ±  769 0.174

SVI (ml/m2/beat) 45 ±  11 55 ±  15 0.026 43 ±  19 49 ±  10 0.487

SVV (%) 8 ±  3 7 ±  3 0.242 6 ±  2 7 ±  3 0.395

PPV (%) 9 ±  3 7 ±  3 0.023 8 ±  4 6 ±  3 0.292

PVI (%) 11 ±  6 11 ±  5 0.752 12 ±  9 9 ±  5 0.503

Values are expressed as the mean ± SD. CI: cardiac index, CO: cardiac output, CVP: central venous pressure, EDVI: end-diastolic volume 
index, HR: heart rate, MAP: mean arterial pressure, PAOP: pulmonary artery occlusive pressure, PG: pressure gradient, PPV: pulse pressure 
variation, PVI: pleth variability index, RVEF: right ventricular ejection fraction, SVI: stroke volume index, SVR: systemic vascular resistance, 
SVRI: systemic vascular resistance index, SVV: stroke volume variation.

Fig. 1. Receiver-operating characteristic curves showing the ability of static and dynamic preload indices to predict an increase in stroke 
volume index ≥ 15% after fluid challenge. (A) Normal femoral-to-radial arterial pressure gradient group (n = 56). (B) High femoral-to-radial 
arterial pressure gradient group (n = 24, difference of ≥ 10 mmHg in systolic blood pressure and/or mean blood pressure ≥ 5 mmHg). 
(C) Whole cohort of patients (n = 80). CVP: central venous pressure, PAOP: pulmonary arterial occlusion pressure, PPV: pulse pressure 
variation, PVI: pleth variability index, SVV: stroke volume variation. *P < 0.05 .

Dynamic variables have been reported to be useful for pre-

dicting fluid responsiveness in patients with septic shock and 

those undergoing cardiac surgery with cardiopulmonary by-

pass who may have a similar physiology to that of patients 

with end-stage liver disease [9,20,21]. However, previous 

studies of fluid responsiveness in liver transplant patients 

have not yielded consistent results [11–14]. In a study of 31 

patients who received liver transplantation with 62 fluid chal-

lenges, dynamic indices of SVV, PPV, and PVI were useful for 

predicting fluid responsiveness with AUCs of 0.754, 0.794, 

and 0.800, respectively [11]. Moreover, the femoral SVV ob-

tained using the Vigileo monitor could reflect fluid respon-

siveness with an AUC of 0.894 in recipients during the anhe-

patic phase of liver transplantation [12]. However, the PPV 
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failed to predict fluid responsiveness during liver transplanta-

tion in another study [13]. Likewise, Konur et al. [14] reported 

that the PVI derived from a Masimo monitor was not a reli-

able predictor of fluid responsiveness during the dissection 

phase or anhepatic phase in liver transplantation. In the pres-

ent study, PPV was a reliable predictor of fluid responsiveness 

with an AUC of 0.702 in patients with a normal PG, but failed 

to predict fluid responsiveness in those with a high PG. In 

contrast, SVV and PVI could not predict fluid responsiveness 

in patients with a normal PG or those with a high PG. 

It is not known exactly why the predictive ability of dy-

namic indices varies in patients undergoing liver transplan-

tation, but it may be due to the characteristic physiology of 

patients with end-stage liver disease. Patients with liver cir-

rhosis often present with hyperdynamic circulation charac-

terized by an increased heart rate and CO with reduced SVR 

[1,22]. Splanchnic arterial vasodilation in cirrhosis leads to a 

functional hypovolemia (decreased preload) despite a vol-

ume overload in absolute terms [23]. Even with an increased 

basal CO, patients with cirrhosis show blunted responsive-

ness to volume, exercise, or pharmacological stimuli, known 

as cirrhotic cardiomyopathy [23]. This blunted cardiac re-

sponse of cirrhotic cardiomyopathy fails to overcome the 

decrease in the effective circulating volume [23]. Owing to 

these characteristics of end-stage liver disease, the dynamic 

indices, which predict fluid responsiveness well under other 

conditions, may fail to predict fluid responsiveness in pa-

tients undergoing liver transplantation. 

There are several confounders in clinical practice that can 

significantly reduce the predictive value of dynamic indices 

of fluid responsiveness, including low tidal volume, cardiac 

arrhythmias, intra-abdominal hypertension, elevated posi-

tive end-expiratory pressure, and use of vasopressor drugs 

[24,25]. In particular, the SVV failed to predict fluid respon-

siveness in patients with increased arterial stiffness [15]. 

Moreover, changes in vascular tone with a vasoconstrictor or 

vasodilator can affect the predictability of the dynamic index 

[26,27]. An animal study reported that the predictability of 

PPV or systolic pressure variation in fluid responsiveness is 

poor when vasomotor tone is increased by infusion of the α1 

agonist phenylephrine [26]. In addition, vasodilator treat-

ment in patients ventilated postoperatively created a relative 

hypovolemic state, resulting in an increased PPV and SVV 

[27], which may affect the reliability of these indices. 

In the current study, we divided patients into two groups 

according to their femoral-to-radial arterial PG and investi-

gated whether or not the predictability of dynamic variables 

is affected by vascular compliance. An arterial pressure dif-

ference between the femoral artery and the radial artery is 

often observed during liver transplantation [28]. This is sim-

ilar to that observed after cardiopulmonary bypass in cardi-

ac surgery or deep hypothermic circulatory arrest and is of-

ten caused by peripheral arterial vasodilation [29,30]. There-

fore, the high PG in our patients may reflect severe peripher-

al arterial vasodilation. [16] Our study is the first to demon-

strate that dynamic indices such as PPV, SVV, and PVI can-

not be used to predict fluid responsiveness in the condition 

of a high femoral-to-radial arterial PG. 

There are several limitations to our study. First, the data 

were collected retrospectively, which introduces potential 

confounding factors. However, the anesthesia of all the en-

rolled patients was performed by one anesthesiologist, and 

the data were entered into the electronic medical records 

according to our protocol. Moreover, the number of patients 

analyzed in our study was larger (n =  80) than that in previ-

ous studies investigating fluid responsiveness in liver trans-

plant patients (n =  15–37) [11–14]; this may help overcome 

the limitation of the retrospective design. Second, our pa-

tients received 500 ml of crystalloid solution based on  our 

institution's routine anesthesia protocol, which is less than 

that in previous studies (10 ml/kg of colloids or crystalloid 

solution) on liver transplantation [11,12,14]. Therefore, the 

500 ml of crystalloid administered in our study could have 

been insufficient to assess fluid responsiveness and may 

Table 4. Comparisons of Area Under the Receiver-operating Characteristic Curve between Normal PG Group and High PG Group

Preload indices
Normal PG (n= 56) High PG (n= 24)

P value
Area under the curve Standard error Area under the curve Standard error

CVP (mmHg) 0.594 0.094 0.555 0.150 0.822

PAOP (mmHg) 0.641 0.085 0.574 0.138 0.679

SVV (%) 0.611 0.083 0.594 0.118 0.903

PPV (%) 0.702 0.076 0.633 0.127 0.638

PVI (%) 0.524 0.096 0.586 0.129 0.700

CVP: central venous pressure, PAOP: pulmonary artery occlusive pressure, PG: pressure gradient, PPV: pulse pressure variation, PVI: pleth 
variability index, SVV: stroke volume variation.
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have affected the predictability of dynamic indices in the pa-

tients with normal PG. Third, use of a vasoconstrictor such 

as norepinephrine can increase vascular tone [26], which 

could affect the predictive ability of dynamic indices. Given 

the retrospective design of our study, the contribution of 

norepinephrine could not be ascertained. Fourth, in our 

study, the radial arterial catheter was connected to the 

Flotrac/Vigileo monitor, and the femoral arterial catheter 

was connected to a disposable pressure transducer (Ed-

wards Lifesciences). According to the manufacturer, the pro-

prietary algorithm of the Flotrac/Vigileo system allows CO 

monitoring independent of the signal detection site, consid-

ering the differences in the vascular structure. Additionally, 

the two transducers were simultaneously calibrated at the 

mid axillary level for atmospheric pressure (zeroed) in the 

present study. Therefore, although arterial pressure was not 

obtained via the radial and femoral arterial catheters using 

the same transducer, the difference in the arterial pressure is 

considered to be insignificant. Finally, our data were collect-

ed after induction of anesthesia and before the start of sur-

gery. Therefore, the results of the study did not reflect the 

overall state of liver transplantation. Liver transplantation 

has different hemodynamic changes in each phase; there-

fore, further studies are required to identify reliable predic-

tors in each phase. 

In conclusion, patients with end-stage liver disease under-

going liver transplantation have extreme systemic arterial 

vasodilation, and this phenomenon could affect the reliabil-

ity of the dynamic preload indices that have been widely 

used to predict fluid responsiveness. Our study demonstrat-

ed that PPV can be used as a dynamic index of fluid respon-

siveness in patients with end-stage liver disease. However, 

caution is needed when using the PPV to guide fluid therapy 

in patients with altered vascular compliance, such as a high 

femoral-to-radial arterial PG. Further studies are needed to 

identify reliable predictors of fluid responsiveness in pa-

tients with altered vascular compliance. 
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