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Infection and Inflammation: Catalysts 
of Pulmonary Morbidity 
in Bronchopulmonary Dysplasia

Phillip S. Wozniak, Mohannad Moallem, and Pablo J. Sánchez

�Introduction

Despite improvements in the care of preterm infants with gentler ventilation tech-
niques, antenatal glucocorticoid therapy, and surfactant treatment, bronchopulmo-
nary dysplasia (BPD) remains a major public health problem worldwide. BPD, as 
defined by the need for supplemental oxygen at 36 weeks’ postmenstrual age [1–3], 
is the most frequent pulmonary morbidity among survivors of prematurity—a 
chronic lung condition that affects more than 10,000 premature infants in the United 
States alone each year [4, 5]. Before the surfactant era, BPD was primarily a struc-
tural injury of the preterm lung characterized by decreased alveolarization and sur-
face area, alternating atelectasis with hyperinflation, pulmonary lesions, and fibrosis 
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[6]. Today, BPD represents a developmental arrest of the preterm lung with interrup-
tion of the pulmonary septation, alveolarization, and vascularization during the sac-
cular and alveolar stages of lung development [7].The result is a lung with fewer, 
larger alveoli and a corresponding decrease in surface area available for gas exchange.

The 2014 National Institutes of Health Heart, Lung, and Blood Institute workshop 
on prevention of BPD identified six possible causative factors associated with BPD: 
structurally and biochemically immature lungs, hyperoxia and oxidant injury, mechan-
ical injury associated with positive pressure respiratory support, poor respiratory drive 
and apnea, poor nutrition, and importantly, infection and inflammation [5]. Any or all 
of these factors, possibly in concert with genetic predisposition or epigenetic factors, 
could contribute to its occurrence, even though recent genome-wide association stud-
ies (GWAS) failed to identify any specific loci associated with moderate to severe 
BPD [8, 9]. Clearly, the pathophysiology of BPD is complex and likely multifactorial, 
but a central role for pulmonary inflammation seems critical to its development.

�Antenatal Infection and Inflammation

There is a substantial body of literature associating “chorioamnionitis” with the 
development of BPD, with recent meta-analyses demonstrating odds ratios of 3.0 
and 2.2 for the occurrence of BPD at 28 days of age and 36 weeks postmenstrual 
age, respectively [10]. How chorioamnionitis contributes to the development of 
BPD, however, remains a topic of ongoing debate.

Chorioamnionitis is diagnosed often as symptomatic maternal disease with intra-
partum fever in association with clinical and laboratory signs of infection or inflam-
mation, but more appropriately, by histopathology [11]. The so-called histological 
chorioamnionitis can be acute or chronic based on neutrophilic or lymphocytic infil-
tration of the fetal membranes, respectively. Both neutrophils and lymphocytes may 
be of either maternal or fetal origins [12]. Unlike acute cases, chronic chorioamnio-
nitis has both cellular (innate) and humoral (adaptive) immune responses, which 
could indicate maternal antibody-mediated antifetal rejection that has been associ-
ated with preterm birth [13]. The suggestion by Goldenberg et al. [14] that intrauter-
ine infection and/or inflammation accounts for up to 90 % of preterm births before 
28  weeks’ gestation lends credence to the theory that predisposition of preterm 
infants to BPD may occur in utero.

Ureaplasma parvum and Ureaplasma urealyticum, both genital mycoplasmas, 
are the most common bacteria isolated from placentas with histological chorioam-
nionitis as well as from amniotic fluid [15, 16, 17]. These organisms are typically of 
low virulence, and thus capable of producing a chronic infection of the uterine cav-
ity and fetal compartment [14, 18]. In fact, neonatal colonization with Ureaplasma 
spp. has been associated with chorioamnionitis [19].

Prospective cohort studies have associated Ureaplasma colonization with the 
development of BPD [20, 21]. Respiratory tract colonization with Ureaplasma spp. 
occurs in 28–33 % of infants with birth weight <1500 g, and among those < 26 weeks’ 
gestation, as many as 65  % of infants are culture-positive or polymerase chain 
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reaction (PCR)-positive for Ureaplasma spp. at least once in the first month of age 
[22]. Ureaplasma colonization increases with decreasing gestational age, a finding 
that correlates with the risk of developing BPD [23].

Several mechanisms for the association of Ureaplasma colonization of preterm 
infants and BPD have been proposed. The ability of Ureaplasma spp. to hydrolyze 
urea as their sole source of energy results in the generation of ammonium ions that 
interact with lung water to form ammonium hydroxide and potentially result in 
mucosal/epithelial injury and inflammation [24]. However, the major virulence fac-
tor that has been identified experimentally is the Ureaplasma multiple banded anti-
gen (MBA), a surface-exposed lipoprotein [22]. Ureaplasma spp. have been shown 
to evade the host immune response by varying the size of MBA and mba gene [22, 
24]. Both MBA and mba gene size variants have been detected in infected sheep 
amniotic fluid and fetal lung, and the size variation also has correlated with the 
severity of chorioamnion inflammation.

Clearance of Ureaplasma species from the lung also appears to be dependent on 
local host immune response mediators, such as surfactant protein-A (SPA) [15]. 
Okugbule-Wonodi et  al. [25] demonstrated that SPA increased phagocytosis and 
killing of Ureaplasma spp. by macrophages. In a mouse model, SPA-deficient mice 
showed delayed clearance of Ureaplasma from the lungs, increased inflammatory 
cells, and increased proinflammatory cytokine expression [26]. These findings are 
particularly relevant for preterm infants who lack robust immune responses and 
endogenous SPA production in the first 48 h of age.

�Does Chorioamnionitis Cause BPD?

Intra-amniotic inflammation (IAI) secondary to histological chorioamnionitis can 
result in premature maturation of the fetal lung that is mediated by such proinflam-
matory cytokines as interleukin (IL)-1α, IL-1β, IL-6, IL-8, and tumor necrosis fac-
tor (TNF)-α. These can act directly on fetal lung cells, including the Type II alveolar 
cells that produce surfactant [27, 28]. In rabbits, Bry et al. [29] demonstrated that 
IL-1α enhanced messenger RNA transcription of both surfactant proteins and lipids 
resulted in improved lung compliance [12, 29]. Although the proinflammatory cyto-
kines protected against the development of respiratory distress syndrome (RDS), 
the fetal inflammation has been associated subsequently with increased incidence of 
BPD [12, 27, 30, 31].

While the signaling pathways responsible for lung development have been well 
characterized, the effects of chorioamnionitis and/or antenatal inflammation on 
those pathways have not [32, 33]. Bacterial antigens such as lipopolysaccharide can 
cause altered distribution of elastin, the mesenchymal structural protein responsible 
for proper septation of the lung [12, 34, 35]. Intra-amniotic inflammation also can 
cause dysregulation of critical growth factors necessary for lung development. 
Fibroblast growth factor (FGF)-10 expression is inhibited by nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB), the major proinflamma-
tory signaling pathway stimulated by IL-1 and TNF-α [36, 37]. FGF-10 plays a key 
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role in lung branching morphogenesis, remodeling, repair, and regeneration [12, 
38]. Inhibition or dysregulation of these key functions as a consequence of histo-
logical chorioamnionitis or inflammation has resulted in a lung condition in animals 
that is similar to BPD in humans [35].

The effects of antenatal inflammation are not limited to the developing airway. 
The developing pulmonary vasculature also is susceptible to adverse remodeling 
due to antenatal inflammation, limiting the capacity for gas exchange in the preterm 
lung. Antenatal inflammation can inhibit vascular endothelial growth factor (VEGF), 
angiopoietin-1, transforming growth factor-β (TGF-β), endoglin, connective tissue 
growth factor (CTGF), endothelial nitric oxide synthase (eNOS), platelet endothe-
lial cell adhesion molecule-1 (PECAM-1), and VEGF-receptor 2 (VEGF-R2) [12, 
39, 40]. In addition, antenatal inflammation can cause smooth muscle hypertrophy 
in the pulmonary vasculature, predisposing to pulmonary hypertension that is a 
major complication of BPD [12, 39]. VEGF is responsible for the regulation of 
eNOS, which plays a crucial role in the regulation of pulmonary vascular tone and 
modulation of pulmonary vascular development. PECAM-1 and VEGF-R2 are 
essential for proper development of pulmonary endothelial cells [39].

It seems clear that antenatal inflammation alone has the potential to cause both 
impaired alveolarization and reduced development of the pulmonary vasculature 
leading to the development of BPD in some at-risk preterm infants, even in the 
absence of mechanical ventilation [39, 41]. However, other indirect mechanisms 
linking chorioamnionitis and/or inflammation to BPD may be involved.

�Does Chorioamnionitis Make the Lung Susceptible to BPD?

Exposure of the preterm fetus to chorioamnionitis may result in a systemic fetal 
inflammatory response syndrome (FIRS) with activation of the innate immune sys-
tem [42, 43] and manifested by histological chorioamnionitis with funisitis and 
increased umbilical cord blood concentrations of proinflammatory cytokines [42]. 
Such infants have a decreased clinical response to exogenous surfactant, more fre-
quent use of exogenous surfactant, increased need for mechanical ventilation, lon-
ger time to extubation, longer supplemental oxygen use, and more frequently 
develop BPD [43, 44, 45].

Mechanical factors also contribute to the development of BPD. Hillman et al. [46] 
showed that as few as six breaths at high tidal volumes were sufficient to eliminate the 
surfactant response in fetal sheep. Furthermore, 15 min of ventilation at escalating tidal 
volumes has been associated with a substantial inflammatory response in the preterm 
lung that is characterized by production of multiple classes of cytokines and other 
proinflammatory markers, increased mRNA for IL-1β and IL-6, increased inflamma-
tory cell infiltrates, increased alveolar wall thickening, and decreased alveolar expan-
sion, with a concomitant delayed or deficient release of the anti-inflammatory cytokine, 
IL-10 [47, 48]. Of note, stretch injury overlapped consistently with the maturational 
effects induced by chorioamnionitis and prolonged LPS exposure in utero [46].
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Supplemental oxygen supplied to the preterm infant, whether by mechanical venti-
lation or other support measures, such as continuous positive airway pressure (CPAP) 
or nasal cannula, also has injurious effects on the preterm lung by inducing an inflam-
matory response [45]. This inflammation stimulates the activity of VEGF and causes 
breakdown of the alveolar–capillary barrier, vascular leakage, introduction of proin-
flammatory mediators, pulmonary edema, and, ultimately, endothelial apoptosis [45, 
49]. An animal study of hyperoxia-induced BPD in preterm rabbits identified 2217 
dysregulated pathophysiological pathways affecting inflammation, vascular develop-
ment, and reactive oxygen species (ROS) metabolism [50]. Because antioxidant 
defense do not develop until much later in gestation, preterm infants receiving high 
concentrations of oxygen are particularly susceptible to ROS-mediated injury [51, 52].

Antenatal inflammation due to chorioamnionitis also has been linked to the 
development of BPD through immune tolerance due to the preterm lung’s structural 
immaturity and the preterm infant’s immature immune system [12, 53]. Several 
in vitro and animal studies have indicated that intrauterine endotoxin/LPS exposure 
can downregulate immune responses akin to tolerance [54–57]. LPS-induced 
immune paralysis may be caused by reduced expression of major histocompatibility 
complex II (MHC) antigen on fetal blood monocytes and increased expression of 
the immunosuppressive cytokines, IL-10 and TGF-β [12, 57].

Repeated exposure to LPS in Ureaplasma-infected fetal sheep induces both 
endotoxin tolerance and tolerance of other toll-like receptor (TLR) agonists [55]. 
Since TLRs are major activators of the immune system, cross-tolerance of toll-like 
agonists may enhance immune suppression in the preterm infant and increase the 
vulnerability to a “second hit”—sepsis, ventilator-mediated injury, or hyperoxia 
[12, 55]. On the other hand, Kramer and Jobe [56] hypothesized that this immuno-
suppressive fetal response may be an advantageous adaptation to chronic exposure 
to chorioamnionitis that prevents more serious inflammation-mediated lung injury. 
Indeed, Kallapur et al. [58] lent weight to this theory when they showed that chronic 
exposure to intra-amniotic endotoxin did not lead to progressive lung injury and 
extensive structural abnormalities in fetal sheep, but only to mild, persistent inflam-
mation. However, chorioamnionitis leading to prolonged immune dysfunction may 
subsequently increase susceptibility to postnatal infections.

�Bacterial Sepsis and BPD

Early-onset sepsis (≤72 h after birth) has been shown to initiate an inflammatory 
cascade in preterm infants similar to that seen with exposure to histological chorio-
amnionitis. Similarly, late-onset sepsis (LOS; >72 h of age) causes both proinflam-
matory and profibrotic responses in the preterm lung, increasing its susceptibility to 
BPD [45, 59, 60].

In a retrospective study of 7509 infants born at <32 weeks’ gestation in 29 neo-
natal intensive care units (NICUs) of the Canadian Neonatal Network from 2010 to 
2011, Shah et al. [59] identified 1104 (15 %) infants with LOS, defined as a positive 
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blood and/or cerebrospinal fluid bacterial culture. Of these 1104 infected infants, 
909 (82 %) had Gram-positive and 195 (18 %) had Gram-negative infections. As 
compared with no infection, the odds ratio (OR) of mortality/BPD was higher in 
infants who had Gram-negative (OR, 2.79; 95 % confidence interval [CI], 1.96–
3.97) and Gram-positive (OR, 1.44; 95 % CI, 1.21–1.71) sepsis. Infants with Gram-
negative sepsis were significantly more likely to have been born to mothers with 
chorioamnionitis than uninfected infants (p = 0.004) or those with Gram-positive 
infections (p = 0.04). This study supports the contention that the proinflammatory 
cascade that occurs with LOS can exacerbate preexisting inflammatory conditions 
associated with chorioamnionitis exposure or initiate an inflammatory and fibrotic 
response that results in BPD [45, 59, 61, 62]. Prevention of postnatal sepsis must 
remain a high priority for prevention of BPD.

�Cytomegalovirus Infection and BPD

Congenital cytomegalovirus (CMV) infection is the most common congenital viral 
infection in developed nations, occurring in approximately 0.1–2.0 % of all live 
births [63, 64]. CMV is a Betaherpesvirinae virus that infects human leukocytes, 
and transmission to the infant occurs transplacentally following primary maternal 
infection, reactivation of latent maternal infection, or maternal reinfection with a 
different viral strain [64]. In addition, infants can acquire the virus during birth from 
exposure to infected vaginal and cervical secretions, or postnatally by either blood 
transfusion or, more commonly, ingestion of human milk from a CMV-seropositive 
mother [65, 66]. Intrapartum and postnatal acquisition of CMV, defined as detection 
of CMV in body fluids at ≥21 days of age, and to a lesser extent congenital infec-
tion, can result in pneumonitis and increased likelihood for development of BPD in 
preterm infants [64, 67].

In 1976, Whitley et al. [68] first noted the association of perinatally acquired 
CMV infection with protracted pneumonitis in two infants with lower respiratory 
tract obstruction at 1 month of age [68]. Virological, serological, immunological, 
and electron microscopic studies indicated that CMV was a major causative factor. 
Subsequently, case reports associated multicystic lung disease, fibrosis, and pulmo-
nary hypertension with postnatal CMV infection [1, 69–71].

Two recent studies provide new evidence for an association between postnatal 
acquisition of CMV and BPD. Mukhopadhyay et al. [72] conducted a retrospective 
review of 145 very low birth weight (VLBW, ≤1500 g) infants who were tested for 
CMV infection while in the NICU at Brigham and Women’s Hospital, Boston from 
1999 to 2013. Of the 145 infants, 27 (19 %) had postnatal detection of CMV defined 
as diagnosis at ≥21 days of age; all had birth weight <1250 g and were born at 
<32  weeks’ gestation. Sixteen (59  %) infants presented with acute respiratory 
decompensation, and importantly, CMV-infected infants had significantly more 
exposure to mechanical ventilation (p = 0.03) and a higher incidence of BPD (OR 
4.0; 95 % CI, 1.3–12.4; p =0.02). The authors suggested that postnatal symptomatic 

P.S. Wozniak et al.



221

CMV infection, like late-onset bacterial sepsis, may predispose to development of 
BPD by a combination of direct pathogen effects on the lung, inflammation, and/or 
increased exposure to mechanical ventilation and supplemental oxygen.

Similarly, in a propensity-matched retrospective cohort study of 101,111 VLBW 
infants at 348 NICUs managed by the Pediatrix Medical Group from 1997 to 2012, 
328 (0.3 %) infants had a diagnosis or detection of CMV at ≥21 days of age [73]. 
Postnatal CMV infection was associated with an increased risk for death or BPD at 
36 weeks’ postmenstrual age (risk ratio, 1.21; 95 % CI, 1.10–1.32) and BPD (risk 
ratio, 1.33; 95  % CI, 1.19–1.50). Changes in cardiorespiratory status associated 
with postnatal CMV infection included a new requirement for vasopressor medica-
tions (9 %; n = 29), intubation for mechanical ventilation (15 %; n = 49), a new 
oxygen requirement (28 %; n = 91), and death (1.2 %; n = 4).

Given the association of postnatal acquisition of CMV with BPD, the key chal-
lenge remains development of preventative measures against CMV acquisition in 
extremely low gestational age infants. Transmission of CMV by blood transfusion 
to preterm infants has been virtually eliminated by the use of CMV antibody-
negative donors, freezing red blood cells in glycerol before administration, or leu-
koreduction. Ingestion of human milk now is the primary means by which preterm 
infants acquire CMV postnatally [74]. While pasteurization of human milk inacti-
vates CMV, it also may reduce its known cognitive, immunological, and nutritional 
benefits. Freezing milk at −20  °C decreases CMV viral titers, but does prevent 
transmission [75, 76].

�Respiratory Viral Infection and BPD

The occurrence of respiratory viral infections in preterm infants in the NICU has 
been documented in a prospective surveillance study performed in two NICUs in 
Syracuse, NY during a 1-year period [77]. Fifty preterm infants <33 weeks’ gesta-
tion who were in the NICU since birth underwent nasopharyngeal swab testing for 
detection of respiratory viruses (influenza A/B; respiratory syncytial virus [RSV] 
A/B; parainfluenza [PIV] 1–4; coronavirus, human rhinovirus/enterovirus [hRV]; 
adenovirus; human metapneumovirus [HMPV]) by multiplex PCR testing twice 
weekly within 3 days of birth and up to the time of discharge. Fifty two percent 
(26/50) of infants tested positive for a respiratory virus at least once during the 
NICU stay. Of 708 specimens obtained, the following viruses were detected: PIV-3, 
13; hMPV, 9; RSV-B, 8; RSV-A, 7; PIV-2, 7; hRV, 7; and influenza B, 4. Of note, 18 
samples (28 % of the positive swabs) included more than one virus, similar to stud-
ies performed in older infants with bronchiolitis where viral codetection is relatively 
common. Fourteen infants had sequentially positive specimens for the same virus 
over 3 to 13 days, suggesting that these were true positive results. Compared to 
infants who did not have a respiratory viral pathogen detected, virus-positive infants 
had significantly longer length of stay (70 d vs. 35 d, p = 0.002), need for intubation 
(65 % vs. 29 %, p = 0.01), duration of intubation (19 vs. 5 d, p = 0.03), duration of 
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oxygen requirement (51 vs. 13 d, p  =  0.002), more episodes of desaturation 
(p < 0.0001), and clinical deterioration episodes (p = 0.0001), and importantly, BPD 
(46 % vs. 21 %, p = 0.05).

In a single-site prospective study performed in a German NICU from 8/2010–
3/2014, Kidszun et al. [78] performed respiratory viral multiplex PCR testing on 88 
infants (median gestational age, 27 weeks; median birth weight, 852 g) who under-
went 137 evaluations for late-onset sepsis. A respiratory virus was detected in the 
nasopharynx of six (7 %) infants (2, RSV; 4, picornavirus). Similarly, Ronchi et al. 
[79] conducted a 1-year study (1/15/12–1/31/13) for the detection of respiratory 
viruses by multiplex PCR testing in infants evaluated for possible sepsis and in 
whom intravenous antibiotic therapy was initiated. During the 13-month study, 100 
infants (mean gestational age, 31 weeks; mean birth weight, 1698 g) had 135 sepsis 
evaluations, and 8 infants (8 %), or 6 % (n = 8) of sepsis evaluations, had a respira-
tory virus detected from nasopharyngeal swabs. These included hRV(n = 4), coro-
naviruses (1, HKU-1; 1, OC43), and PIV-3 (n  =  2). These studies suggest that 
respiratory viral infections are under-recognized in premature infants in the NICU; 
yet, they are associated with acute morbidity. Their contribution to long-term respi-
ratory and neurodevelopmental outcomes, however, remains unknown.

It is likely that respiratory viral infections can exacerbate the underlying lung 
abnormalities of infants with BPD and result in impairment of lung function 
through early childhood and possibly adolescence. Longitudinal studies of mice 
who received supplemental oxygen have found a lifelong increased susceptibility 
to infection with respiratory viruses, and in particular, influenza A virus, compared 
to preterm controls exposed only to room air [80–82]. Higher oxygen concentra-
tions led to a dose-dependent inflammatory response to influenza A exposure [45, 
52, 83], with enhanced recruitment of macrophages, neutrophils, and lymphocytes, 
as well as increased alveolar fibrosis, increased monocyte chemoattractant protein 
(MCP-1), and greater mortality [80]. O’Reilly et al. [80] demonstrated that alveolar 
type II cells that are responsible for surfactant production can express viral recep-
tors on their surface, with surfactant protein-deficient mice having decreased viral 
clearance. Pulmonary outcomes of preterm infants infected with a respiratory virus 
early in life—and especially with RSV, hRV, PIV, and hMPV—bear striking resem-
blance to outcomes of very premature infants with BPD [84, 85]. Both BPD and 
early respiratory infection with RSV have been associated with recurrent wheeze 
and lung function abnormalities that persist to school age [64, 86]. In addition, 
viral lower respiratory tract infections (LRTIs) may be a marker for preexisting 
abnormal lung function in neonates [64, 87]. Infants with BPD have substantially 
more rehospitalizations due to RSV and hRV infection than age-matched controls 
without BPD [88, 89].

Similar to BPD, RSV also has been shown to cause persistently diminished lung 
function among preterm infants and increased wheezing throughout childhood [90, 
91–94]. Preterm infants hospitalized with RSV infection are significantly more 
likely to require supplemental oxygen and mechanical ventilation, exposing them 
to additional pulmonary injury [88]. In 2015, the SPRING study demonstrated that 
among children born at 32–35 weeks’ gestation, RSV hospitalization was associ-
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ated with increased wheezing through 6 years of age, as well as increased utiliza-
tion of health care resources and decreased self-reported quality of life [95].

The humanized monoclonal antibody, palivizumab, has been shown to signifi-
cantly reduce RSV hospitalizations in infants and children at high risk for severe 
RSV infection [96]. Simoes et  al. [97] conducted a cohort study of 421 preterm 
infants who had received palivizumab and were not hospitalized for RSV (n = 191) 
or who never received palivizumab (n = 230; 76 hospitalized for RSV). Infants who 
received palivizumab had significantly less parent-documented and physician-
diagnosed recurrent wheezing. Similarly, the Dutch RSV Neonatal Network con-
ducted a multicenter, double-blind, placebo-controlled trial of palivizumab 
prophylaxis in 429 otherwise healthy preterm infants of 33 to 35 weeks’ gestation 
and demonstrated that palivizumab prophylaxis significantly reduced wheezing 
days during the first year of age [98]. These studies continue to implicate RSV 
infection as an important mechanism of recurrent wheeze during the first year of life 
in preterm infants.

�Future Directions

As the direction of causality between infection, inflammation, and BPD remains 
unanswered, research is needed to better elucidate their interaction and contribution 
to long-term pulmonary morbidity in preterm infants, with the ultimate goal of 
developing and implementing novel therapies and interventions. Nonetheless, a 
central role for pulmonary inflammation seems key, and the factors that contribute 
to its evolution need to be explored.

Early and prolonged antibiotic therapy in preterm infants has been associated 
with BPD [99], suggesting an important role of the airway microbiome as a 
mediator of the inflammatory process [100]. Recently, Lal et al. [101] reported 
temporal dysbiotic changes in the airway microbiome from birth to the develop-
ment of BPD in preterm infants. They noted decreased Lactobacillus spp. in 
endotracheal aspirates of preterm infants who developed BPD and infants born 
to mothers with chorioamnionitis. How the airway microbiome is established, 
and the possible factors such as chorioamnionitis, antibiotic use, and postnatal 
infection that potentially contribute to its dysregulation need further explora-
tion [102].

The human virome, or the viral component of the human microbiome, represents 
the collection of all viruses that are found in or on humans, including viruses that 
cause acute, persistent, or latent infection, and viruses that integrate into the human 
genome, such as endogenous retroviruses [103]. The human virome includes both 
eukaryotic and prokaryotic viruses (bacteriophages), the latter of which can infect 
the broad array of bacteria that inhabit the body and influence bacterial population 
structure or virulence. Its impact on human health has received less attention than 
that of the bacterial microbiome, even though it is likely to be equally important in 
homeostasis and disease. The potential importance of the human virome in the 
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development of BPD is not known, and our current lack of understanding of its 
ontogeny in preterm infants constitutes a major knowledge gap in our continuing 
efforts to decrease the incidence of BPD and its consequences.

Finally, genome-wide transcriptional profiles of the infant’s inflammatory response 
to conditions associated with prematurity could provide new key evidence about the 
pathogenesis of BPD [104]. Analysis of the infant’s transcriptome also could be used 
to support the clinical significance of detecting bacterial or viral sequences in clinical 
specimens by detecting expression of immune/inflammatory genes that may contrib-
ute to the development of BPD [105]. Importantly, such technology could aid in the 
identification and subsequent validation of candidate biosignatures and biomarkers 
for BPD in preterm infants with bacterial and respiratory viral infections.
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