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SUMMARY

The patient-derived xenograft (PDX) model is a versatile tool used to study the
tumor microenvironment (TME). However, limited studies have described multi-
tumor PDX screening strategies to detect hub regulators during cancer-stroma
interaction. Transcriptomes of cancer (human) and stroma (mouse) components
of 70 PDX samples comprising 9 distinctive tumor types were analyzed in this
study. PDX models recapitulated the original tumors’ features, including tumor
composition and putative signaling. Particularly, kidney renal clear cell carcinoma
(KIRC) stood out, with altered hypoxia-related pathways and a high proportion of
endothelial cells in the TME. Furthermore, an integrated analysis conducted to
predict paracrine effectors in the KIRC cancer-to-stroma communication de-
tected well-established soluble factors responsible for the hypoxia-related reac-
tion and the so-far unestablished soluble factor, apelin (APLN). Subsequent
experiments also supported the potential role of APLN in KIRC tumor progres-
sion. Therefore, this paper hereby provides an analytical workflow to find hub
regulators in cancer-stroma interactions.

INTRODUCTION

The ‘‘seed and soil’’ hypothesis was first propounded in 1889 to explain the organ preference of cancer

metastasis (Paget, 1889). Since then, many studies have elucidated that malignant cell behaviors, including

engraftment, growth, invasion, and metastasis, depend on the biological interaction of cancer cells called

‘‘seeds,’’ and the tumor microenvironment (TME), called ‘‘soil.’’ The TME consists of the extracellular matrix

(ECM) and host stromal cells, such as endothelial cells, fibroblasts, or immune cells. Malignant cells also

induce a disturbance in stromal signaling and metabolism via humoral factor secretion or cell-cell contact.

In contrast, the affected stromal cells either have a niche supply for cancer cells by generating ECM or

possess neo-vasculature tissues that potentially prevent anticancer agents from permeating the TME or

enhance the survival of cancer cells (Hanahan andWeinberg, 2011) (Lyssiotis and Kimmelman, 2017). There-

fore, pharmacological interventions to cancer-stroma interactions have been proven as effective

therapeutic strategies (Casey et al., 2015) (Valkenburg et al., 2018), thereby highlighting the importance

of understanding the TME.

Currently, several methodologies investigate comprehensive cancer-stroma interactomes. Single-cell RNA

sequencing (scRNASeq), coupled with tissue dissociation and mass cytometry, has enabled the profiling of

TME transcriptomes at the cellular resolution (Helmink et al., 2020) (Goveia et al., 2020). Furthermore, laser

capture microdissection (LCM) followed by RNA sequencing, which targets tissue areas of interest to be

clipped out by laser under a microscope, is another option. LCM has advantages in being free from the

cell dissociation procedure and is aware of histopathological heterogeneity (Civita et al., 2019).

The patient-derived xenograft (PDX) mouse model is thus an alternative tool for TME studies, which is es-

tablished by the direct engraftment of surgically dissected human cancer fragments into immunologically

compromised mice. Xenografted cancers mostly retain microenvironment features, intra-tumor heteroge-

neity, and transcriptional patterns of original cancer (Choi et al., 2014). Therefore, these biological
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characteristics enable the wide use of PDX models in drug screening or co-clinical trials (Gao et al., 2015).

Also, given that the difference in ortholog sequences between humans and mice can be as high as 15% on

average (Waterston et al., 2002), the simultaneous quantification of mixed transcripts is feasible by cross-

referencing to each transcript-map (Bradford et al., 2013). Additionally, the model’s fidelity and cancer-

stroma distinguishability allows researchers to implement comprehensive interactome analyses. Thus,

although PDX models lack the sufficient involvement of immune cells in tumors, unlike scRNASeq or

LCM methods, the pathophysiological robustness of passage procedures where grown xenografts are

re-xenografted to the next generation mice (Gao et al., 2015) gives PDX models several practical superior-

ities. For example, passages from a small portion of resected specimens can be used as biological repli-

cates in experimental analyses; it is not easy for many lab teams to access fresh materials removed from

patients, especially in the case of studies related to epidemiologically rare tumors. Another strong point

is that researchers can conduct subsequent preclinical intervention tests on PDX mice of descendant gen-

erations after they find the TME signal of interest via interactome analysis.

Pan-cancer omics studies can therefore help expand our perspective concerningmalignancies and provide

cues to decipher the associated biological dynamics of tumors, as shown in a recent whole-genome anal-

ysis on The Cancer Genome Atlas (TCGA) data (Campbell et al., 2020). Based on the transcriptome analysis

of PDXs, however, only a few studies have been conducted to characterize the TME of multiple PDX types

so far (Bradford et al., 2016). Moreover, most PDX TME studies lacked a step to model the interaction of

signal-sending and signal-receiving cells. Instead, the conventional analytical workflow includes a simple

differential analysis of stromal transcripts between the two conditions (e.g., a high-grade tumor versus a

low-grade tumor), with subsequent pathway analysis to interpret the output in a biological context. Indeed,

this approach is practical in describing the signaling alteration in stromal transcriptomes caused by the un-

derlying changes in cancer-stroma interplay. However, such practice possesses a limited capability to

clarify causal regulators of the crosstalk, which are potential druggable targets, due to the lack of inte-

grating regulatory network information in the analysis.

Thus, in this study, a collection of 70 PDX samples obtained from tumors of 43 patients and comprising nine

distinctive original tumor types were analyzed. To search for master regulators expressed by cancer cells

that govern the stromal transcriptome, an integrated analysis of (1) an upstream regulator estimation of

the stromal transcriptome, and (2) a differential analysis of the complementary cancer transcriptome was

conducted based on the hypothesis that such regulators’ expression was promoted in cancer cells.

Through the investigation, unique profiles of the kidney renal clear cell carcinoma (KIRC) interactome

were found, involving several paracrine molecules represented by vascular endothelial growth factor A

(VEGFA). In particular, a soluble regulator that has been less recognized in KIRC pathophysiology was iden-

tified. Subsequent experiments suggested that the regulator could possess a function associated with

KIRC progression in a stroma-dependent manner.

RESULTS

Strategic concept to detect hub genes in cancer to stroma interaction

The conceptual workflow to predict ‘‘cancer to stromal’’ interaction is depicted in Figure 1. This strategy

identified hub effectors, such as soluble factors or cell adhesion molecules uniquely expressed in cancer

cells and consequently controlled the transcriptome of stromal cells. The pipeline comprised five steps.

Step (A): PDX model establishment. Step (B): Transcript quantification and assignment to human/mouse

taxonomies. Step (C): General prediction of upstream regulators of the stromal transcriptome (mouse)

using preceding differential analysis on stromal transcripts in the PDX tumor types of interest. Step (D):

Evaluation of the expression uniqueness of identified stromal regulator homologs in the complementary

cancer cell transcriptome (human). Step (E): Integration of the results of steps (C) and (D).

The landscape of the patient-derived xenograft transcriptomes

Seventy PDX samples obtained from tumors of 43 patients, and comprising nine distinctive PDX tumor

types, were enrolled in this study (Table S1). Samples included 29 colorectal carcinomas (COAD) obtained

from 20 patients, 5 non-small cell lung cancers (NSCLC) from 5 patients, 8 Ewing’s sarcomas (EWS) from 1

patient, 8 pancreatic ductal adenocarcinomas (PAAD) from 8 patients, 4 KIRCs from 2 patients, 5 stomach

adenocarcinomas (STAD) from 2 patients, 4 glioblastomas (GBM) from 1 patient, 4 gastrointestinal stromal

tumors (GIST) from 2 patients, and 3 breast invasive carcinomas (BRCA) from 2 patients. The mapping rate

of sequenced reads to the combined human and mouse transcriptome was 88.7% on average across all
2 iScience 24, 103322, November 19, 2021



Figure 1. A conceptual illustration of the workflow to detect hub genes during cancer-stroma interaction

The pipeline consists of the following five steps.

(A): Patient-derived xenograft (PDX) model establishment. Here, 70 PDXs comprising nine different primary tumor types

(COAD, NSCLC, EWS, PAAD, KIRC, STAC, GBM, GIST, and BRCA. See the Results section for abbreviation), were

established. PE: Paracrine effectors.

(B): Transcript quantification and assignment to human/mouse taxonomies. Sequenced reads were quantified with

reference to the combined transcriptome of human and mouse, then subsequently divided into the right taxonomy,

representing cancer cell-derived (human) or stromal cell-derived (mouse) counts, respectively.

(C): Prediction of the upstream regulators of the stromal transcriptome. After a differential analysis conducted on the

stroma of the PDX types of interest (e.g., the KIRC PDX model vs. the others), the upstream regulators over the detected

differentially expressed (DE) genes were estimated using a directional pathway analysis (Ingenuity Upstream Regulator

Analysis, IPA).

(D): Evaluation of the expression uniqueness of the predicted stromal regulator homologs in the complementary cancer

cells. The differential analysis of the complementary cancer transcriptome (e.g., the KIRC PDX model versus the others)

yielded a list of DE genes in cancer cells.

(E): Integration of the results of steps (C) and (D). The intersection of genes provided in steps (C) and (D) was depicted,

with the scores of regulatory effects on the stromal transcriptome and those of the expression uniqueness in the cancer

cells, in a scatterplot. The transcripts of the genes located in the right upper area (C-S PE zone) in the plot were considered

more as paracrine effectors in the ‘‘cancer to stroma’’ interaction.
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samples, ranging between 79.3% and 94.7%. The mixed transcripts and their count estimates were subse-

quently sorted into either human or mouse transcript groups, representing cancer or stromal cell-derived

count estimates, respectively. With the gene-level filtering and logarithm-transformation, the expression

distributions of the identified 17,666 cancer and 17,616 stromal genes were generally equivalent among

PDXs. However, they were still skewed due to the substantial number of genes with low expression values

in some samples (Figure S1).

First, the effectiveness of the read assignment procedure to the human or mouse transcriptome was eval-

uated by calculating ESTIMATE (Estimation of STromal and Immune cells inMAlignant Cancer tissues using

Expression data) (Yoshihara et al., 2013) stromal scores. The stromal scores, which roughly reflected the

extent of resemblance to the general expression profiles of the tumor stroma, were conspicuously higher

in mouse-derived reads than in human-derived reads in all PDX tumor types (Figure 2A) as expected.
iScience 24, 103322, November 19, 2021 3



Figure 2. The landscape of the transcriptome of patient-derived xenograft models

(A) The ESTIMATE stromal scores of stroma-assigned reads and cancer-assigned reads of PDXs (the left panel). The scatterplot showedmean stromal scores

of PDX cancer components and corresponding cancer cell lines (CCLE) as references (the right panel). CCLE included PAAD (n = 41), COAD (n = 58), STAD

(n = 41), BRCA (n = 56), KIRC (n = 25), GLM (65 gliomas corresponding to GBM in PDX), SARC (40 sarcomas corresponding to EWS/GIST in PDX). A linear

regression line in gray and Pearson’s correlation coefficient r are shown.

(B) Tumor purity of PDXs (the left panel) and non-xenografted cancers (TCGA) as a reference (the middle panel). The PDX tumor purity was defined as the

ratio of the cancer gene-level count sum to the cancer plus stroma gene-level count sum. The TCGA tumor purity was computed using the ABSOLUTE

algorithm. The scatterplot (the right panel) showed mean tumor purity values of PDX and TCGA, corresponding to small circles in black on the left and

middle panels, respectively. The SARC in TCGA corresponds to the EWS and GIST in PDX. Spearman’s correlation coefficient r is shown.

(C) The t-SNE plot of PDXs. Samples of the cancer component (the upper panel) or the stroma component (the lower panel) of the PDXs were plotted in t-SNE

format, based on their transcriptome data, with a perplexity value of five. The colors of the dots were used to represent the PDX types as annotated.

See also Table S1 and Figure S1.
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Although the scores of PDX cancer reads varied slightly according to tumor types, the tendency of PDX can-

cer components was generally consistent with that of the corresponding cancer cell lines of the Cancer Cell

Line Encyclopedia (CCLE) transcriptome data (Ghandi et al., 2019) (Pearson’s correlation coefficient r =

0.79, p< 0.05; Figure 2A). Next, the relative abundance of cancer and stroma components in PDX tumors

was assessed to find possible features specific to tumor types. The purity of cancer-derived transcripts of

PAAD or KIRC was markedly lower than that of EWS, GIST, and GBM (q< 0.05; Mann-Whitney U test;

Benjamini-Hochberg, BH, adjusted), suggesting that the PAAD or KIRC were stromal component-rich tu-

mors (Figure 2B). However, the tumor purity of PDXs (transcripts-based) was overall higher than that of
4 iScience 24, 103322, November 19, 2021
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the non-engrafted tumor samples obtained from TCGA data (CNV-based) (Figure 2B). Still, the relative

stroma-abundance across PDX tumor types was similar in those two cohorts (the Spearman’s rank correla-

tion coefficient r = 0.74, p< 0.05), with the EWS and the GIST grouped to correspond to the TCGA sarcoma

(SARC).

Tumor type-dependent characteristics of the PDX TMEs

The t-SNE projection disclosed that the cancer cells’ expression profiles were similar within each PDX tu-

mor type (Figure 2C), except for the NSCLC samples, which included various histological types; three

adenocarcinomas, one squamous cell carcinoma, and one poorly differentiated non-small carcinoma of un-

defined subtypes. Concerning stromal expression data, alternatively, dimension reduction procedures or

clustering methods revealed no evident biologically understandable results (Figure 2C). This result indi-

cated two possibilities; (1) PDXmodels could not reproduce tumor stroma, and (2) PDXmodels reproduced

tumor stroma to some extent, but the underlying inter-tumor-type variance in the stroma was minor

compared to the intra-tumor-type variance or other non-specific variances. Given the successful separation

of most PDX cancers by tumor type, it is conceivable that potential cancer-stroma interactions could induce

tumor type-specific signaling in the corresponding stroma. It is also important to note that the intra-tumor-

type variances in stroma should be intrinsically more significant than cancer cells in light of the polyclonal-

ity, diversity, and redundancy of the stroma cell population. Therefore, we decided to explore possibility (2)

above by investigating the expression patterns of curated gene sets in the stroma to focus on biologically

meaningful expression variances.

The GeneSet Variation Analysis (GSVA) (Hänzelmann et al., 2013) was conducted using the 40 Hallmark biolog-

ical pathways (Table S2) of theMolecular Signatures Database (Liberzon et al., 2015) and eight stromal cell types

(Table S3) (Schelker et al., 2017). The heatmap of themean enrichment scores of the top 10 pathways in the anal-

ysis of stromal transcriptomes (q< 0.005, one-way ANOVA test for PDX-types, BH adjusted) showed upregu-

lated inflammatory or interferon (IFN)-related pathways in theGBMstroma (Figure 3A). This findingwas in accor-

dance with the fact that expressions of dendric cells- or neutrophil-specific markers were relatively promoted in

the GBM stroma, albeit statistically insignificant (Figure 3B). As for the histopathological aspect, GBM PDXs

were confirmed to be composed of pleomorphic tumor cells with irregular-shaped nuclei and sporadic necrotic

tissues infiltrated by inflammatory cells (Figure 3C). Concerning PAAD, a fibroblast-rich stroma was implied by

enrichment analysis (Figure 3B). Then hematoxylin and eosin (H&E) staining of PAAD PDXs revealed the path-

ological features that tumor cells surrounded by abundant fibrotic tissue were arranged in a tubular form (Fig-

ure 3C). Alternatively, EWS PDXs, a representative of high tumor purity PDXs (Figure 2B), were microscopically

featured as sheets of round cancer cells with a high nuclear-cytoplasm ratio, havingpoor interjacent stroma (Fig-

ure 3C). Collectively, PDXs were confirmed to maintain the original TME architecture; besides, the underlying

pathophysiology of the tumor stroma was detectable through gene set analyses.

Tumor type-dependent characteristics of the KIRC TMEs

Hypoxia and glycolysis-related pathways were significantly upregulated in the KIRC cancer components,

whereas these pathways were downregulated in the KIRC stromal components (Figure 3A). Also, the

elevated mean enrichment score of endothelial cell markers (Figure 3B) and prominent capillary network

formation on microscopic assessments (Figure 3C) were noted in KIRC PDXs. These observations were

in line with the well-documented pathophysiology of KIRC that the aberrantly accumulated Hypoxia Induc-

ible Factor 1 (HIF1) induced metabolic shift toward aerobic glycolysis in tumor cells and pro-angiogenic

dynamics in the stroma (Cohen and McGovern, 2005) (Gatto et al., 2014). Moreover, given that malignant

cells were known to compete for glucosemetabolismwith stromal cells in the TME (Koukourakis et al., 2006)

(Chang et al., 2015), the metabolic competition arising due to their interplay may ascribe complemental

regulation of the glycolysis pathway in cancer and stromal cells (Figure 3A).

Integrated TME analysis to predict paracrine effectors during KIRC homeostasis

As the stromal expression pattern of the KIRC model recapitulated its original tumor well and was unique

among other PDX tumor types, we decided to explore the KIRC further.

First, gene-level differential analysis of the stromal component of KIRC against the other eight tumor types

revealed 941 differentially expressed (DE) genes (q< 0.05, BH adjusted), including the Mcf2l, Exoc3l2,

Olfr558, and Chrm2 (Table S4) listed as the top-ranked genes. Upstream regulators over the top 300 DE

gene orthologs (q< 0.001) were then estimated using the Ingenuity Upstream Regulator Analysis (IPA)
iScience 24, 103322, November 19, 2021 5



Figure 3. Tumor type-dependent characteristics of the PDX TMEs

(A) Pathway analysis. The GSVA analysis was conducted for 40 of 50 hallmark pathways. The top 10 pathways measured to

be statistically significant (q< 0.005, BH adjusted) using the one-way ANOVA test for PDX-types were shown.

(B) Cell type-specific gene set analysis. The GSVA analysis was conducted for gene sets specific to the eight major stromal

cell types. The mean enrichment scores (meanES) of each PDX type, scaled to the sample-wise standard deviation (SD)

and divided by the total SD, were shown by color scales. yq<0:05; zq<0:005 (BH adjusted).

(C) Pathological images of the KIRC, PAAD, GBM, and EWS PDXs on hematoxylin and eosin (H&E) stain. The right half of

the KIRC picture was stained using the anti-CD31 antibody. Asterisks (*) denote intra-tumor vessels in the KIRC and

mitotic tumor cells in the GBM. Arrows in the GBM show necrotic areas infiltrated by inflammatory cells. Scale bars

represent 50 mm in length.

See also Tables S2 and S3.
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(Krämer et al., 2014) (Figure 1C). Briefly, IPA executed a directional pathway analysis based on the manually

curated database of upstream regulators and targeted genes with cause-effect relationships related to

expression, transcription, or activation. Specifically, IPA evaluated the extent of overlap between the

provided gene set (i.e., top 300 DE gene orthologs of the KIRC stromal component) and the preset down-

stream genes in the database based on Fisher’s exact test. Activation z scores also represented the concor-

dance of expected expression trends and the observed expression trends of downstream genes;

z =

P
ixiffiffiffiffi
N

p ðxi ˛ f� 1;1gÞ

where xi represents the direction of the activation of the ith downstream gene, with i ranging from 1 to N.

Through this IPA analysis, 246 genes (p< 0.05, Fisher’s exact test), such as the DLL4, RUNX1, and VEGFA

genes were identified as candidate regulators (Figure S2 and Table S5). Note that candidates of stromal

regulators listed in Table S5 included any type of upstream factors (e.g., autocrine/paracrine regulators

and transcription factors) that were either relevant or irrelevant to cancer-stroma interaction.

Second, the expression uniqueness of stromal regulator homologs in the corresponding cancer cells was

evaluated (Figure 1D). Differential analysis on cancer reads of the KIRC against the other 8 PDX types re-

vealed 1,181 DE genes (q< 0.05, BH adjusted), with the lowest q-value identified for POU3F3, SLC28A1,

and CDH6 genes (Table S6).
6 iScience 24, 103322, November 19, 2021



Figure 4. Integrated TME analysis predicted APLN as a paracrine effector during KIRC homeostasis

(A) Prediction of the paracrine effectors during cancer-stroma interaction. Xaxis: negative logarithm of the q-value (BH adjusted) on the differential

expression analysis of KIRC cancer cells. The plus or minus sign was adjusted to represent the direction of gene expression; genes with x> 0 were

upregulated in KIRC cancer cells and vice versa. Yaxis: negative logarithm of the q-value (BH adjusted) of overlap on the upstream regulator analysis of IPA

for the top 300 DE genes of the KIRC stroma. The color scale: activation Z score indicated the concordance of the predicted direction and the observed

direction of downstream genes’ expression.

(B) Library-size scaled log-expression levels of estimated paracrine regulator genes (VEGFA, APLN, and AGT) and non-paracrine regulator genes (TGFB1,

APP, and DLL4) in PDXs, stroma-free KIRC cell lines (CCLE), and cancer-free normal kidney tissue (GTEx).

(C) Tumor volume increases, and body weight losses of host mice during the APLN-signaling inhibition test on KIRC PDX mice (MM54-dosed groups, solid

lines; PBS-dosed groups, dashed lines).

(D) The mean density of endothelial cells (ECs) (the left panel) and mean density of intra-tumor microvessels (MVD) (the right panel) were measured in

histopathology sections of KIRC PDXs during the APLN-signaling inhibition test (MM54 groups, shaded bars; PBS groups, white bars).

(E) The left panel: Relative expression (%GAPDH) ofAPLN and APLN receptors (APJ) in APLN-overexpressed UM-RC-2 cells (umAPLN, in gray) or control UM-RC-2

cells (umCtrl, in white). The right panel: Absorbance (Abs.) of 450 nm light on CCK8 assay after a 72 h culture for umAPLN (in gray) and umCtrl (in white).
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Figure 4. Continued

(F) Time courses of tumor volumes of umAPLN (solid line) or umCtrl (dashed line) after the subcutaneous transplantation into host mice. (C-F) The data were

shown as meanG standard error of the mean (SEM) (n = 10 or n = 4). The letter n.s.,y, or zrepresents pS0:05, p<0:05, or p<0:005, respectively, on the two-way

Student’s t-test (C, F), or the Mann-Whitney U test (B, D, E).

See also Figures S2 and S3 and Tables S4–S6.
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Lastly, genes of steps C and D intersections were retrieved and subsequently integrated into a plot, with

regulatory effect scores over the stromal transcriptome plotted on the yaxis (C), and indicators of the

expression uniqueness in cancers plotted on the xaxis (D) (Figures 1E and 4A). As a result, the genes in

the right-upper area of the plot presented more as paracrine effectors in the cancer-stroma interaction.

Notably, the VEGFA, APLN, and AGT genes were more positively expressed in KIRC cancer cells

(qVEGFA = 1:73 10�4, qAPLN = 1:43 10�13, qAGT = 6:13 10�7), and showed substantial regulatory effects

on downstream genes of the stroma (q:overlapVEGFA = 4:93 10�9, q:overlapAPLN = 1:03 10�5,

q:overlapAGT = 1:33 10�4) in positive directions (zVEGFA = 3:97, zAPLN = 2:83), although the AGT gene

showed a relatively weak regulatory trend consistency (zAGT = 0:43). Therefore, we predicted VEGFA,

APLN, and AGT genes as paracrine effectors for the cancer-stroma interaction in KIRCs, whereas DLL4,

APP, and TGFB1 genes to be potential autocrine effectors. It is also important to note that most of the other

stroma-regulating genes, such as the RUNX1, PPP1R114B, and SOX2, were either gene coding non-soluble

transcription regulators or intracellular proteins. Therefore, they were omitted from the subsequent

analyses.

Furthermore, the expression levels of estimated paracrine effectors in immortalized KIRC cell lines (CCLE)

and normal kidney tissue of Genotype-Tissue Expression (GTEx) were investigated to evaluate the signif-

icance of stromal cells located adjacent to cancer cells (PDX versus CCLE) and potential confounding ef-

fects caused by their tissue specificity (PDX versus GTEx), respectively. Interestingly, the relative expression

levels of estimated paracrine effectors, such as VEGFA, APLN, and AGT, were found to be strikingly and

significantly higher in PDX cancer components than in cell lines obtained from CCLE data (Figure 4B).

Also, the VEGFA and APLN genes in PDXs additionally showed greater expression levels than in normal

kidney tissue of GTEx data, suggesting that their expression uniqueness (xaxis in Figure 4A) in KIRC cancer

components was not merely attributable to tissue specificity. By contrast, stromal upstream regulators that

were not estimated to be paracrine effector genes, such as DLL4, APP, and TGFB1, showed no significant

increase in expression levels in KIRC cancer components compared with CCLE or GTEx.
Validation of the expression profiles unique to KIRC

Here, external data of KIRC PDXs (Wang et al., 2018) (Courtney et al., 2020) were exploratorily incorporated

into our original PDX data to confirm the validity of the KIRC homeostasis uniqueness observed in this study

so far. The external data included 21 PDXs generated using 17 tumors surgically resected from 15 patients.

Results showed that the overall expression patterns (Figure S3A) and expression levels of potential para-

crine effectors (Figure S3D) in the external data were comparable to those in our original data. Upregulated

hypoxia or glycolytic pathways in cancer components, and downregulated hypoxia or glycolytic pathways

in stroma components were significant even when the external data was incorporated (Figure S3B). The

endothelial cell signature remained the most dominant in KIRC stroma, although it lost statistical signifi-

cance (Figure S3B). Furthermore, the log fold-change values of differentially expressed genes (q< 0.05)

in KIRC based on our original data were highly correlated with the values of corresponding genes in the

KIRC of the combined data (Figure S3C). Collectively, KIRC homeostasis observed in our original data

seemed robust despite the limited number of samples.
APLN signaling modulated KIRC tumor progression

To further investigate the role ofAPLN in the KIRC cancer-stromal homeostasis, pharmacological inhibition

tests were performed by injecting MM54 (cyclo[1-6]CRPRLC-KH-cyclo[9-14]CRPRLC), an established apelin

receptor (APJ)-specific antagonist (Macaluso et al., 2011), intraperitoneally into the KIRC model mice.

MM54 has been designed to implement bivalent binding sites ‘‘RPRL’’ (Macaluso et al., 2011), a pharmaco-

phore sequence conserved in human and mouse apelin genes (Yang et al., 2015). The specificity to APJ

(Harford-Wright et al., 2017) and the effectiveness in inhibiting APJ-signaling in mouse models (Uribesalgo

et al., 2019) have also been shown in previous literatures. The administration of MM54 modestly but statis-

tically significantly suppressed tumor growth by 39% on average, reducing the mean tumor volume from

409.8 mm3 in the vehicle-dosed group to 247.5 mm3 in the MM54-dosed group (p< 0.001) on the 19th
8 iScience 24, 103322, November 19, 2021
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day after tumor engraftments (Figure 4C). Furthermore, the density of the intra-tumor microvessels (MVD)

(Weidner et al., 1991), having a diameter being larger than 30 mm, was significantly lower in the MM54-

administrated group (p< 0.05, Figure 4D). However, the total MVD of technically countable vessels was sta-

tistically insignificant. Given that the mean density of the endothelial cells (ECs) was equivalent in both

groups (Figure 4D), it was suggested that MM54-dosed tumors formed relatively smaller vessels. Mean-

while, Ki67-positive ECs were less than 1% of all ECs in both groups, suggesting that most ECs were not

in the mitotic phase (data not shown). To further understand possible mechanisms of how the modulated

APLN signaling affected KIRC growth rates, we investigated the effects of APLN on cell growth by

comparing its results in in-vitro and in vivo environments. APLN-transfected UM-RC-2, a human KIRC

cell line with relatively lower endogenous APLN expression, showed no significant difference in in-vitro

cell growth rate (Figure 4E). By contrast, the same cell showed a mild but significant increase in tumor

growth rate in vivo when it was engrafted in mice (Figure 4F). Besides, the endogenous expression level

of the APLN receptorAPJwas almost negligible in this cell line (Figure 4E). Taken together, these outcomes

implied that APLN possessed the pro-carcinogenic effect in the KIRC xenograft model, and that the

involvement of stromal cells into tumor tissue was needed for APLN to exert its effect.
DISCUSSION

The systematic analysis of multi-cancer TME was demonstrated to be feasible with the use of PDX models.

PDX models recapitulated the original tumor’s features, including the cancer transcriptome, relative can-

cer-stroma ratio, stromal cell composition, and altered cell signaling. An integrated analysis of cancer and

stroma transcriptome also detected putative paracrine signaling accelerators, such as the VEGFA,

including a less-documented soluble factor, the APLN, in the KIRC pathology. Furthermore, a subsequent

APLN inhibition trial on KIRC PDX mice supported its potential function in KIRC tumor progression.

The ESTIMATE stromal scores of the cancer reads were substantially lower than those of the stomal reads

(Figure 2A), which supports the validity of the read assignment procedure to mixed human/mouse RNA li-

braries. It is interesting to note from the results that the stromal scores of cancer components varied across

the different PDX types and were almost equivalent to that of the CCLE samples’ (Figure 2A). Sarcomas,

including the EWS or GIST, except for GBM, showed relatively high stromal scores than those of other

PDX types. This result can be attributed to the process of ESTIMATE in the construction of cancer expres-

sion references where most of the enrolled tumor types were epithelial cancers, including breast, colon,

endometrial, kidney, lung, and ovarian cancers. One exception to the recruitment is the glioma; ESTIMATE

included glioma stem-like cell-specific genes into the model (Yoshihara et al., 2013). Furthermore, the high

proportion of stromal components in the PAAD and KIRC identified during tumor purity analysis (Figure 2B)

was in concordance with the pathological features of original tumors. Primary PAAD is one of the most

stroma-rich tumors. Most of the PAAD’s stroma comprises fibroblasts and fibrotic ECM, which is a potential

obstacle for delivering therapeutic drugs to cancer cells (Feig et al., 2012). The KIRC, meanwhile, induces

many intra-tumor vasculatures (Cohen and McGovern, 2005). These TME characteristics unique to tumor

types were confirmed in PDXs by the enrichment analysis on cell-type markers (Figure 3B) and during

the histological study (Figure 3C). Furthermore, unsupervised pathway analyses captured the well-known

KIRC pathophysiology, such as the accumulated HIF1, the accelerated transcription rate of hypoxia-related

genes, and the remarkablemetabolic shift toward the anaerobic direction (Gatto et al., 2014). The tendency

of PDXs to show an overall higher tumor purity than that of the TCGA (Figure 2B) can be explained by the

insufficient functionality of immune cells in the host mice, which failed to infiltrate into the tumor. Another

possible explanation for the disparity was that the growth rate of implanted tumors surpassed that of the

stromal components in the PDXs. Indeed, the host stromal cells should involve a large chunk of the tumor,

which had already been 5 mm3 in size at the time of the engraftment procedure.

The presented workflow correctly predicted the involvement of the previously documented paracrine reg-

ulators, such as VEGFA and AGT, in the KIRC pathological homeostasis. The VEGF-triggered signaling is a

well-established pharmacological target for anticancer therapies against metastatic KIRC in clinical use

(Motzer et al., 2013). Angiotensin is a vital vasoconstriction factor and a mitogenic factor responsible for

inducing tissue remodeling. Upregulated AGT expression in KIRC cancer cells could be confounded by

the tissue-specificity of its expression in the kidney compared to other organs (Figure 4B). However, it

does not necessarily deny the possible role of AGT in cancer-stroma interactions. The aberration of the

renin-angiotensin system has been reported as a risk factor for KIRC, and the inhibition of the angiotensin

system, combined with VEGF signaling-targeted therapies, improves the prognosis of metastatic KIRCs in
iScience 24, 103322, November 19, 2021 9
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several sub-group and retrospective analyses (Derosa et al., 2016). Intriguingly, those paracrine effectors

were significantly upregulated in the PDX cancer component compared to the stroma-free cancer cells

(Figure 4B). This observation implies that the increased levels of VEGFA, AGT, and APLN genes expression

in KIRC are partly due to the stromal involvement in the tumor tissue organization.

Apelin and its innate receptor; APJ, are recently documented axis that is responsible for regulating angio-

genic dynamics, fibrotic tissue remodeling, body fluid homeostasis, and adipocyte endocrine secretion

(O’Carroll et al., 2013). In our study, the antagonistic inhibition of the APLN signaling led to the growth

retardation of KIRC PDXs (Figure 4C). Besides, larger intra-tumor vessels were significantly reduced by

administering the APJ-antagonist without increasing the total ECs (Figure 4D). Also, tumor progression

induced by APLN’s overexpression in UM-RC-2 seemed to depend on the stomal involvement (Figures

4E and 4F). These results are in accord with previously reported roles of apelin, which promoted angiogen-

esis and vessel enlargement during the process of embryogenesis (Kidoya et al., 2008) and mammary

carcinoma progression (Sorli et al., 2007). Regarding the possible mechanism of how APLN influences

the vessel diameter, APLN is proposed to induce proliferation and chemotaxis to ECs in the sprouting

stage leading to potential mobilization and assembly of vessels (Kidoya et al., 2008). However, this mech-

anism has not been explicitly proven so far. Collectively, the APLN-APJ axis was proposed to be a drug-

gable target in the cancer-stroma interplay in KIRC. APLN transcription is promoted by the HIF1a bound

on hypoxia-responsive elements like the VEGFA (Eyries et al., 2008), whereas the downstream of APLN

signaling is partly independent of VEGFA signaling (Wu et al., 2017). Therefore, given that both the VEGFA

and APLN exerted angioplasty effects (Figures 3B and 3C) on the stroma in a paracrine way (Figures 4A and

4B), the hypoxia-related signaling initiated by the aberrantly accumulated HIF1 in the KIRC tumor can be

acknowledged as their shared upstream origin (Figure 3A).

The fact that the PDX host mice lack functional lymphocytes or natural killer cells in the TME constitution (Ito

et al., 2002) should be noticed when the results in this study are interpreted. Those immune cells provide

complexity and dynamics to the TME due to their heterogeneity and motility. Therefore, the absence of

immune cells in the PDX model leads to a disadvantage in ignoring the effects of immunological dynamics

in the TME. At the same time, however, it also provides the model with a unique advantage to make the

interplay of cancer cells and the less motile stroma (fibroblasts or vessel components) easier to understand

by reducing the TME complexity. The use of humanized mouse models in which hematopoietic stem cells

or peripheral blood mononuclear cells are engrafted is proposed to assist with reproducing more precise

TMEs. Regarding combination therapies assessed in in-vivo, overexpressed APLN was reported to pro-

mote the maturation of the cancer vasculature and subsequently enhanced its immune therapy efficiency

in orthotopic colon cancer models (Kidoya et al., 2012). In contrast, the additional anticancer effect of multi-

target tyrosine kinase inhibitors against metastatic KIRC has also been proven in clinical studies along with

IFNa or themammalian target of rapamycin (mTOR) inhibitors (Choueiri andMotzer, 2017). It would thus be

worthy of examining whether the APLN-signaling inhibition helps with improving chemotherapy responses

in clinical settings as well.

Several available alternatives to predict the tumor-stroma crosstalk instead of IPA exist. For example, Choi

et al. developed a Cell-Cell Communication Explorer (CCCExplorer), which is a computational model of a

crosstalk network composed of ligand-receptor sets (intercellular signaling), transcriptional factors, and

their targets (intracellular signaling) (Choi et al., 2015). The CCCExplorer is superior in that the model de-

tails transcriptional processes so that its outputs are straightforward to interpret in biological contexts. In

contrast, IPA includes all gene sets in cause-result relationships involved in various transcriptional pro-

cesses driven by transcriptional factors and enhancer-binding or histone modification; therefore, the anal-

ysis can be more comprehensive.

Previous studies have confirmed the importance of the cross-cancer TME analysis by employing the scRNA-

Seq approach (Qian et al., 2020). This study integrated publicly available scRNASeq data to map each can-

cer in terms of their stromal constitutions, which led to an understanding of the tumor-associated stromal

pathophysiology of melanomas. Currently, only a few publicly available PDX data exist. Still, efforts are be-

ing made to organize published PDX data for researchers to easily access these data via data portal sites,

such as the PDX Finder (Conte et al., 2019). So far, relatively little progress has been made on the charac-

terization of TMEs in analyses that enroll multiple PDX tumor types (Bradford et al., 2016). Therefore, the

multi-cancer analysis of larger-scale PDX data is believed to broaden the perspective regarding the biology
10 iScience 24, 103322, November 19, 2021
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of malignancies, especially in cancer-stroma communications, and pave the way to discover novel anti-

cancer drug targets that will shoot the Achilles tendon of cancer-stromal interactions.

Limitations of the study

One of the major limitations in this study is that the sample size of each tumor cohort was relatively small;

thus, the power to detect tumor-type-dependent crosstalk can be diminished. Therefore, it would be pref-

erable to verify the results by analyzing more extensive PDX data comprising more samples per tumor type

in future researches. Also, the cluster formation in the t-SNE plot was inadequate in some tumor types,

particularly in NSCLC (Figure 2A). A possible reason was that NSCLC included various histological sub-

types, but the non-biological reasons, such as technical limitations, cannot be excluded due to the scarcity

of the samples. In addition, cancer-stoma communications in PDX models were intrinsically limited by

ligand-receptor interactions that were conserved across species, potentially leading to the unnatural re-

modeling of intra- or inter-cellular signaling. Other than the above mentioned, it was unclear on what pro-

cess MM54 worked, tumor engraftment or tumor progression, because MM54 was administrated from the

day of tumor engraftment.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-CD31 antibody Abcam Cat#ab28364; RRID:AB_726362

Biological samples

Patient-derived xenografts (PDX) This study N/A

Chemicals, Peptides, and Recombinant Proteins

MM54 Tocris Bioscience CAS 1313027-43-8

Critical commercial assays

Cell Counting Kit-8 DOJINDO Cat#CK04

PikoReal�Real-Time PCR System Thermo Fisher Scientific N/A

Deposited data

Human transcript sequences The GENCODE Project https://www.gencodegenes.org/human/

release_27.html; RRID:SCR_014966

Mouse transcript sequences The GENCODE Project https://www.gencodegenes.org/mouse/

release_M15.html; RRID:SCR_014966

HomoloGene build 68 (NCBI Resource Coordinators, 2016) https://ftp.ncbi.nih.gov/pub/HomoloGene/

build68/; RRID:SCR_002924

Molecular Signatures Database v6.2 (Liberzon et al., 2015) https://www.gsea-msigdb.org/gsea/

msigdb/; RRID:SCR_016863

Cancer Cell Line Encyclopedia (Ghandi et al., 2019) https://ocg.cancer.gov/ctd2-data-project/

translational-genomics-research-institute-

quantified-cancer-cell-line-encyclopedia;

RRID:SCR_013836

Genotype-Tissue Expression GTEx Consortium https://www.gtexportal.org/home/

datasets; RRID:SCR_013042

Sequence data of KIRC PDXs (Wang et al., 2018) EGA: EGAD00001003895

Sequence data of KIRC PDXs (Courtney et al., 2020) EGA: EGAD00001004799

Expression data of human and mouse genes in PDXs This study GEO: GSE159702

Tumor purity estimates of The Cancer

Genome Atlas samples

(Aran et al., 2015) https://gdc.cancer.gov/about-data/

publications/pancanatlas

Experimental models: Cell lines

UM-RC-2 ECACC Cat#08090511; RRID:CVCL_2739

Experimental models: Organisms/strains

Mouse: NOD.Cg-PrkdcscidIl2rgtm1Sug/

ShiJic (NOD/Shi-scid,IL-2RgKO)

In-Vivo Science RRID:MGI:6197549

Oligonucleotides

Human APJ primer, forward

(CCCCTTCCTCTATGCCTTTTTC)

Eurofins Genomics N/A

Human APJ primer, reverse

(ATCTGTTCTCCACCCTTGCC)

Eurofins Genomics N/A

Human APLN primer, forward (ACCCAAG

CTGGCTAGTTAAGCCACCATGAATCT

GCGGCTCTGCGTGCA)

Eurofins Genomics N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human APLN primer, reverse (TGTTCGAA

GGGCCCTCTAGATCAGAAAG

GCATGGGTCCCT)

Eurofins Genomics N/A

Software and algorithms

Salmon version 0.8.1 (Patro et al., 2017) RRID:SCR_017036

ESTIMATE version 1.0.13 (Yoshihara et al., 2013) https://bioinformatics.mdanderson.

org/estimate/

GSVA version 1.36.0 (Hänzelmann et al., 2013) RRID:SCR_021058

Ingenuity Pathway Analysis version 01–07 QIAGEN RRID:SCR_008653

Olympus cellSens Software Olympus Corporation RRID:SCR_014551

R version 4.0.0 https://www.r-project.org/ RRID:SCR_001905

Other

Resource website for codes

and supplemental tables

This study https://github.com/Kuniyo-Sueyoshi/PDX/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Shumpei Ishikawa (ishum-prm@m.u-tokyo.ac.jp).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d The data of transcript-level abundance of the mixed transcripts of each PDX sample and the gene-level

expressionmatrices in count estimate values of cancer and stromal components are available at the GEO

(accession number: GSE159702).

d Codes used to obtain the expression data from the sequencing data (fastq), result figures, and supple-

mentary tables are available at https://github.com/Kuniyo-Sueyoshi/PDX.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

Five- to six-week-old female NOD.Cg-PrkdcscidIl2rgtm1Sug/ShiJic (NOD/Shi-scid, IL-2RgKO) mice (RRID:

MGI:6197549, In-Vivo Science, Tokyo, Japan) (Ito et al., 2002) were purchased to establish PDXs as

described in the METHOD DETAILS section. Sample size (n) was mentioned in each figure legend. Exper-

iments using human xenografts and mice were also conducted following the animal experiment guidelines

of the University of Tokyo and the Tokyo Medical and Dental University.
Human tumor samples

Tumors surgically resected from 43 patients at the Kanagawa cancer center were used to establish PDXs.

Basic characteristics of patients such as age and sex were provided in Table S1 if available. The age and sex

of 12 patients were unavailable because of technical issues. The ethics board of the University of Tokyo

approved this study. Written informed consent was obtained from all patients. The statement in the con-

sent documents included studying resected specimens and disclosing data at any publicly accessible re-

positories in such a form that individuals cannot be specified.
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Cell line

A human renal cell carcinoma cell line, UM-RC-2 cell (RRID: CVCL_2739, ECACC 08090511), was obtained

from the European Collection of Authenticated Cell Cultures (ECACC). Cells were cultured in the EMEM

medium (FUJIFILM Wako Pure Chemical Corporation, Japan) and supplemented with 10% fetal bovine

serum (#172012, Sigma Aldrich, MO, USA), sodium pyruvate (#11360-070, Thermo Fisher Scientific, MA,

USA), penicillin/streptomycin (#168-23191, FUJIFILM Wako Pure Chemical Corporation), NEAA

(#11140050, Thermo Fisher Scientific), and L-Glutamine (#073-05391, FUJIFILM Wako Pure Chemical Cor-

poration) at 37�C under a condition of 5% CO2.

METHOD DETAILS

Model mice establishment and RNA sequencing

Forty-three fresh tumor specimens of 9 distinctive tumor types (Table S1) were resected at the Kanagawa

cancer center, sectioned, and frozen at �80�C. Dissolved tumor fragments of 5 mm3 in size were subcuta-

neously transplanted into the flank of NOD/Shi-scid, IL-2RgKO mice (In-Vivo Science, Japan) (Ito et al.,

2002) to establish PDXs. PDX samples were re-transplanted to reproduce the Nth passages (N: 2, 3, .)

of the corresponding PDX, yielding 70 PDX samples (Table S1). PDXs of the 2nd or later passages were

enrolled in the following analyses. Subsequently, model mice were euthanized, and tumors were resected

for RNA extraction. Each sample passed the inspection for syphilis, hepatitis B virus, hepatitis C virus, or HIV

infection. Total RNA of the tumors, suspended in TRIzol Reagent (Thermo Fisher Scientific), was extracted

according to themanufacturer’s instruction. Then, the sequencing library was prepared using 1mcg of total

RNA as the starting material of TruSeq Stranded mRNA Library Preparation kit (Illumina, San Diego, CA,

USA). Briefly, PolyA+ RNA purified from total RNA was fragmented using divalent cations. Double-

stranded cDNA was synthesized using Invitrogen SuperScript II Reverse Transcriptase (Thermo Fisher

Scientific), then the indexed RNA adapter was ligated. The cDNA fragment was amplified by PCR as

following; denatured for 30 s at 98�C; cycled for 15 times of 10 s at 98�C, 30 s at 60�C, and 30 s at 72�C;
and incubated for 5 min at 72�C for final extension, then cooled to 4�C. The amplified library was purified

by Agencourt AMPure XP (Beckman Coulter, Tokyo, Japan). Libraries were sequenced 100bp paired-end

on the Hiseq2000 sequencer (Illumina). Four libraries were loaded into a single lane of Illumina flow cell,

producing more than 30 million paired-end reads for each sample.

Assignment and quantification of transcripts

The Salmon (version 0.8.1) software, which is aware of biases derived from the fragment length, distance

from the 50 and 30 end of the sequenced fragments, and regional GC content (Patro et al., 2017), was

used for transcript quantification. Briefly, the human (GENCODE, release 27, GRCh38.p10) andmouse tran-

scriptomes (GENCODE, release M15, GRCm38.p5) were combined, and a quasi-mapping index of the

xeno-species transcriptome was subsequently built using the –type quasi -k 31 preset. Then, the transcripts

of the protein-coding regions were extracted from the whole transcripts. Estimation of transcript counts

and abundance was also executed using the Salmon quasi-mapping mode with the –l A preset. Here,

yielded data were divided into human or mouse transcripts, representing cancer reads or stroma reads,

respectively. Subsequently, the transcript-level count estimates and abundance were summarized to

gene-level length-scaled count estimates and abundance in transcript per million (TPM) values with the

tximport package (version 1.16.1) (Soneson et al., 2015) in R (version 4.0.0) using the summarizeToGene

function with the countsFromAbundance = ‘‘lengthScaledTPM’’ preset on the reference of the transcrip-

tome index prepared above. Genes with constantly low expression were filtered off then used in the t-

SNE and differential expression analysis below. The cutoff criteria for filtering was whether TMM (Trimmed

Mean of M value)-normalized CPM (Count Per Million) values were constantly lesser than one. These values

were computed using the edgeR package (version 3.34.0) (Robinson and Oshlack, 2010). The base-2 log-

arithm of CPM values with a pseudo-count of 0.25 was used in most subsequent studies unless otherwise

noted. The data of transcript-level abundance of the mixed transcripts and the gene-level expression

matrices are available at the Gene Expression Omnibus (GEO) site. (See the data and code availability

section).

Overview of the PDX transcriptomes

Dimension reduction by the t-SNE algorithm was conducted using the R package Rtsne (version 0.15), with

perplexity set to five. Stromal scores of PDXs and CCLE expression data in log-TPM values were calculated

using the ESTIMATE (Estimation of STromal and Immune cells in MAlignant Cancer tissues using
16 iScience 24, 103322, November 19, 2021
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Expression data, version 1.0.13), according to the instructions of the developer (Yoshihara et al., 2013). The

CCLE data of corresponding primary tumors were also retrieved from the NIH site; https://ocg.cancer.gov/

ctd2-data-project/translational-genomics-research-institute-quantified-cancer-cell-line-encyclopedia

(accession date; May 29, 2020). Subsequently, we defined the tumor purity of a PDX sample as the propor-

tion of the gene-level and length-scaled count sum of the cancer components to that of the total (cancer

plus stroma) components. Tumor purity estimates of TCGA computed by the ABSOLUTE algorithm, which

infers the relative abundance of malignant cells based on their allelic copy number profiles, were also

retrieved from a previous study (Aran et al., 2015). Furthermore, mouse gene symbols were converted to

human gene symbols using the HomoloGene database (build 68) (NCBI Resource Coordinators, 2016)

as needed.
Gene set analysis

Gene Set Variation Analysis (GSVA, version 1.36.0) (Hänzelmann et al., 2013) was conducted for pathway

analyses and a stromal cell-signature analysis. GSVA is an unsupervised, competitive gene set analysis

approach that gives a sample-wise enrichment score for gene sets by simulating the Kolmogorov-Smir-

nov-like random walk. For the pathway analyses, 40 pathways of 50 curated Hallmark pathways (Table

S2) were obtained from the Molecular Signatures Database (MSigDB v6.2, Broad Institute, Boston, USA)

(Liberzon et al., 2015). Ten pathways considered irrelevant to the TME pathophysiology were excluded

in advance because this analysis’s primary motivation was to describe stromal expression profiles. For

the cell-signature analysis, eight stromal cell types and gene sets (Table S3) were also prepared in reference

to previous studies (Schelker et al., 2017) (Yu et al., 2019) (Sxenbabao�glu et al., 2016). The statistical method

of PDX type-wise differential analyses of the enrichment scores was described in the section below.
Differential expression analysis of PDXs

The Limma-voom pipeline (Law et al., 2014) (Smyth, 2004) was used for the RNA-seq differential analysis on

the stroma and cancer of the KIRC PDX model. The sample-wise mean-variance relationship was stabilized

using the voom function to fit the RNA-seq data to the negative binomial distribution. A linear model to

explain the expression level of the gene was also created as a function of cancer type, using the R package;

limma (version 3.48.0), and the linear model as shown below

Y=b0 +Db+ ε0 (Equation 1)

whereY is a vector of the voom-stabilized transcript abundance of the gene, b0 is the intercept, b is a vector

of coefficient, and ε0 is a residual vector. The design matrix D7039 was set as

D =

2
66664

D1 O O O O
O D2 O O O
O O . O O
O O O D8 O
O O O O D9

3
77775

where Di is a 13 ni matrix, i represents each PDX cancer type ði = 1; 2;/;9Þ, and ni is the total number of

samples of the ith PDX cancer type.

Di = ð1; 1; .; 1ÞtrX

i

ni = 70

PDX samples of multiple passages were also taken as ‘‘technical duplicates’’ to make the most of the gene-

wise variance information within each PDX type. The duplicate correlation coefficients of the expression

among passages, computed by the duplicateCorrelation function, were incorporated as block presets in

the linear model. Given that a PDX type corresponds to the case of i = I, the contrast matrix C139 was

set as below to clarify the PDX type (i = IÞ vs. others on differential analyses, assuming that samples of

the PDX type (i = IÞwere an experimental group, whereas the remaining eight types were the control group.

C13 9 = ðc1; c2; .; c9Þtr�

ci =

1 ði = IÞ
�1=8 ðisIÞ
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Lastly, moderated t-statistics were calculated using the empirical Bayes (eBayes) algorithm that yields a

fold change of expression level and p-value for each gene. Genes with a p-value adjusted by the BH

method being less than 0.05 were defined as DE genes (Tables S4 andS6).

Differential analysis in gene set analyses

PDX type-wise differential analyses of the enrichment scores in the pathway analysis or cell type signature

analysis were conducted using linear models similar to those described in the section ‘‘Differential expres-

sion analysis,’’ except for the voom step. When modeling the Equation (1), Y was defined as a vector of

normalized enrichment scores of a pathway or cell type, while other parameters remained the same as

described above. The subsequent processes were also similar to those described above.

Estimation of paracrine effectors in KIRC TME

The top 300 DE genes of the stromal component of PDXs were converted to human gene symbols based on

the HomoloGene database (NCBI Resource Coordinators, 2016). The p-values and log-fold change values

of 300 DE genes were analyzed using the Ingenuity Upstream Regulator Analysis tool (Krämer et al., 2014) in

the Ingenuity Pathway Analysis (IPA�, version 01–07, QIAGEN Inc.,https://www.qiagenbioinformatics.

com/products/ingenuity-pathway-analysis) to estimate the upstream regulators over the stromal transcrip-

tome (Table S5 and Figure S2). Paracrine effectors in cancer to stroma communications were assessed as

described in the Results section. The expression data of the KIRC immortalized cell line were also obtained

from the CCLE database as described above. Furthermore, expression data of cancer-free kidney tissue

data were downloaded from the Genotype-Tissue Expression (GTEx) portal; https://www.gtexportal.

org/home/datasets, using the dbGaP accession number phs000424.v8.p2 on 8/27/2019. GTEx Project

was supported by the Common Fund of the Office of the Director of the National Institutes of Health,

and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS.

Validation of KIRC PDXs’ expression profiles

Sequence data of KIRC PDXs were obtained from the European Genome-Phenome Archive using the study

ID; EGAD00001003895 (Wang et al., 2018) and EGAD00001004799 (Courtney et al., 2020), with permission

from the corresponding Data Access Committee. The same methods were also applied to yield and

explore expression data described above. Because the data EGAD00001004799 included seven samples

from three unique tumor specimens exploited from one patient’s different tumor sites, the number of

unique KIRC PDXs was taken as three with several passages when incorporating passage information

into a linear model during differential analyses.

Apelin receptor inhibition test

A dissolved 4th passage PDX specimen of the KIRC metastasized to the skin was xenografted in the flank of

NOD/Shi-scid,IL-2RgKO mice. Subsequently, the mice were raised until the tumor grew to approximately

1cm in diameter and exploited for the following apelin receptor inhibition experiment. The specimens were

cut in 1mm cubic fragments, then xenografted in 20 mice subcutaneously. Six mg/kg MM54 (Tocris Biosci-

ence, Bristol, UK) or PBS was then administered intraperitoneally to each ten host mice tri-weekly starting

from the day of the tumor transplantation. On every intervention day, the body weight and tumor size were

measured. The tumor volume was calculated assuming the tumor shape to be a spheroid;

V =
4

3
pab2

Where a denotes the major radius, and b represents a minor radius of the tumor.

Pathohistological analysis

Samples were fixed with formalin, embedded in paraffin, then sectioned at 5 mm thickness for pathological

evaluation. Details are described in a previous study (Komura et al., 2016). ECs were subsequently stained

with anti-CD31 antibody (Rabbit polyclonal anti-CD31 antibody, ab28364, Abcam plc, Cambridge, UK).

Histological images of the tumor sections’ whole area were also captured using a digital image analysis

system (NanoZoomer-Digital-Pathology apparatus, Hamamatsu Photonics, Japan) for the subsequent mi-

crovessel density (MVD) analysis. The microvessel diameter was defined as the minor axis length of the

intra-CD31-positive-vascular area that allows a maximum-inscribed ellipse inside. All the intra-tumor ves-

sels with their diameters being larger than 20 mm were also counted across the whole area of a tumor
18 iScience 24, 103322, November 19, 2021
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section. However, blood vessels with diameters smaller than 20 mm were not counted because the micro-

vessel network was so highly developed in some tumor areas like ‘‘a web’’ that counting such small vessels

was technically challenging. ECs were manually counted on ten images of 400 magnified fields randomly

selected out of a tumor slide. The counts were subsequently summed up for each PDX tumor sample using

the cellSens� Standard software (Olympus Corporation, Tokyo, Japan) and later averaged across 10 PDX

mice.
APLNcDNA overexpression in UM-RC-2 cells

A human renal cell carcinoma cell line, UM-RC-2 cell (ECACC 08090511), was obtained and cultured as

described in the Experimental Model And Subject Details section. Full-length cDNA fragments of the hu-

man APLN gene were inserted in pcDNA6-myc/His A plasmids (Thermo Fisher Scientific) using the NEbu-

ilder system (E5520, New England Biolabs, MA, USA) to generate human APLN-overexpressed UM-RC-2

cells. Sanger sequencing was then used to confirm this inserted sequence. The plasmid containing human

APLN cDNA and the corresponding empty vector was transfected as well into UM-RC-2 cells using FuGene

HD (E2311, Promega, WI, USA) according to the manufacture’s protocol. 48 h after the transfection, Blas-

ticidin (R21001, Thermo Fisher Scientific) was added to the culture medium for the drug selection of trans-

fected cells.
Quantitative real-time PCR(qPCR)

Total RNAwas extracted from cells using the RNeasy mini kit (#74104, Qiagen, Germany), after which cDNA

was synthesized using the SuperScript� III First-Strand Synthesis System (#18-080-051, Thermo Fisher Sci-

entific). Then, THUNDERBIRD� SYBR qPCR Mix (TOYOBO, Osaka, Japan) was used with PikoReal� Real-

Time PCR System (Thermo Fisher Scientific), all of which were performed according to the manufacturer’s

protocols. The following PCR primers (Eurofins Genomics, Tokyo, Japan) were used: human GAPDH (For-

ward 50-TTGCCATCAATGACCCCTTCA-30 and Reverse 50-CGCCCCACTTGATTTTGGA-30), human APLN

(Forward 50-ACCCAAGCTGGCTAGTTAAGCCACCATGAATCTGCGGCTCTGCGTGCA-30 and Reverse

50-TGTTCGAAGGGCCCTCTAGATCAGAAAGGCATGGGTCCCT-30) including adjacent plasmid se-

quences of the inserted locations, and human APJ (Forward 50-CCCCTTCCTCTATGCCTTTTTC-30 and
Reverse 50-ATCTGTTCTCCACCCTTGCC-30). Relative mRNA expression levels of APLN andAPJ compared

to GAPDH were subsequently calculated by the DCt method.
In vitro and in vivo cell growth assay

UM-RC-2 cells transfected with either human APLN cDNA or empty vectors were harvested, and 8.0x103

cells were plated in 96-well plates in tetraplicates. After a 72-h cell culture, the Cell Counting Kit-8

(CK04, DOJINDO, Japan) assay was performed according to the manufacturer’s protocol, and absorbance

at 450nm was measured using EnSpireTM (PerkinElmer, MA, USA). For in vivo tumor growth assay, the

UM-RC-2 cells transfected with either human APLN cDNA or the empty vector were harvested and

subcutaneously injected into the skin of NOD/Shi-scid, IL-2RgKO Jic (NOG)mice (2.25x106 cells per mouse)

(n = 4) (In-Vivo Science, Japan). The same formula was also applied for calculating the tumor volume as

described above.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were conducted using R version 4.0.0 (RRID: SCR_001905). In two-group comparison an-

alyses, the two-way Student’s t-test was applied to compute pvalues when observations were assumed to

be normally distributed and equally variance (Figures 4C and 4F); otherwise, Mann-Whitney U tests were

employed (Figures 4B, 4D, and 4E). In the analysis of variance to select the top 10 notable pathways in

the stroma (Figure 3A), the one-way ANOVA test was conducted on each 70 enrichment scores across

nine PDX tumor groups. The statistical descriptions about differential analyses of PDX transcriptomes

and gene-set enrichment scores were detailed in the Method Details section. Benjamini-Hochberg (BH)

procedures were employed to control the false discovery rate in multiple comparison analyses, yielding

q-values. The difference was considered to be significant when p- or q-value <0.05.
iScience 24, 103322, November 19, 2021 19


	Multi-tumor analysis of cancer-stroma interactomes of patient-derived xenografts unveils the unique homeostatic process in  ...
	Introduction
	Results
	Strategic concept to detect hub genes in cancer to stroma interaction
	The landscape of the patient-derived xenograft transcriptomes
	Tumor type-dependent characteristics of the PDX TMEs
	Tumor type-dependent characteristics of the KIRC TMEs
	Integrated TME analysis to predict paracrine effectors during KIRC homeostasis
	Validation of the expression profiles unique to KIRC
	APLN signaling modulated KIRC tumor progression

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Mice
	Human tumor samples
	Cell line

	Method details
	Model mice establishment and RNA sequencing
	Assignment and quantification of transcripts
	Overview of the PDX transcriptomes
	Gene set analysis
	Differential expression analysis of PDXs
	Differential analysis in gene set analyses
	Estimation of paracrine effectors in KIRC TME
	Validation of KIRC PDXs' expression profiles
	Apelin receptor inhibition test
	Pathohistological analysis
	APLNcDNA overexpression in UM-RC-2 cells
	Quantitative real-time PCR(qPCR)
	In vitro and in vivo cell growth assay

	Quantification and statistical analysis





