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Abstract

Bartonellae are phylogenetically diverse, intracellular bacteria commonly found in mam-

mals. Previous studies have demonstrated that bats have a high prevalence and diversity of

Bartonella infections globally. Isolates (n = 42) were obtained from five bat species in four

provinces of Thailand and analyzed using sequences of the citrate synthase gene (gltA).

Sequences clustered into seven distinct genogroups; four of these genogroups displayed

similarity with Bartonella spp. sequences from other bats in Southeast Asia, Africa, and

Eastern Europe. Thirty of the isolates representing these seven genogroups were further

characterized by sequencing four additional loci (ftsZ, nuoG, rpoB, and ITS) to clarify their

evolutionary relationships with other Bartonella species and to assess patterns of diversity

among strains. Among the seven genogroups, there were differences in the number of

sequence variants, ranging from 1–5, and the amount of nucleotide divergence, ranging

from 0.035–3.9%. Overall, these seven genogroups meet the criteria for distinction as novel

Bartonella species, with sequence divergence among genogroups ranging from 6.4–15.8%.

Evidence of intra- and intercontinental phylogenetic relationships and instances of homolo-

gous recombination among Bartonella genogroups in related bat species were found in Thai

bats.

Introduction

Of the emerging infectious diseases in humans, most are zoonoses originating in wildlife [1,2].

Thus, surveillance and characterization of zoonotic infections is fundamental to protecting

public health and understanding infectious disease ecology. Following the discovery that

numerous severe viral infections are linked to bats [3], efforts to detect and understand the

dynamics of viral, bacterial, and fungal zoonotic infections of bats have increased in recent

years.
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One genus of bacteria, Bartonella, is frequently found in wildlife. Bartonellae (Rhizobiales,

Alphaproteobacteria) are fastidious, facultative, hemotropic bacteria that infect a variety of

mammalian groups, including ungulates, rodents, carnivores, and primates [4]. Hematopha-

gous arthropods (e.g., flies, ticks, fleas, and mites) are believed to be the primary vectors of Bar-
tonella spp. infections [5,6] and studies have demonstrated the competence of a small number

of vector species [7–11]. Over 30 Bartonella species have been named and characterized, and

candidate species are being discovered as new mammal species and their ectoparasites are

sampled. Among the named Bartonella species, approximately half have now been identified

as zoonotic and can cause a wide spectrum of illnesses in people ranging from self-limiting

fever to endocarditis [12–14]. Given the potential health impacts of bartonellae and increasing

risk of zoonoses due to human interaction with wildlife and their vectors, surveillance for new

Bartonella species, especially in new mammalian groups and geographic regions, is important

to capture the substantial diversity of this genus and to study the natural cycles of transmission

in the hosts.

Bartonella spp. infections have now been found in over 60 bat species representing over 40

genera, 11 families, and both suborders from Central and South America, Africa, Europe, and

Southeast Asia. Diversification of Bartonella species in bats appears to have followed the diver-

sification of bats, with clades of Bartonella spp. confined to particular bat families, superfami-

lies, and suborders [15,16]. Very recent studies of Bartonella spp. in bats from Algeria [17],

Madagascar and the Union of Comoros [18], French Guiana [19], Saint Kitts [20], South

Africa [21], the Republic of Georgia [22], China [23], France and Spain [24], the United States

[25], Argentina [26], and Brazil [27] have only added to this substantial diversity. Despite

apparent phylogenetic patterns linking bats and bat-associated bartonellae, there is evidence

that spillover of bartonellae from bats into other mammals is possible, particularly to humans

and dogs [22,28–32].

In the present study, we characterize the diversity of Bartonella spp. found in bats sampled

in Thailand. Thailand possesses a high diversity of mammal species, particularly bats, many of

which may carry zoonotic infections [33]. Bats and their ectoparasites within the region (e.g.,

China, Laos, Vietnam, Taiwan, and Malaysia) have been laboratory-confirmed to harbor bar-

tonellae [23,32,34,35]. We hypothesized that Bartonella species identified in Thailand may

likely have phylogenetic relationships with Bartonella species previously identified in related

bat hosts. We utilized gene sequencing of the citrate synthase gene (gltA) and multi-locus

sequence typing (MLST) of four additional loci to characterize Bartonella spp. isolates from

five bat species from four regions in Thailand. MLST is an approach frequently applied to dis-

tinguish among Bartonella species and epidemiologically relevant strains [36–38]. Utilizing

multiple loci can elucidate distant evolutionary relationships, clonal stability, and recombina-

tion events among Bartonella species [38,39]. This study expands our knowledge of the host

range and diversity of Bartonella spp. in bats from Southeast Asia and enriches our under-

standing of the evolutionary history of this diverse genus globally.

Materials and methods

Bartonella spp. cultures

The current study is based on comparative characterization of 42 cultures of Bartonella species

(Table 1) selected from isolates obtained from whole blood of bats collected in four Thai prov-

inces: Chiang Rai (north), Kamphaeng Phet (west), Khon Kaen (northeast), and Sa Kaeo (east),

as described [40]. Captured bats were anesthetized by intramuscular injection of ketamine

hydrochloride (0.05–0.1 mg/g body weight) and euthanized under sedation in accordance with

the field protocol approved by the CDC Institutional Animal Care and Use Committee; the

Bartonella spp. in Thai bats
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CDC IACUC also specifically approved this study. The Supplementary Material (S1 Text) con-

tains additional details regarding sampling locations (Fig A in S1 Text), bat capture, species dis-

tributions (Fig B in S1 Text), culturing procedures, and infection prevalence among species and

locations (Table A in S1 Text). Bartonella spp. bacteria were cultured from blood of 34 (36.6%)

of 93 bats distributed among all four provinces and representing five bat species: the wrinkle-

lipped free-tailed bat (Chaerephon plicatus, Molossidae), the great roundleaf bat (Hipposideros
armiger, Hipposideridae), the fulvus roundleaf bat (H. fulvus), the intermediate roundleaf bat

(H. larvatus), and the black-bearded tomb bat (Taphozous melanopogon, Emballonuridae).

DNA purification and multi-locus sequence typing (MLST)

A suspension of pure cultured isolate was heated to 95˚C for 10 min followed by 1 min centri-

fugation at 8000 rpm for the lysed cells to precipitate. The supernatant was then moved to a

clean microcentrifuge tube for storage until examination. Isolates were initially verified as Bar-
tonella spp. and genotyped by PCR amplification of a fragment of the citrate synthase gene

Table 1. Allelic profiles and sequence types (ST) of 30 Bartonella isolates from Thai bats.

Host Province Isolate ftsZ gltA ITS nuoG rpoB ST Genogroup

C. plicatus Sa Kaeo SK128 1 1 1 1 1 ST1 Cp1

C. plicatus Sa Kaeo SK130 1 1 1 1 1 ST1 Cp1

C. plicatus Sa Kaeo SK144 1 1 1 1 1 ST1 Cp1

C. plicatus Sa Kaeo SK157 1 1 1 1 1 ST1 Cp1

C. plicatus Sa Kaeo SK166 1 1 1 1 1 ST1 Cp1

C. plicatus Sa Kaeo SK168 1 1 1 1 1 ST1 Cp1

C. plicatus Sa Kaeo SK189 1 1 1 1 1 ST1 Cp1

C. plicatus Sa Kaeo SK191 1 1 1 1 1 ST1 Cp1

C. plicatus Sa Kaeo SK202 1 1 1 1 1 ST1 Cp1

C. plicatus Sa Kaeo SK170 1 2 1 1 1 ST2 Cp1

C. plicatus Sa Kaeo SK194 2 3 2 2 2 ST3 Cp2

C. plicatus Sa Kaeo SK197 2 3 3 2 2 ST4 Cp2

C. plicatus Sa Kaeo SK163 3 4 4 3 3 ST5 Cp3

C. plicatus Sa Kaeo SK165 3 4 5 3 3 ST6 Cp3

C. plicatus Sa Kaeo SK180 3 4 4 3 3 ST5 Cp3

C. plicatus Sa Kaeo SK198a 3 4 4 3 3 ST5 Cp3

H. armiger Khon Kaen KK182 4 5 6 5 4 ST7 H3

H. larvatus Kamphaeng Phet KP270 4 6 6 4 4 ST8 H3

H. larvatus Kamphaeng Phet KP215 5 5 7 4 5 ST9 H3

H. fulvus Chiang Rai CR224 6 7 8 6 6 ST10 H3

H. larvatus Kamphaeng Phet KP277 7 8 9 7 7 ST11 H2

Hipposideros sp. Sa Kaeo KP174 8 9 10 4 8 ST12 H1

H. larvatus Kamphaeng Phet KP287a 9 9 10 8 7 ST13 H1

H. larvatus Kamphaeng Phet KP216a 8 9 10 8 8 ST14 H1

H. larvatus Kamphaeng Phet KP268a 8 9 10 8 8 ST14 H1

H. larvatus Kamphaeng Phet KP292 8 9 10 8 8 ST14 H1

H. armiger Khon Kaen KK200a 8 9 10 8 9 ST15 H1

H. larvatus Kamphaeng Phet KK290 8 9 10 8 9 ST15 H1

H. larvatus Kamphaeng Phet KP293a 9 9 10 8 8 ST16 H1

T. melanopogon Kamphaeng Phet KP283b 10 10 11 9 10 ST17 Tm

Genogroups were determined using a combination of sequence typing, phylogenetic analysis, and population clustering.

https://doi.org/10.1371/journal.pone.0181696.t001
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(gltA) following previous studies [41,42]. PCR products were separated by 1.5% gel electropho-

resis and visualized by ethidium bromide staining Positive PCR products were purified using

the QIAquick PCR Purification Kit (QIAGEN, Valencia, CA) according to manufacturer pro-

tocols and sequenced in both directions with the same primers on an Applied Biosystems

Model 3130 Genetic Analyzer (Applied Biosystems, Foster City, CA). Obtained forward and

reverse reads were assembled using Lasergene v11 (DNASTAR, Madison, WI). Sequences

were first verified as Bartonella spp. DNA using BLAST (National Center for Biotechnology

Information, Bethesda, MD) and closely matching sequences (>95% sequence identity were

downloaded as references.

Further characterization of 30 isolates from Hipposideros spp., C. plicatus, and T. melanopo-
gon was performed using MLST of four additional loci (ftsZ, nuoG, rpoB, and ITS) previously

used for characterization of Bartonella strains [38,39,41,43–46]. Primers and associated refer-

ences for protocols are provided in Table 2. PCR purification, sequencing, and alignment used

the same methods as with gltA. All sequences were aligned with MAFFT v7.187 using the local,

accurate L-INS-I algorithm [47], trimmed to equal lengths with Gblocks v0.91b [48], and com-

pared with other Bartonella strains from bats, bat ectoparasites, and known Bartonella species

(Table B in S1 Text).

Each unique variant was assigned to a sequence type (ST) based on the allelic profile

(Table 1). Nucleotide polymorphisms and diversity of the five MLST loci were examined in

MEGA v7.0.21 [49] among all 17 STs. The correct open reading frame for protein coding loci

(ftsZ, gltA, nuoG, and rpoB) was determined by checking all starting positions and choosing

the frame that contained no premature stop codons. Ratios of non-synonymous to synony-

mous substutitions (dN/dS) were calculated using the Nei-Gojobori method for each of the

loci to check for evidence of selection. Nucleotide diversity (π) and mean pairwise sequence

distance were estimated for the five loci separately and for concatenated sequences; sequence

distances were calculated as the number of substitutions per site. ITS sequences contained gap

regions, so the total lengths of sequences for this locus and concatenated sequences include

gaps.

Phylogenetic analysis

The optimal substition model was selected with jModelTest v2.1.6 [50] using Akaike’s infor-

mation criterion corrected for finite sample sizes (AICc) [51]. The generalized time-reversible

model with four gamma-distributed rate categories and a proportion of invariant sites (GTR

Table 2. Oligonucleotide primers used for MLST characterization of Bartonella strains.

Locus Product Primer Primer sequence (5’ to 3’)

ftsZ Cell division protein Bfp1 (f) [43] ATTAATCTGCAYCGGCCAGA

Bfp2 (r) [43] ACVGADACACGAATAACACC

gltA Citrate synthase BhCS781.p (f) [41] GGGGACCAGCTCATGGTGG

BhCS1137.n (r) [41] AATGCAAAAAGAACAGTAAACA

nuoG NADH dehydrogenase γ-subunit nuoG1F (f) [44] GGCGTGATTGTTCTCGTTA

nuoG1R (r) [44] CACGACCACGGCTATCAAT

rpoB RNA polymerase β-subunit 1400F (f) [45] CGCATTGGCTTACTTCGTATG

2300R (r) [45] GTAGACTGATTAGAACGCTG

ITS 16S–23S internal transcribed spacer 325s (f) [46] CTTCAGATGATGATCCCAAGCCTTCTGGCG

1100as (r) [46] GAACCGACGACCCCCTGCTTGCAAAGA

Listed references include detailed thermocycler protocols. For each primer set, (f) indicates the forward primer and (r) indicates the reverse primer.

https://doi.org/10.1371/journal.pone.0181696.t002
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+Γ+I) was the best available model for all loci. Separate maximum likelihood (ML) phyloge-

netic trees for each locus (gltA, ftsZ, nuoG, rpoB, and ITS) were created for the 30 isolates

characterized by multiple loci to visualize clustering of strains and to identify potential recom-

bination events among loci. Trees were generated without reference sequences with RAxML

v8.2.10 [52] using 1000 bootstrap replicates to estimate node support.

A Bayesian phylogeny of gltA sequences from Thai bats, known Bartonella species, and

select Bartonella strains from bats and their ectoparasites from the Americas [19,25,34,53],

Europe [22,31,54,55], Africa [18,38,42], and Southeast Asia [23,32,35]. This selection of bat-

associated Bartonella strains is representative of phylogenetic clades found in previous phylog-

enies of gltA sequences from bats [16,22]. Closely matching sequences (>95% sequence iden-

tity) based on the initial BLAST search from free-ranging dogs from Thailand [28] and other

bats and ectoparasites from Vietnam, Laos, and Malaysia [34,35] were included in the phyloge-

netic analysis. The gltA phylogeny was inferred by Markov chain Monte Carlo (MCMC) sam-

pling in BEAST v1.8.4 [56,57] using the GTR+Γ+I model. Well-supported clades (posterior

probability > 0.9) of bat-associated Bartonella strains were collapsed within the gltA phylogeny

and labeled with the host families and countries represented in the clade to reduce complexity.

A second Bayesian tree was generated from concatenated sequences of five loci (ftsZ, gltA,

nuoG, rpoB, and ITS) from Thai bats (30 isolates), known Bartonella species, and other Barto-
nella strains from bats [31,32,38,42]. The selection of bat strains for the multi-locus phylogeny

was taken from the same set of strains used in the gltA analysis, with the added restriction that

the strains had been characterized by at least two of the loci we had sequenced from Thai bats.

This restricted set contained strains from the Americas [19,25], Europe [22,31,55], Africa

[38,42], and Southeast Asia [32] and is representative of clades found in previous multi-locus

phylogenies of bat-associated Bartonella species [22,38]. For the multi-locus phylogeny, we

used separate partitions for each of the five loci; each locus was analyzed under the GTR+Γ+I

substitution model, but parameters were allowed to vary for each partitioned locus. All loci

were linked with the same clock model and speciation model. GenBank accession numbers for

all sequences used in the gltA and multi-locus phylogenetic analyses are listed in the Supple-

mentary Material (Table B in S1 Text).

For both BEAST phylogenies, we set the number of MCMC iterations to 2×108, sampling

every 2×104th iteration. No codon partitions were used for either the gltA or multi-locus analy-

ses due to the short sequence length of all loci which could substantially reduce the effective

sample size of estimated parameters for each codon position. A strict molecular clock was cho-

sen for both phylogenies because we did not seek to accurately estimate branch times. Addi-

tionally, all of the isolates from Thai bats were cultured around the same date and therefore

could not be used to calibrate another clock model. We chose to use the birth-death model

with incomplete sampling to represent patterns of speciation in the phylogeny [58]. All priors

were kept at the default, diffuse settings for both the gltA and multi-locus analyses (see S1 Text

for details). Three separate chains were run and effective sample sizes (ESS) and mixing of

parameters during MCMC sampling were assessed using Tracer v1.6 [56]. Chains were then

combined and the maximum clade credibility tree was found using TreeAnnotator [56,57].

Recombination and admixture analysis

To assess the level of recombination among sequence types, a phylogenetic network was

inferred using the Neighbor-Net algorithm in SplitsTree v4.13.1 [59] from concatenated

sequences of all five loci (ftsZ, gltA, nuoG, rpoB, and ITS) from the 30 Bartonella isolates from

Thai bats evaluated by MLST. The pairwise homoplasy index [60] was calculated in SplitsTree

to test for significant recombination among the sequence types. Bayesian population clustering

Bartonella spp. in Thai bats
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was performed with STRUCTURE v2.3.4 [61] using concatenated sequences of all five loci

from the 30 isolates evaluated by MLST. The program was run five times for each value of K

(the number of population clusters) ranging from 3–10 for 5×104 iterations and 5×104 burn-in

iterations using the admixture model with correlated allele frequencies. Convergence of

MCMC chains for each run was assessed by visual analysis of trace diagrams for all measured

parameters. The optimal value of K was estimated according to the ΔK method [62] with

STRUCTURE HARVESTER v0.6.94 [63]. We did not evaluate K = 2 due to our prior observa-

tion of at least three distinct clades in the multi-locus phylogeny based on host genus (Hipposi-
deros spp., Chaerephon sp., and Taphozous sp.) and a recently observed bias towards the

selection of K = 2 as the optimal number of populations in studies that use the ΔK method

[64].

Nucleotide sequence accession numbers

Unique alleles from this study were submitted to GenBank with the following accession num-

bers: KY232154 to KY232182 and MF288092 (ftsZ), KY232183 to KY232224 (gltA), KY232254

to KY232282 and MF288099 (nuoG), KY232283 to KY232311 and MF288103 (rpoB), and

KY232225 to KY232253 and MF288133 (ITS).

Results

Analysis of gltA genotypes

Initial phylogenetic analysis based on gltA sequences (Fig 1) demonstrated the presence of

three genogroups found in Hipposideros spp. bats (H1-3), three other genogroups found in

Chaerephon plicatus (Cp1-3), and a distinct genogroup in Taphozous melanopogon (Tm). Pos-

teriors distributions for the gltA tree likelihood and all estimated parameters of the substitution

model and the birth-death speciation model converged and had sufficient effective sample

sizes (ESS > 200) for each of the three chains separately and combined. Sequences from one

genogroup (H1) from Thai H. armiger and H. larvatus were nearly identical (>99% sequence

identity) to sequences found in H. armiger and H. larvatus from Vietnam [35]. This genogroup

formed a well-supported clade (posterior probability = 1) with other sequences from hipposi-

derid and rhinolophid bats and their bat flies from Vietnam [35], Malaysia [34], Kenya [42],

and Georgia [22]. Another group of sequences from H. larvatus (H2) formed a clade (posterior

probability = 0.93) with Bartonella genotypes from Megaderma lyra in Vietnam [35], Hipposi-
deros vittatus (previously identified as H. commersoni) from Kenya [42,65], and community

dogs from Thailand [28], with sequence identities ranging from 88–90% in this clade. The

third genogroup (H3) from H. armiger, H. fulvus, and H. larvatus clustered (88–90% sequence

identity) with Bartonella species found in pteropodid bats: Bartonella species found in Eidolon
helvum from Africa [38,42], sequences from bat flies collected from Pteropus hypomelanus in

Malaysia [34], and bat flies from Ptenochirus jagori and Harpyionycteris whiteheadi in the Phil-

ippines [34]. However, the posterior support for this clade was only 0.45 based on data from

gltA sequences alone.

Two genogroups found in C. plicatus (Cp1 and Cp2) are closely related (94% sequence

identity) to each other and formed a well-supported clade (posterior probability = 1). These

two genogroups were more distantly related (87% sequence identity) to the third cluster

(Cp3). Finally, the single genogroup from T. melanopogon (Tm) is very closely related (95%

sequence identity) to the Bartonella strain found in Coleura afra, another emballonurid bat, in

Kenya [42]. These two groups form a well-supported clade (posterior probability = 1) with

Bartonella species from African pteropodid bats (Eidolon helvum and Rousettus aegyptiacus)
[42]. Sequence divergence was�3.1% within a genogroup and 6.2–16.2% among genogroups.

Bartonella spp. in Thai bats
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Fig 1. Phylogenetic relationships among citrate synthase (gltA) sequences of Bartonella strains from Thai bats. The

phylogeny was inferred by Bayesian analysis in BEAST using the GTR+Γ+I substitution model and a birth-death speciation

Bartonella spp. in Thai bats
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All of these separate clusters are sufficiently distinct from one another based on gltA sequences

(<96% DNA similarity) to be considered putative new Bartonella species [66]. However, as we

acknowledged above, genogroup H1 appears to have been discovered previously in H. armiger
and H. larvatus from Vietnam [35], but was not cultured or characterized by additional genetic

loci.

Allelic profiles and sequence types

Based on allelic profiling, the MLST analysis distinguished 17 sequence types (ST) among the

30 isolates (Table 1). All five sequenced loci distinguished either eight or nine alleles among

the isolates. Genogroups Cp1–3 contained isolates from only C. plicatus. Genogroup Cp1 was

almost entirely clonal with nine isolates characterized as ST1 and a single isolate of ST2; the

distance among STs based on concatenated sequences of the five loci was 0.036%. Genogroup

Cp2 had two distinct isolates, characterized as ST3 and ST4, with a distance of 0.035% among

STs. Genogroup Cp3 was also nearly clonal, with three isolates characterized as ST5 and one

isolate as ST6; the distance among STs was 0.14%.

Genogroup H1 was comprised of isolates from H. armiger, H. larvatus, and another Hippo-
sideros sp. bat. This group was the most variable, with five distinct STs (ST12–16) with a maxi-

mum sequence distance of 3.9%. Genogroup H2 from H. larvatus was a single, distinct type

(ST11). Genogroup H3 had isolates from H. armiger, H. fulvus, and H. larvatus with four dis-

tinct sequence types (ST7-10) with a maximum sequence distance of 2.0%.

Some of the unique sequence types arose from apparent homologous recombination events

among genogroups, highlighted in the individual gene trees (Figs C-G in S1 Text). One strain

from H. larvatus (isolate KP287a, ST13) clustered with genogroup H1 for all loci except for

rpoB where it clustered with genogroup H2. Another strain from the Hipposideros sp. bat (iso-

late KP174, ST12) clustered with genogroup H1 for all loci except nuoG where it clustered with

genogroup H3. Even with these recombinant strains, genogroups remained distinct, with

�3.9% sequence distance within a genogroup and 6.4–15.8% distance among genogroups.

Patterns of selection and diversity in nucleotide sequences

The five analyzed loci revealed different levels of variation over the length of sequenced frag-

ments (Table 3), ranging from 21.6% variable sites for ftsZ to 45.3% for ITS. Mean pairwise

sequence distances ranged from 8.3% for ftsZ to 22.8% for ITS. Nucleotide diversity showed a

similar pattern, with values ranging from 8.0% for ftsZ to 12.7% for ITS. Based on concatenated

sequences from all five loci, there were 895 (28.7%) variable sites among the 30 STs over the

length of the alignment with 9.5% nucleotide diversity and a mean pairwise distance of 11.0%.

Calculated dN/dS ratios from protein coding loci were generally low, ranging from 0.03 for ftsZ
to 0.09 for gltA, indicating that purifying selection is dominant for these genes.

Phylogenetic analysis of multiple loci

The Bayesian tree assembled by partitioned analysis of ftsZ, gltA, nuoG, and rpoB sequences

(Fig 2) clarified the phylogenetic position of the seven genogroups identified by gltA sequences

model with incomplete sampling. Branch lengths are in substitutions per site and posterior probabilities of nodes are indicated

by the size and color of circles at each node. Tip labels for Bartonella strains from Thai bats are colored red and distinct

genogroups are marked to the right of the tree. Well-supported clades (posterior probability >0.9) of bat-associated Bartonella

strains were collapsed and labeled with the bat families and countries represented in the clade. Bat family abbreviations: Hipp,

Hipposideridae; Mini, Miniopteridae; Pter, Pteropodidae; Rhin, Rhinolophidae; Vesp, Vespertilionidae. Other Bartonella strains

from bats distinct from these collapsed clades are marked with the host species and country of origin.

https://doi.org/10.1371/journal.pone.0181696.g001
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relative to other Bartonella strains associated with bats. As with the gltA analysis, the posterior

distributions for all relevant model parameters (for each partitioned locus) and the combined

tree likelihood converged and had large effective sample sizes (ESS> 200). Posterior support

for nodes was higher across the tree as compared to the gltA due to the added sequence informa-

tion. The multi-locus phylogeny shows that genogroups Cp1-3 form a unified clade (posterior

probability = 0.99) that is part of a larger clade (posterior probability = 1) with a Bartonella spe-

cies isolated from Eidolon helvum in Africa [38,42] and multiple species isolated from Myotis
blythii and Rhinolophus ferrumequinum in Georgia [22].

Genogroup H1 formed a clade (posterior probability = 1) with Bartonella species from

Triaenops persicus in Kenya [42] and Rhinolophus ferrumequinum in Georgia [22] while gen-

ogroup H2 was linked (posterior probability = 1) to the Bartonella species from Hipposideros
vittatus from Kenya [42]. All three genogroups from Hipposideros spp. bats (H1-3) were closely

linked (posterior probability = 0.91) and more distantly related to Bartonella species from

Eidolon helvum in Africa and Rhinolophus euryale in Georgia [22,38,42]. Strains KP287a from

H. larvatus and KP174 from a Hipposideros sp. bat diverge slightly from the rest of genogroup

H1 due to recombination events with genogroups H2 and H3, respectively. Similar to the gltA
phylogeny, genogroup Tm was very similar to the Bartonella species from Coleura afra in

Kenya and more distantly related to Bartonella species from other African fruit bats, Eidolon
helvum and Rousettus aegyptiacus [42]. Genogroups H1-3 and Tm are all members of a large

and well-supported clade (posterior probability = 1) composed entirely of bat-associated Bar-
tonella species from Africa and Eurasia recognized in previous multi-locus phylogenetic analy-

ses [22,38].

Recombination and admixture analyses

The network phylogeny from SplitsTree (Fig 3) generated from concatenated sequences of five

loci (ftsZ, gltA, nuoG, rpoB, and ITS) supported the distinction between the seven genogroups

(Cp1-3, H1-3, and Tm). However, the pairwise homoplasy index [60] test found significant

recombination among the isolates (mean = 0.19, variance = 6.6×10−6, p-value< 0.0001). These

recombination events can been seen in the web-like linkage between genogroups H1 and H2

for strain KP287a and the linkage between genogroups H1 and H3 for strain KP174. The opti-

mal number of populations within the isolates was seven according to the ΔK method [62,63]

after Bayesian clustering analysis using STRUCTURE [61]. All seven of these populations

Table 3. Nucleotide polymorphism and diversity among Bartonella strains from Thai bats.

Genes Size (bp) # alleles V N V (%) N (%) dN dS dN/dS π (%) Mean pairwise distance (%)

ftsZ 886 10 191 17 21.6 5.8 0.01 0.31 0.03 8.0 8.3

gltA 356 10 101 19 28.4 16.1 0.03 0.32 0.09 9.3 9.3

nuoG 353 9 86 10 24.4 8.5 0.02 0.31 0.06 8.6 8.9

rpoB 833 10 205 20 24.6 7.2 0.02 0.36 0.04 9.0 9.9

ITS 689 11 312 NA 45.3 NA NA NA NA 12.7 22.8

Concatenate, no ITS 2428 15 583 66 24.0 8.2 0.02 0.33 0.05 8.6 9.1

Concatenate 3117 17 895 NA 28.7 NA NA NA NA 9.5 11.0

Values are calculated from all individuals (n = 30). ITS is not a protein coding locus and contains large insertions and deletions, thus only nucleotide diversity

is calculated. The length of ITS sequences is based on aligned sequences, which includes gaps. π, average number of nucleotide differences per site; V,

number of variable sites; N, number of non-synonymous sites; S, number of synonymous sites; dS, number of synonymous changes per synonymous site;

dN, number of non-synonymous changes per non-synonymous site; NA, not applicable. Mean pairwise distance was calculated using the number of

substitutions per site and dN and dS were calculated using the Nei-Gojobori method.

https://doi.org/10.1371/journal.pone.0181696.t003
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Fig 2. Phylogenetic relationships among Bartonella genogroups from Thai bats, other strains from bats, and

named Bartonella species assessed by multiple loci. The Bayesian tree was inferred in BEAST by partitioned analysis of
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matched with the genogroups distinguished by the MLST profiles and phylogenetic analysis.

The clustering analysis showed that strain KP287a was mostly composed of genogroup H1 with

some genetic material from genogroup H2 and strain KP174 was almost entirely composed of

genogroup H1 with some admixture with genogroup H3. This admixture is confirmed by the

maximum likelihood analysis of the five sequenced loci (Figs C-G in S1 Text), showing that the

nuoG sequence of strain KP174 clustered with genogroup H3 and the rpoB sequence of strain

five loci (ftsZ, gltA, nuoG, rpoB, and ITS) using unlinked GTR+Γ+I substitution models for each locus and a linked birth-death

speciation model with incomplete sampling. Sequences were assembled from named Bartonella species, Bartonella strains

from bats (those characterized by at least two loci), and 30 isolates from Thai bats. Branch lengths are in substitutions per site

and posterior probabilities of nodes are indicated by the size and color of circles at each node. Tip labels for Bartonella strains

from Thai bats are colored red and distinct genogroups are marked to the right of the tree. Bartonella strains from bats are

labeled with the host species and country of origin.

https://doi.org/10.1371/journal.pone.0181696.g002

Fig 3. Network phylogeny of Bartonella strains from Thai bats. The network was inferred using the NeighborNet algorithm in SplitsTree based on

concatenated sequences of five loci (ftsZ, gltA, nuoG, rpoB, and ITS) from 30 Bartonella isolates analyzed by MLST. Distinct genogroups are named next to

clusters of isolates. Recombinant isolates are labeled individually.

https://doi.org/10.1371/journal.pone.0181696.g003
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KP287a clustered with genogroup H2. The relative amount of admixture (Fig 4) in these recom-

binant strains was also proportional to the size of nuoG (353 bp) and rpoB (833 bp) sequences.

STRUCTURE analysis was also able to discern some admixture between strain CR224 from H.

fulvus in Chiang Mai (genogroup H3) with genogroup Tm. This admixture was not as obvious

as with strains KP287a and KP174, but is observable from the distinction of strain CR224 from

all other members of genogroup H3 at the five sequenced loci (Figs C-G in S1 Text) and some

web-like connections between genogroups H3 and Tm in the network phylogeny (Fig 3).

Discussion

Bartonella is a highly diverse genus of bacteria and bats have been distinguished as particularly

reliable sources of novel Bartonella species. The present study focused on characterization of

Bartonella isolates from bat species in Thailand. We identified seven novel Bartonella gen-

ogroups in five species of bats using sequences of the gltA gene. Genogroups H1 through H3

were found in roundleaf bats (H. armiger, H. larvatus, and H. fulvus). Genogroups Cp1

through Cp3 were found in free-tailed bats (C. plicatus) and genogroup Tm was found in

sheath-tailed bats (T. melanopogon).

Comparison with previous gltA sequences on GenBank showed that genogroup H1 had

been previously detected in H. armiger and H. larvatus in Vietnam [35] and is closely related to

sequences found in a bat fly (Phthiridium fraterna) removed from a Hipposideros sp. bat from

Malaysia [34] and sequences found in Rhinolophus spp. from Vietnam and Georgia [22,35].

Genogroup H2 was found to be related to sequences found in Hipposideros vittatus (previously

reported as H. commersoni) from Kenya [42,65], Megaderma lyra from Vietnam [35], and com-

munity dogs from Thailand [28]. Genogroup H3 clustered with Bartonella species identified in

Eidolon helvum in Africa [38,42] and bat flies from Pteropus hypomelanus, Ptenochirus jagori,
and Harpyionycteris whiteheadi in Malaysia and the Philippines [34]. Genogroup Tm was found

to be very closely related to a Bartonella species from Coleura afra in Kenya [42].

Phylogenetic analysis of multiple loci confirmed that genogroups H1-3, Cp1-3, and Tm are

divergent enough to be considered separate Bartonella species according to previously estab-

lished criteria based on individual loci, with genogroups differing by 6.5–15.6% sequence iden-

tity [66]. Most genogroups displayed clonal behavior with very little variation at multiple loci,

however genogroups H1 and H3 showed measurable genetic variation at several loci. Addi-

tionally, these groups showed some evidence of homologous recombination. These heteroge-

neous patterns of genetic variation and homologous recombination have been observed in

other Bartonella species found in bats [38].

Host specificity of Bartonella species in bats has been a subject of some discussion [42,67,

68]. As more studies have been performed, it is clear that Bartonella species are typically shared

among bats in the same families, superfamilies, and suborders [16]. Transmission may be facil-

itated by shared ectoparasites when species roost in sympatry [22]. All five of the focal bat spe-

cies in this study inhabit caves and manmade structures and host a variety of ectoparasite

families. Chaerephon plicatus has been found infested with bat flies (Diptera: Nycteribiidae),

fleas (Siphonaptera: Ischnopsyllidae), ticks (Ixodida: Argasidae, Ixodidae), mites (Trombidi-

formes: Myobiidae; Sarcoptiformes: Sarcoptidae, Listrophoridae), and bat bugs (Hemiptera:

Cimicidae) in Malaysia, the Philippines, and Thailand [69–72]. Taphozous melanopogon hosts

bat flies (Diptera: Nycteribiidae, Streblidae), ticks (Ixodida: Argasidae), mites (Trombidi-

formes: Myobiidae, Trombiculidae; Sarcoptiformes: Listrophoridae; Mesostigmata: Macronys-

sidae, Spinturnicidae), and bat bugs (Hemiptera: Polyctenidae) in Thailand, Malaysia, Burma,

Sri Lanka, Indonesia, and India [69,73–77]. Bat flies (Diptera: Nycteribiidae, Streblidae), ticks

(Ixodida: Argasidae, Ixodidae), and mites (Trombidiformes: Myobiidae, Trombiculidae;
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Sarcoptiformes: Listrophoridae; Mesostigmata: Macronyssidae, Spinturnicidae) are known to

parasitize Hipposideros spp., including H. armiger and H. larvatus in Vietnam, Indonesia,

China, Thailand, Malaysia, and Burma [69,73,78–87]. Of these ectoparasite groups, nycteribiid

and streblid bat flies, cimicid bugs, ischnopsyllid fleas, argasid and ixodid ticks, and macronys-

sid and spinturnicid mites are suspected vectors of Bartonella spp. in bats [17,34,53,88–93].

Trombiculid mites parasitizing rodents have been found harboring Bartonella spp. and may

also be vectors of Bartonella spp. in bats [94,95].

Based on our observations of separate Bartonella species infecting Chaerophon plicatus,
Taphozous melanopogon, and Hipposideros spp., we may surmise that transmission among

these genera is uncommon, due in part to the specificity of Bartonella spp. to related host spe-

cies and perhaps reinforced by the specificity of ectoparasites to their bat hosts. Although our

focal species share a range of ectoparasite families, there are likely specific associations of ecto-

parasites to one or a few related bats. There are few data available concerning the host range of

ectoparasites in Southeast Asia, so more study is warranted to fully understand the ecology

and transmission dynamics of Bartonella spp. in bats and their ectoparasites in this region.

Supporting information

S1 Text. Supplementary material. This file includes additional information on field and labo-

ratory methods and supplementary tables and figures.

(HTML)

Fig 4. Inferred admixture events among Bartonella strains in Thai bats. Estimates of allele proportions

from STRUCTURE based on the optimal clustering of K = 7 using concatenated sequences of five loci (ftsZ,

gltA, nuoG, rpoB, and ITS) from 30 Bartonella isolates analyzed by MLST. Populations are named according to

genogroups identified by phylogenetic analyses.

https://doi.org/10.1371/journal.pone.0181696.g004
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93. Hornok S, Kovács R, Meli ML, Gönczi E, Hofmann-Lehmann R, Kontschán J, et al. First detection of

bartonellae in a broad range of bat ectoparasites. Vet Microbiol. 2012; 159: 541–543. https://doi.org/10.

1016/j.vetmic.2012.04.003 PMID: 22551590

94. Klangthong K, Promsthaporn S, Leepitakrat S, Schuster AL, McCardle PW, Kosoy M, et al. The distribu-

tion and diversity of Bartonella species in rodents and their ectoparasites across Thailand. Shao R, edi-

tor. PLoS One. 2015; 10: e0140856. https://doi.org/10.1371/journal.pone.0140856 PMID: 26484537

95. Loan HK, Cuong N Van, Takhampunya R, Klangthong K, Osikowicz L, Kiet BT, et al. Bartonella species

and trombiculid mites of rats from the Mekong Delta of Vietnam. Vector-Borne Zoonotic Dis. 2015; 15:

40–47. https://doi.org/10.1089/vbz.2014.1604 PMID: 25629779

Bartonella spp. in Thai bats

PLOS ONE | https://doi.org/10.1371/journal.pone.0181696 July 20, 2017 19 / 19

https://doi.org/10.1603/0022-2585(2005)042[0473:DORBAB]2.0.CO;2
https://doi.org/10.1603/0022-2585(2005)042[0473:DORBAB]2.0.CO;2
http://www.ncbi.nlm.nih.gov/pubmed/15962801
https://doi.org/10.1016/j.vetmic.2012.04.003
https://doi.org/10.1016/j.vetmic.2012.04.003
http://www.ncbi.nlm.nih.gov/pubmed/22551590
https://doi.org/10.1371/journal.pone.0140856
http://www.ncbi.nlm.nih.gov/pubmed/26484537
https://doi.org/10.1089/vbz.2014.1604
http://www.ncbi.nlm.nih.gov/pubmed/25629779
https://doi.org/10.1371/journal.pone.0181696

