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ABSTRACT

Analyzing single-cell transcriptomes promises to
decipher the plasticity, heterogeneity, and rapid
switches in developmental cellular state transitions.
Such analyses require the identification of gene
markers for semi-stable transition states. However,
there are nontrivial challenges such as unexplain-
able stochasticity, variable population sizes, and al-
ternative trajectory constructions. By advancing cur-
rent tipping-point theory-based models with feature
selection, network decomposition, accurate estima-
tion of correlations, and optimization, we developed
BioTIP to overcome these challenges. BioTIP identi-
fies a small group of genes, called critical transition
signal (CTS), to characterize regulated stochastic-
ity during semi-stable transitions. Although methods
rooted in different theories converged at the same
transition events in two benchmark datasets, BioTIP
is unique in inferring lineage-determining transcrip-
tion factors governing critical transition. Applying Bi-
oTIP to mouse gastrulation data, we identify multi-
ple CTSs from one dataset and validated their sig-
nificance in another independent dataset. We de-
tect the established regulator Etv2 whose expres-
sion change drives the haemato-endothelial bifur-
cation, and its targets together in CTS across three
datasets. After comparing to three current methods
using six datasets, we show that BioTIP is accu-
rate, user-friendly, independent of pseudo-temporal
trajectory, and captures significantly interconnected
and reproducible CTSs. We expect BioTIP to provide
great insight into dynamic regulations of lineage-
determining factors.
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INTRODUCTION

Developmental fate decisions involve transient bifurcations
between stable cell states (1). Before a bifurcation, multi-
lineage progenitor cells undergo priming when preparing
for distinct cell identities (2–5). Besides epigenetic priming,
transcriptional priming has been described using single-cell
transcriptomes (6–10). The transcription factors (TFs) that
orchestrate transcriptional priming have been evaluated
in early cardiogenesis (11). However, assuming there exist
smooth and continuous transitions marked by the progres-
sive activation and silencing of molecular hallmarks (12),
mainstream analyses are unable to identify gene markers
that characterize these semi-stable transition events. There-
fore, it is crucial to identify when bifurcations occur, what
characterizes them, and what drives their onset.

Cell clusters in a single-cell transcriptomic snapshot rep-
resent cellular states along a trajectory. These discrete clus-
ters allow us to characterize bifurcations using tipping-
point theory (reviewed by (3)). In this theory, a bifurcation
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is an abrupt, non-linear, and often irreversible critical tran-
sition (CT) between stable state (13). A CT occurs when
perturbations in gene interactions cause the cell to cross a
certain threshold that had been maintaining an equilibrium
(11,14). Then, in the cluster composed of CT-occurring or
CT-impending cells, a set of interconnected genes gain co-
variance due to the loss of the preexisting equilibrium and
the onset of a new state (3,15–17). By applying tipping-
point theory, two types of CT events have been described
from gene expression profiles: saddle-node and pitchfork
bifurcations. Saddle-node bifurcations occur when a cell
approaches an irreversible commitment toward a new sta-
ble state (7,18); pitchfork multifurcations happen before a
choice among multiple new stable state (1,11,17) (e.g. Fig-
ure 1A, embedded panel).

Index of criticality (Ic) is the first tipping-point theory-
based mathematical model to detect CT states using single-
cell RNA-sequencing (scRNA-seq) data (7,18). However,
Ic assumes that stochastic fluctuation (including unexplain-
able stochasticity) in transcription prescribes abrupt cell-
fate transitions. Ic therefore is not designed to identify gene
markers associated with cell-state transitions.

To infer what drives a CT event, one must identify its
significant signal (CTS). This computational work must be
done at the level of the single cell (18). This is because the
heterogeneity of single cells is absent in bulk samples. The
identification of CTS is inspired by a ‘regulated stochastic-
ity’ assumption (reviewed by (3)). The assumption comes
from the fact that temporal TF activities determine distinct
cell fates (19–22). Under this assumption, dynamic network
biomarker (DNB) is the first tipping-point theory-based
mathematical model to detect CTS (16). DNB and recent
methods model gene co-expression networks to probe in-
tercellular communications (16,23). Intercellular communi-
cations responding to bidirectional signals may drive cel-
lular heterogeneity, and therefore is a powerful metric to
characterize regulated state transitions (24–26). However,
DNB was designed to analyze bulk transcriptomes, requir-
ing modifications to analyze comprehensive cellular states.
So far, DNB has been only applied to single-cell datasets
with either a small number of cells (n = 389) (18), a sim-
ple trajectory topology of one bifurcation (17), or a linear
process from normal to disease (3–4 states) (27,28).

Bifurcations have been described by transcriptional
entropy-based approaches, such as MuTrans (29) and
QuanTC (30). MuTrans applies stochastic differential equa-
tions to detect smooth or abrupt transition cells that present
energy barriers at transitions. However, without consid-
ering intercellular communications, MuTrans is not de-
signed to infer TF regulators or the regulated stochasticity.
QuanTC is the first transition-signal-focused scRNA-seq
method and has succeeded in characterizing the epithelial-
to-mesenchymal transition. QuanTC is model-free by de-
tecting transition cells that portray multiple stable state. A
prerequisite for detecting transition markers by QuanTC is
choosing a trajectory-starting point, making its application
difficult for large datasets (e.g. >10 clusters). Therefore, new
user-focused methods are required to study transition states
using single-cell transcriptomes.

Rooted in the same tipping-point theory to model an in-
creased oscillatory expression at a CT state, DNB and Ic

provide each other a technical valuation in detecting bi-
furcations. Therefore, we introduce BioTIP (biological tip-
ping point): a computational toolset that adapts the DNB
algorithm to scRNA-seq data and technically evaluates
the model’s multiple outcomes using a redefined Ic score
(Figure 1b). We evaluate BioTIP’s performance on two
benchmark single-cell datasets with previously validated
CT states, transition-marker genes, or transition-driving
TFs. We demonstrate that BioTIP can not only recapture
evaluated transition events, but also it can assess the sig-
nificance of its predictions––thus enabling the inference of
fate-deciding TFs. BioTIP is then applied to mouse gastru-
lation data on which tipping point analyses had never been
conducted before. Multiple CTSs are identified and eval-
uated using independent cells from the same developmen-
tal stages of mouse gastrulation. We compare BioTIP with
three existing tools in six real or simulated data analyses;
we show these tools’ consistency in identifying and char-
acterizing state transitions. Additionally, we show the user-
friendliness of BioTIP since there is no requirement of a
trajectory, a starting point, nor a 5k size limit of cells. We
also present BioTIP’s advantage in capturing interconnect-
ing transition markers that are conserved across indepen-
dent datasets. Most importantly, we demonstrate how inter-
connecting CTS genes provide insight into cell-fate decisive
transcription factors. These results open a way for charac-
terizing CT events from dynamic expression profiles of de-
velopmental biology.

MATERIALS AND METHODS

Overview of BioTIP

BioTIP’s use of single-cell transcriptomes satisfies the as-
sumptions of tipping-point theory that a cell system has a
dissipative structure (i.e. having discrete states including the
one showing semi-stability); each state is an ensemble of the
individual replicates; and that each state has a characteris-
tic gene expression profile and presents a distinct molecular
phenotype.

BioTIP is a new toolset that complements the main-
stream scRNA-seq analytical pipeline by modeling cell clus-
ters, thus being independent of the trajectory topologies
among states (Figure 1A). The goal of BioTIP is to identify
multiple significantly interconnecting and technically repro-
ducible CTSs.

BioTIP has three analytical steps to identify significant
CTSs with practical considerations (Figure 1B). The first
step enhances the feature (gene) selections for oscillations
in expression that are subtle across all cells but prominent
in one or more subpopulations. Without this step, transient
CT states will be overlooked. This step outputs two gene
lists. The first list, made of highly variable genes (HVG)
across all clusters, is used for downstream permutation-
based statistics. The second list, called cluster-specifical
HVG, is used as the input for CTS predictions and is made
of the subset of the global HVG. The second step detects
CTS candidates from many gene modules per state, by cou-
pling the DNB model with optimization and network par-
tition algorithms. A module –– interconnecting genes with
similar expression profiles in a cellular state –– tends to be
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Figure 1. Overview of BioTIP. (A) Analytic pipeline of single-cell RNA-seq analysis, with BioTIP as an alternative focusing on transition states. Solid
orange arrows show how BioTIP differs from the typical pipeline while the dashed line shows optional optimizing inputs. The embedded panel illustrates
TF-regulated stochasticity during developmental bifurcation. The flat brown line shows the effect of multiple decayed attractions at the tipping point,
representing a vulnerable regulation. Then, this unstable state is resolved into distinct cellular states and phenotypes, shown by the green balls. (B) Overview
of BioTIP’s three analytical steps. ScRNA-seq profiles with cell cluster IDs are inputted. The outputs are significant CT states and their characteristic CTSs
which can infer CT-driven transcription factors. HVG: highly variable genes. DNB: dynamic biomarker network; Ic: index of criticality. (C) Table view
comparing the functionality of BioTIP with three current methods. Ic.shrink: a redefined Ic using the ‘shrinkage of correlation’ method (32); RTF: relative
transcript fluctuation; RW: random walk. See Figure 5 to compare BioTIP with DNB, Ic and QuanTC.
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functionally related and co-regulated (31). This step out-
puts multiple CTS candidates (gene modules significant
in the DNB-scoring system) rather than only the highest-
scoring one. Given that each CTS indicates one CT state,
our last step considers the common CT states recaptured
by both DNB and redefined Ic models. Such technically
reproducible results will ensure significance in analyzing
noisy scRNAseq data. The feasibility is supported by the
observed agreements between both tipping-point theory-
based models in the same system (18). To further correct
Ic’s inaccuracy, we introduce an improved estimation of
the true correlation matrices (32). This improved estimation
was called ‘shrinkage of correlation’ because it calculates a
weighted average of the original correlation matrix and a
target matrix that is to be shrunken towards. We name our
newly defined score to be Ic.shrink. To assess the empirical
significance, we designed a Delta score based on where the
maximum Ic.shrink score occurs and its distance from the
second maximum Ic.shrink score. Together, each significant
CTS meets all the following quantitative criteria:

1) A significantly high DNB score, indicating increased
gene-gene interconnections at the cluster from which this
CTS was identified.

2) A significantly high Ic.shrink score of this CTS, indicat-
ing that critical transition happens at the same cluster.

3) And a significantly high Delta score at the same state, dis-
tinguishing the CTS from other randomly selected genes
to characterize regulated stochasticity during this transi-
tion.

These designs enable BioTIP to identify multiple CTSs
significantly and robustly and be independent of the pre-
dicted trajectory topology (Figure 1C).

Three analytical steps

Measured at single-cell levels, a cells’ state can be stable or
semi-stable (i.e. the transition state). BioTIP analyzes cell-
state ensembles (clusters of transcriptionally similar cells)
and will characterize clusters of transition cell states. What
follows is a description of the analytical methods within
these three steps.

• Step A: Two-level features/genes preselection

Let X denote the p × n matrix of the expression levels of
P genes ({g1, g2, . . . gp}) in rows and n cells ({s1, s2, . . . sn})
in columns. When the n = n1 + . . . + nR cells are clustered
into Rdistinct states, we can group the columns of X to have
X = [X1 | · · · |XR], where Xr denotes the p × nr submatrix
for cells in a state r ∈ {1, 2, . . . , R} and nr denotes the num-
ber of cells observed in the r -th state.

To remove lowly-expressed transcriptional noise and re-
duce the downstream calculation burden, we first select
global HVG that express above a certain threshold in X.
We recommend keeping about 3k or more HVG to retain
cluster-specific variable genes that may not have been se-
lected by a more restricted cutoff. Hereafter, let us denote
the number of HVG as p.

To pre-select CTS-informative transcripts and minimize
the intrastate dispersions caused by sample outliers, we esti-

mate the variation of a gene j in state r relative to the rest of
cells in other states (-r) using a relative transcript fluctuation
(RTF) score for each state r:

RTFr
(
gj

) =
sd

(
gr

j

)

sd
(

g−r
j

) , (1)

where gr
j denotes the expression vector for gene j among

samples in the state (i.e. the j -th row of the normalized ex-
pression matrix Xr ) for a given state r , and sd(.) takes the
standard deviation of the vector.

We use saturation (i.e. statistical resampling) based ap-
proaches to optimize the RTF estimation. To optimize
the RTF estimation given the heterogeneity of single cells
within each state (cluster), we first randomly bootstrap b%
of the number of samples in the r -th state 100 times to
estimate the distribution of RTFr (gj). Then, we select the
p × 10% genes that have top RTF scores in the state and
repeat this selection for each state. By adjusting the param-
eter b, we allow 700 ∼ 2k genes per state for the analysis of
comprehensive data (Supplementary Table S1). In the fol-
lowing steps, we detect CTSs from the pool of these cluster-
specific HVG and conduct random simulations using the
global HVG.

• Step B: Identification of CTS candidates

The goal is to identify a subset of genes that ‘drive’ or re-
spond to the between-state transitions. For the expression
profiles of cluster-specific HVG, we define gene-modules,
followed by an application of the DNB algorithm (16).

Network partition

Between-gene correlation reveals gene regulatory networks.
For clusters of stable states, these networks were kept at
equilibrium, as perturbations are contained within an at-
tractor’s potential. CT events happen when the perturba-
tion passes a threshold of equilibrium (33). It is essential
to uncover which genes are most influential within these
co-expressed networks. Therefore, for each cluster, we first
build a network graph in which cluster-specific HVG are
nodes and edges connect genes whose expression is cor-
related (e.g. FDR of Pearson correlation < 0.1). To find
strongly connected components (or gene modules) within
a cluster-specific graph, we used the random walk (RW) al-
gorithm (S Methods). We choose RW because of its high
accuracy and performance in network decomposition (31).
As a result, we partition co-expressed cluster-specific HVG
into modules per state which will serve as the inputs of the
next CTS-searching goal.

Identification of CTS candidates

This calculation adapts the DNB model to quantify each
gene module in each cell state r (16). This score compares
expressional deviation, the connectivity and homogeneity
in this module m relative to its complement set mC. Let PCC
refer to the Pearson correlation coefficient between any two
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genes (gi and gj). Let |.| take the absolute value. This gives:

DNB.score (Xr , m) = Avgi∈msd (gi )

×
Avgi∈m, j∈m

(∣∣∣PCC
(

gr
i , gr

j

)∣∣∣)

Avgi∈m, j∈mc

(∣∣∣PCC
(

gr
i , gr

j

)∣∣∣) (2)

A putative CTS is a module m̂r that has the higher-than-
expected score in the state r . We therefore estimate the
expected DNB scores from Xr by bootstrapping si ze(m̂r )
genes from the transcriptomic background 1000 times. We
keep significant modules in the DNB-scoring system as CTS
candidates.

• Step C: Technical evaluation of the significance

We are interested in the reproducible tipping points cap-
tured by both Ic and DNB scoring systems because both
are based on the tipping-point theory. To this end, there are
two following analytical goals:

Goal 1: Redefine the Ic.shrink score using the Schafer–
Strimmer method

PCCg refers to the Pearson correlation coefficient matrix
between p genes; PCCs refers to the Pearson correlation co-
efficient matrix between n samples. For each state, the orig-
inal Ic is the ratio of average PCCg to average PCCs (7). At
a critical transition (CT) state, the average PCCg increases
and the average PCCsdecreases, resulting in an overall in-
crease in Ic.

To resolve Ic’s limitation in its tipping-point predic-
tion towards states with a small sample size, we introduce
PCCg.shrink, a regularized PCCg. To obtain improved es-
timates of the co-expression matrix, PCCg.shrink shrinks
the observed correlation matrix PCCg to a target matrix
Tg and then weights the Tg to get an improved estimation
(32). By introducing a small amount of bias (i.e. decrease
accuracy), the estimator PCCg.shrink can greatly reduce its
variance (i.e. increase stability). This gives per state r that:

PCCg.shrink (Xr ) = λr
g Tg + (

1 − λr
g

)
PCCg (Xr ) (3)

We apply the ‘Target D’ in (32) where Tg is the iden-
tity matrix (a square matrix with ones on the diagonal
and zeros elsewhere), and the weight λr

g ∈ [0, 1] is a value
to be optimized from Xr and Tg. The optimization of λr

g
follows the method outlined in (32), in which an approx-
imation to the mean squared error (MSE), MSE (λr

g) =
E[||λr

gTg + (1 − λr
g)PCCg(Xr ) − Rr

g||2F ], is minimized. Here,
Rr

g is the true (unknown) underlying gene-gene correlation
matrix for samples in state r , || · ||2F is the squared Frobenius
norm, and E[·] is the expectation operator.

Consequently, when the sample size nr is small (i.e. nr
<< number of genes) the optimal value for λr

g will be large
(close to 1), indicating a strong level of shrinkage of the
correlations for that state towards 0. When the sample size
is large, the optimal value of λr

g will be small (close to 0),
and the shrinkage towards zero will be minor so that the
PCCg.shrink is close to the observed PCCg. The bias ob-
served in Ic towards small sized states is due to the increased

variability of the Pearson correlation matrix estimate, lead-
ing to more extreme magnitudes of estimated correlations.
By shrinking the estimate of the correlation matrix, we dras-
tically reduce that variance (at the cost of some bias), which
resolves Ic’s bias.

Similarly, we shrink the PCCs to get an improved approx-
imation (PCCs .shrink) of the true but unknown between-
sample correlation matrix (‘Target F’ in (32) which addi-
tionally estimates ρs , the average of sample correlations as
a new parameter). Here, we set the target matrix Ts with 1
on the diagonal and ρs ≡ avg(PCCs(Xr )) elsewhere, so that
for each state, we shrink the correlations towards the aver-
age value. The choice of average not only reflects the steady
expression pattern in a stable state but also preserves the
pattern difference across states.

Thereby, we introduce Ic.shrink, the refined Ic model
with PCCg.shrinkand PCCs .shrink estimates. Ic.shrink
remains robust regardless of sample sizes (Xr denotes the
p × nr submatrix of p genes for nr samples in a state r ).

Ic.shrink (Xr ) = 〈∣∣PCCg.shrink (Xr )
∣∣〉

〈PCCs .shrink (Xr )〉

= 〈∣∣λr
gTg + (

1 − λr
g

)
PCCg (Xr )

∣∣〉
〈λr

s Ts + (
1 − λr

s

)
PCCs (Xr )〉 (4)

Goal 2: Identify CTSs significant in the Ic.shrink scoring sys-
tem

To evaluate the significance of the CTS candidates,
we design a Delta score to quantify abrupt changes
in Ic.shrink between states. Given a CTS can-
didate, the m̂r detected in state r̂ , calculating its
Ic.shrink(Xr

m̂r ) per state gives a vector Ic.shrink| m̂r =
(Ic.shrink(X1

m̂r ), . . . , Ic.shrink(Xr̂
m̂r ), . . . , Ic.shrink(XR

m̂r )),
which should peak at the state r̂ significantly. The Delta
score measures the distance between the largest and the
second-largest scores in Ic.shrink|m̂r :

�Ic.shrink
(
m̂r

) = largest
(
Ic.shrink|m̂r

)
−second.largest(Ic.shrink|m̂r ) (5)

Given a CTS identification, comparing the observed
Delta score of the observed Ic.shrink to the simulated
Delta scores (of random Ic.shrink scores using randomly
selected genes) delivers an empirical p-value. From the tran-
scriptome X, the random Delta scores are calculated from
the Ic.shrink scores of random si ze(m̂r ) genes. The candi-
dates significant in the Ic.shrink-scoring system are the final
CTSs identified.

Additionally, for a CTS-indicated CT state, comparing
the observed Delta score to randomly simulated Delta
scores gives another empirical p-value. These random Delta
scores are calculated by fixing the CTS genes but randomly
permuting the state labels.

Note that in complex systems, the identified signal may be
a mix of CTS of TF regulation and epigenetic effects (e.g.
the haemato-endothelial bifurcation). Therefore, we recom-
mend additional biological validations using independent
samples of concordant states on the same trajectory.
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Data, biological gold standard, and statistical analysis

Six datasets. We demonstrate the utility of BioTIP us-
ing six independent single-cell gene expression datasets. The
human embryonic stem cells (hESCs) dataset consists of
96 selected genes in 929 cells with predefined nine clusters
(11). The lung dataset consists of 10.3k genes in 131 mouse
alveolar type (AT2) cells (34). The E8.25 2019 dataset con-
sists of 10.9k genes of 7.2k developing mesoderm cells col-
lected at embryonic day (E) 8.25 (35). The E8.25 2018
dataset contains 12.7k genes in 11k E8.25 cells, with 16
predefined sub-cell types (36). The embryoid bodies (EB)
dataset contains 15.2k genes of 1.5k developing mesoderm
cells (6). The epithelial-to-mesenchymal transition (EMT)
dataset was simulated from an established 18-gene regula-
tory network of 5.4k cells, consisting of four stable states
and between-state transition cells (30). For each dataset,
cell-type biomarkers or cluster identities are given from the
original publications. Then, scRNA-seq data quality con-
trol (e.g. removing doublet cells and mitochondria genes),
normalizing distinct sequencing depths, global feature se-
lections, and cell clustering are performed following the cor-
responding manuscripts and described in S Methods.

Proxy gold standard (GS) per dataset. For CT detection,
the established transition state and the state identified by
both BioTIP and QuanTC serve as a proxy GS. For CTS
identification per CT cluster, the co-identified transition
markers by BioTIP running on variable sets of clusters or by
QuanTC serve as a proxy GS (Supplementary Figure S1).

BioTIP’s stability is evaluated by the similarity between
each prediction from down-sampled data and its proxy GS,
per dataset. We sample 95% of the cells and 95% of global
HVG randomly and apply BioTIP, doing 10–20 iterations.
For each run i , CT-detection accuracy is measured by Jar-
card score as described (37). For CTS identification, we cal-
culate the F1 score for two sets of transition markers: CTSi
and the GS markers (37). Meanwhile, a negative control of
F1 score compares ni random genes and the GS markers,
where ni = |CTSi | observed. To ensure that easy and dif-
ficult datasets have equal influence when comparing meth-
ods, we normalize all the F1 scores of each dataset as pre-
viously described (37) (S Methods). After iterating, all nor-
malized F1 scores are compared to all normalized controls
using the unequal-variance t-test. Additionally, we evalu-
ate the consistency of BioTIP predictions under two key-
parameter settings: minimum DNB cutoff and minimum
gene-module size.

BioTIP’s robustness is evaluated after applying different
clustering pipelines and varying the key parameters that re-
sult in different numbers of clusters. We apply Leiden, con-
sensus, and nearest-neighbor graph, using R packages Seu-
rat v4, SC3, and scran. Also, we apply soft clustering using
the MATLAB pipeline QuanTC (30,38–40). Each output
is compared to the GS per dataset. We evaluate CT detec-
tion by Jarcard similarity and evaluate CTS identification
by a normalized F1 score which is modified from previous
benchmarking work (37) (S Methods).

To compare methods per dataset, we calculate the Jarcard
score and normalized F1 score between the outputs of a
method and the GS of that dataset (S Methods).

Prediction of upstream regulators is a crucial aspect in
inferring regulated stochasticity from BioTIP’s outputs.
We examine four pieces of evidence––the curated reposi-
tory IPA (41), TF-binding motif, published ChIP-seq data,
and evaluated TF targets in comparable systems––to pre-
dict the upstream regulatory TFs of identified CTS genes
(S Method).

QuanTC (30) is applicable to sample sizes smaller than
5k cells; all five datasets except the E8.25 2018 dataset are
below 5k. We use the default parameters, except we increase
the cutoff to prioritize high-scoring transition cells when
analyzing lung and EB datasets. For the E8.25 2019 dataset,
19 clusters are beyond the range of QuanTC’s analytical de-
sign (13 states). We therefore apply it to cells belonging to
six clusters that are related to the HEP multifurcation (19%
of all profiled cells). We optimize the number of stable states
(clusters) as suggested by choosing the largest gap from the
sorted eigenvalues (30). This strategy resulted in an optimal
number (4 stable states) in the hESC and lung datasets but
two numbers in the E8.25 2019 dataset (4 or 6 stable states,
respectively).

MuTrans analysis (29) is applied to the hESC dataset, us-
ing MATLAB version R2020b downloaded from Github.
We analyze the same 929 cells collected during days 0–3 plus
299 cells collected at day 4 (the cluster 12 (C12), next to the
C10 cells on the trajectory shown in Figure 2a). The addi-
tion of day-4 cells verifies if the transition at day 3 is de-
tectable with MuTrans (29).

RESULTS

Following, we test and validate BioTIP’s advancements in
simulated and sequencing data analyses. We further demon-
strate BioTIP’s ability to detect TF-regulated stochastic-
ity in both benchmark and high-throughput scRNA-seq
datasets.

BioTIP identifies multiple significant CTSs accurately, and it
is independent of the trajectory topologies

To demonstrate BioTIP’s accuracy, we used the benchmark
hESC dataset with experimentally and computationally val-
idated bifurcations (11). Cells at day 2–2.5 exhibit the exper-
imentally verified pitchfork bifurcation from multipotent
primitive streak (PS)-like progenitor cells to the mesoderm
cardiomyocyte (CM, marked by Hand1) or to the endoderm
(En, marked by Sox17) lineages (Figure 2, a-b, Supplemen-
tary Figure S2a). Then on day 3, major CM lineage com-
mitments took place (11). KIT is a verified early-warning
marker because its expression level at day 1 to 2.5 in a cell
indicates future fate choices at day 3. Another bifurcation
marker DKK1 is highly correlated with KIT expression lev-
els in the cKITMedium population that can be induced into
both lineages (11). 1.9k cells were collected from eight time-
points. We inputted the published consensus clusters of 929
cells (days 0–2.5, and mesoderm-specific day 3) into BioTIP
for two reasons: they were previously analyzed by Ic (11)
and allows for a fair comparison, and we will demonstrate
the ability to detect a cluster at day 3 without subsequently
collected cells.

To set up a proxy gold standard, we use the common
predictions from three computational methods: Ic (11),
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Figure 2. Applying BioTIP to the hESC dataset identified significant CTSs characterizing the verified bifurcations, being independent of the trajectory
topologies. (A) TSNE plot for all cells colored by eight collection days (D) and labeled by 18 predefined clusters. Blue arrows indicate the developmental
trajectory. E: epiblast, PS: primitive streak; CM: cardiomyocyte, En: endoderm. (B) TSNE plot for the 1.9k cells, colored by the expression levels of four
genes marking PS, mesoderm, cardiomyocyte progenitor (CP), and CM. Clusters of PS and CP cells are labeled. See Supplementary Figure S2a for details.
(C) Bar plots showing DNB scores in nine clusters (C) of 929 cells along the CM trajectory with cells collected before day 4. The horizontal dashed line
indicates a cutoff, resulting in four gene modules with the module sizes listed atop (colored bars). See Supplementary Figure S2b for details. (D) Comparing
the observed (red dot) versus simulated (box) DNB scores of the 4 resulting CTS candidates that were significant in the DNB-scoring system (P < 0.001).
Gene numbers are given at bottom. (E) Technical evaluation of the four CTS candidates, labeled by the cell-cluster identity from which the CTS was
identified (highlighted red in axis). Observed Ic.shrink (colored line) is compared to the gene-size-controlled random scores (boxes, 1000 runs). Also shown
is the P-value of Delta of the observed Ic.shrink at the CTS-indicated CT state, resulting in three significant CTSs (red p-values). See Supplementary Table
S1 for parameters. (F) Stability of BioTIP estimated from 929 cells of predefined clusters and 96 genes after down-sampling 95% genes and 95% cells
(20 runs). Left: frequency of identifying each cluster as a significant CT state. Right: Normalized F1 score compares each run and the identified CTSs
from the whole dataset, at two CT clusters. For C9, the union of two identified CTSs (see panel e) served as the proxy gold standard. The grey violin
plots present negative control scores. Color represents the minimal DNB score to prioritize gene modules. *P < 0.05, **P < 0.01, ***P < 0.001 in t-test.
(G) Tipping points (TPs) along the trajectory from early stem cell to CM differentiation (adapted from (11) and (29)). Each cell state (stable or transitional)
has specific markers. The states are colored by energy values estimated by MuTrans. Lighter colors represent higher energy (Detailed in Supplementary
Figure S5a). Colored arrows distinguish the verified tipping point (red) or the BioTIP-identified one (orange); both are verified by QuanTC and MuTrans.
See Supplementary Figure S5 for MuTrans results, Supplementary Figure S4 for QuanTC results.
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QuanTC (30) and MuTrans (29). Cells of cluster 9 (C9)
have an abundant level of NANOG and EOMES, repre-
senting the earlier PS state (Supplementary Figure S2a).
The highest Ic score at C9 suggests increased transcriptomic
stochasticity (Supplementary Figure S3a). In the model-
free QuanTC analysis, cells of day 2.5 stand the highest cell
plasticity indexes (CPI) (Supplementary Figure S4, S Meth-
ods). In the energy landscape predicted by MuTrans, cells of
day 2.5 present the highest energy barrier (Supplementary
Figure S5, a-b). These results suggest that the reported true
development bifurcation at PS state (11) is detectable with
different computational approaches.

Cells of cluster 10 (C10) have high expression of the PS
marker EOMES, the mesoderm marker MESP1, and the
cardiac precursor marker HAND1, but not the differenti-
ated cardiac myocyte marker TNNT2 (11) (Figure 2b), in-
dicating C10 to be a mesoderm progenitor state. C10 cells
were collected at day 3. Interestingly, day 3 mesoderm-fate
cells stand the 2nd highest CPI with QuanTC. 22% of these
cells also approach an increased energy barrier in an ex-
panded energy landscape covering day 4 mesoderm cells
(Supplementary Figure S5a, b). Both analyses indicate a
topological saddle-node bifurcation happening at C10 be-
fore cells committed to cardiomyocytes.

Applying BioTIP to this dataset, we identified both eval-
uated bifurcations. Among four CTS candidates identified
by the DNB scores (Figure 2C, D), we found three of them
to be significant in the Ic.shrink-scoring system: two at C9
and one at C10 (Figure 2E). The detection of C10, a topo-
logical saddle-node bifurcation, is independent of pseudo-
order construction because it doesn’t require subsequently
collected cells. This result demonstrates BioTIP’s accuracy
in analyzing complex and noisy data.

Stability and robustness of CT detection and CTS Identifica-
tion

By subsampling the hESC dataset (95% global HVG and
95% cells) iteratively and analyzing the predefined clusters,
we first estimated BioTIP’s stability in detecting both bifur-
cations at C9 and C10. Among 20 runs, the most frequently
significant CT cluster was C9 (>60%), followed by C5 and
C10 (Figure 2F, left, blue line). A key parameter for signif-
icant CTS identification is the minimal DNB score to pri-
oritize gene modules per state. We expect a random DNB
score to be around 1 (Formula 2), however due to the small
size of well-selected genes (96), the random scores ranged
from 1 to 3 (Figure 2D). Therefore, we set this parameter to
4 (Figure 2C). When decreasing this parameter, C9 and C10
had the highest frequency to be detected (Figure 2F, left).

We then estimated BioTIP’s stability in identifying CTSs,
using the same down-sampled data. Comparing CTS genes
derived from the whole dataset for C9 to observed CTS
genes or equally sized random genes, the observed CTS
genes presented significantly higher F1 scores (Figure 2F,
right). We observed the same pattern for C10. Our results
thus depict the stability of BioTIP’s predictions in the hESC
dataset.

We next evaluated the robustness to different clustering
pipelines. We used cells of the predefined C9 (PS-like pro-

genitor) and C10 (cardiac progenitor) to represent the two
bifurcation states. BioTIP accurately detected both bifur-
cations when analyzing the clusters defined by consensus,
nearest-neighbor graph, or soft-clustering approaches with
proper clustering parameters (Supplementary Figure S1a,
green bars). Furthermore, we successfully identified two es-
tablished bifurcation markers (KIT and DKK1) at PS, re-
gardless of the choice of five clustering pipelines (Supple-
mentary Figure S1a, blue bars). In this example, BioTIP
reached a comparably high performance with three clus-
tering pipelines (AUC ≥ 0.89, Supplementary Figure S1a,
right).

Significant CTSs disclosed experimentally validated transi-
tion marker and fate-deciding transcription factors

In this benchmark dataset, we identified two distinct
CTSs for C9, with 18 and 23 genes in each. The CTS
of 18 genes contained the verified bifurcation markers
KIT and DKK1 (11). The co-expression of its members
NKX2-5 and TBXT has been reported to bring about
the completion of cardiac progenitor specification (42).
These genes gained variance in expression among C9 cells
(Supplementary Figure S5c, purple bars). Therefore, Bi-
oTIP characterizes the mesoderm-endoderm bifurcation
by known bifurcation markers and their inter-cellular
communications.

Our results exemplify a model that CTS genes are reg-
ulated by competing TFs (reviewed in (3)). The 18 CTS
genes of C9 are the enriched targets of two groups of TFs.
One group is the established PS regulators: NANOG, and
EOMES. Another group is the established CM-inducing
regulators: BMP4 and CTNNB1 (�-catenin) (IPA analysis,
P < 1e–8, ≥5 genes, Supplementary Figure S2c) (reviewed
by (42)). Similarly, the 23 CTS genes for C9 were the en-
riched targets of not only the highly expressed pluripotency
factor POU5F1 but also the CM-inducing factor BMP4
(43) (Supplementary Figure S2d). These results fit the hy-
pothesis of bidirectional forward and reverse regulators
causing transcriptional priming (2,3). We conclude that a
significant CTS can contain targets of lineage-determining
TFs at the bifurcation (Figure 2G).

Compared to traditional markers, a CTS member gene
that fluctuates at the transition state can be highly-expressed
markers (e.g. TBXT at PS, Supplementary Figure S5c). A
CTS can also contain the ‘transition driver’ markers re-
ported by MuTrans (29) that vary significantly between
two stable states. For example, the established mesodermal
markers MESP1/2 that express in PS (C7), silence in later
CM (C12) and fluctuate in the transition C10 (Supplemen-
tary Figure S5D, E).

Overall, this case study using the hESC dataset demon-
strates BioTIP’s ability to find verified CTS genes that are
covariables during the transition. These unique CTS genes
disclose known and potentially new bifurcation-driving
TFs that are prominent for further investigations. There-
fore, we propose that BioTIP is broadly applied in analyz-
ing single-cell gene expression profiles to characterize criti-
cal cellular state transitions.
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Application to lung development data identifies new critical
transition at E16.5 characterized by The second highest DNB
score

During mouse lung epithelium development, morphologi-
cal and molecular separation of AT1/AT2 bipotent cells oc-
curred at E18.5 (34,44) (Figure 3A). Cells collected at E16.5
presented the highest plasticity when analyzed by QuanTC
(Supplementary Figure S6). This result is in line with a pre-
vious Ic analysis of cell-collection days (7). Therefore, E16.5
cells represent a gold-standard CT event.

Applying BioTIP to this benchmark dataset of the known
alveolar-type bifurcation, we identified a set of 44 genes to
characterize E16.5 (C2) as a developmental tipping point
(Figure 3B–E, S Methods). Notably, the Ic.shrink-scoring
system validated the significance of only this one out of four
CTS candidates predicted by the DNB-scoring system (Fig-
ure 3e).

We verified BioTIP’s stability in detecting the known
bifurcation at E16.5 (C2), using iteratively down-sampled
data (n = 20). Another key parameter of the BioTIP ap-
plication is the minimal module size of CTS candidates per
state. We set this parameter to 10 in the small hESC data (96
measured gene) and 30 in the large lung data (3.2k global
HVG). When tuning this parameter between 10 and 30, Bi-
oTIP consistently detected C2 (Figure 3F, left). Compared
to a proxy gold standard of 6 inferred transition mark-
ers (Supplementary Figure S1b), the normalized F1 scores
for the down-sampled predictions were significantly higher
than random genes (P < 1e–4, Figure 3F, right). Our results
thus depict the stability of BioTIP’s predictions in the lung
dataset.

Again, by trying commonly used cell-clustering methods
and varying their parameters, we found that BioTIP worked
equally well among three cell-clustering methods (Supple-
mentary Figure S1b).

Note that the identified CTS of 44 genes exhibited the
2nd highest DNB score at C2 (Figure 3D), suggesting the
need to check more candidates besides the highest-scoring
one in the DNB system. Applied to the same cell clusters
but with 50 random global HVG, Ic predicted the C5 at
E18.5 (Supplementary Figure S3b). This result suggests in-
creased transcriptomic stochasticity concurring with the re-
ported AT1/AT2 separation (34,44). However, Ic failed to
detect transcriptional priming prior to such morphological
and molecular separation. Therefore, this case study exem-
plifies BioTIP’s accuracy over Ic for CT detection and over
DNB for CTS identification.

Application to the developing mesoderm data identifies four
significant and reproducible CTSs

To demonstrate BioTIP’s applicability, we studied bifurca-
tions at mouse E8.25 when precursor cells of major or-
gans have been formed (35). We hypothesize that the sig-
nificantly regulated stochasticity identified in one dataset
can indicate the same bifurcation events in independent
samples along the same developmental paths. The branches
of cardiac mesoderm and muscle mesenchymal from early
mesoderm were followed by a bifurcation between the
hematopoietic and endothelial lineages (Figure 4A). Note
that clusters C13, C10 and C15 in the E8.25 2019 data

were three haemato-endothelial progenitor (HEP) clusters
sequentially in pseudo-order (35). They also have notable
differences in the expression levels of classic lineage markers
(Supplementary Figure S8a, Supplementary Table S2). The
early C13 has the highest average expression of Kdr which
marks the hematoendothelial and cardiac lineage (Supple-
mentary Figure S7a) (45), suggesting a multifurcation state.

Applying BioTIP to 19 cell clusters and 4k HVG, we first
selected 1.9k cluster-specific HVG (Figure 4B). From these
19 clusters, we then detected four CTS candidates, each pre-
sented significant DNB scores at one state (Figure 4C, D).
Note that among the three HEP states, multiple clusters
intermingled only at C10 in the expression space (Supple-
mentary Figure S7b), but BioTIP identified the other two
multifurcation states. This demonstrates BioTIP’s ability to
detect true CT events rather than a simple mixture of cell
identities.

The significance of these CTSs was supported by the
Ic.shrink simulation (P < 0.05, Figure 4E). These CTSs
revealed four bifurcation events in four states. Only the
early C13 (eHEP) sits before a pitchfork bifurcation of
the constructed trajectory; the other three clusters sit ei-
ther along or at the end of a lineage branch, which are
the later HEP (lHEP, C15), endothelial (C6), and muscle
progenitors (C16) (Figure 4A, Supplementary Figure S7c).
QuanTC detected the transition from EMT to the endothe-
lial fate after assembling four stable states (Supplementary
Figure S9). However, QuanTC also assembled cells into
six states, which alternatively captured the transition from
EMT to the hematopoietic lineage (Supplementary Figure
S10). These alternative predictions suggest QuanTC’s out-
puts are dependent on the parameter setting and the cho-
sen trajectories of interest. Because we can only partially
snapshot the overall differentiation trajectories, BioTIP’s
ability to identify multiple significant CTSs independent of
the constructed trajectory topologies creates an easy under-
standing of the dynamic processes of gastrulation.

We assessed the robustness and stability, using the same
subset of cells that we conducted QuanTC analysis (Ma-
terials and Methods). This allowed us to evaluate three
hematopoietic-endothelial bifurcation-involving CT clus-
ters (C13, C13, C6). These clusters were stably significant
in the down-sampled data analysis, and their characterizing
CTSs significantly overlapped their inferred gold-standard
markers (Supplementary Figure S7d). Again, BioTIP was
robust against four tested clustering pipelines in this dataset
(Supplementary Figure S1c).

We then verified the biological reproducibility of these
identified CTSs in an independent mouse gastrulation tran-
scriptome, the E8.25 2018 dataset (36). For each above-
identified CTSs, its Ic.shrink scores in the new dataset
peaked at one sub-cell type significantly, thus pairing this
sub-cell type to the above-detected bifurcation state (P of
Delta < 0.001, Figure 4F).

Each state pairing was supported by their shared clas-
sic biomarkers (Supplementary Figure S8). Three out of
four pairs shared the top-10 up-regulated biomarkers (12–
29 shared markers from 10k common background genes,
Fisher’s exact test P < 2e–16, odds ratio >250, Figure 4G).
One pair with moderate overlap is also significant (P = 0.01,
OR = 15). All four CTS-mapped sub-cell types resembled



e91 Nucleic Acids Research, 2022, Vol. 50, No. 16 PAGE 10 OF 19

A

0 4 8

0
2

4

Average Expression in log2

S
ta

nd
ar

d 
D

ev
ia

tio
n 754 cluster-specific HVG

2.4k other global HVG
other 7.2k expressed genes

Analyzing 131 cells 
by excluding E18.5 AT1 cells

B

0
2

6
10

C1

67
39

C2

44

38
C3 n=38 n=67n=44 n=39

C2_38g 

Ic
.s

hr
in

k
0

1
2

1 2 3

C1_67g 

1 2 3

C2_44g 

1 2 3
C1 _39g

1 2 3

0

50

100

1 2 3 4 5 C2

C

E

F

D

Cell cluster ID

gene modules (n ≥ 30 per module)

D
N

B
 s

co
re

~~

4

10

2

0
D

N
B

 s
co

re

C1C2

cluster marked by CTS candidates 

Cell cluster ID

P<0.01

BP

Ciliated

Clara
AT2

−10

−5

0

5

10

−4 −2 0 2
TSNE 1

TS
N

E
 2

C1 (n=46)

C2 (n=32)

C3 (n=24)

C4 (n=17)

C5 (n=12) Timepoint
E14.5
E16.5
E18.5
AdultAT1

AT2

CT detection CTS identifiction

module size
10
20
30

G

(Adult)

EP (E14.5) 

Mature AT2 

AT1

TP (E16.5, BP) 

AT2 (E18.5)  

Ager+, S100a6+, Lyz2-
Sftpc+, Pdpn-

EP

N
or

m
al

iz
ed

 F
1

Fr
eq

ue
nc

y 
(%

)

Stability estimated fr. downsampled lung data (20 runs) 

0.4

0.6

0.8

1.0Minimal **** **** ***

131 cells

Figure 3. Applying BioTIP to lung epithelial developmental data identified a CTS for the known critical transition, which shows a significant but not the
highest DNB score. (A) TSNE plot of 131 lung epithelium cells shaped by collection days. It is colored and numbered by five clusters detected from the
transcriptomes. Purple ovals highlight four subpopulations of E18.5 cells with published cell identities. Grey hollow arrows illustrate the knowledge-based
pseudo-orders. EP: early progenitor; BP: biopotential progenitor. (B) Smooth color density scatter plot of 10.3k expressed genes. The blue dots represent
a high density while the grey dots represent a low density. Highlighted in pink or red are the global HVG selected to conduct simulation statistics and the
cluster-specific HVG (red) from which CTS candidates are identified. (C–G) Similar to Figure 2C–G, showing results for three clusters having 20 or more
cells. Panel E has purple arrows pointing to when the observed score falls into the range of random scores at the intended cluster, and the CTS candidate
is rejected. Panel f uses a proxy gold standard of 16 genes characterizing E16.5 cells by at least three out of five predictions (detailed in Supplementary
Figure S1b). ****P < 0.0001 in t-test. Panel G points to the known tipping point at E16.5 which is verified by QuanTC (See also Supplementary Figure
S6).



PAGE 11 OF 19 Nucleic Acids Research, 2022, Vol. 50, No. 16 e91

5 

4 

8 

Endothelium
15

 7 

0

10

−5 0 5
umap 1 (Pijuan-Sala 2019 cells)

  u
m

ap
 2

10
13

16
18 19

3 2 17

11 9
1

12

A
Hematopoietic

Intermediate mesoderm

6 

Somitic mesoderm

progenitor 

cardiac
C

TS
 s

co
re

0
2

4

C1 C2C3C4 C5C6

90

C9 C10

gene modules (n ≥ 60 per module)

C13

60

C15

67

C16

79

1 3 5 7 9
 1

1 13 15 17 19

p < 0.001

1 3 6 9 11 13 15 17 191 3 5 7 9 11 13 16 19 1 3 5 7 9 11 13 15 17 19

p = 0.044

C

p < 0.001p < 0.001
E

Endothelium  

early HEP

later HEP

Muscle Mesenchyme

lHEP (C15) CTS End (C6) CTS Muscle (C16) CTS eHEP (C13) CTS

Pijuan-Sala 2019 cell cluster ID

Mesenchyme

0

0.04

Ic
.s

hr
in

k

cardiac

−10

−5

5

−5 0 5
umap 1 (Ibarra-Soria 2018 cells)

 u
m

ap
 2

F

2018 C2 hi
1240

2018 C6 hi
916

2018 C9 hi

3146 2

2018 C8 hi
1028 23

End hi

lHEP hi

Muscle  hi

eHEP hi

P < 2e-16

P = 0.01

P < 2e-16
Etv2, Kdr
Lmo2
Mest,etc.

Hand1
Csrp2 

29

12
Igfbp4
Lmo2

etc

Ramp2, VIm
Apoe Mest
Clic1, etc

eHEP -> <- End
<- lHEP 

Muscle ->

Muscle 

lHEP CTS: 65 genes 

End CTS: 88 genes 

Muscle CTS: 79 genes

eHEP CTS: 60 genes 

P(Delta)<0.001; C2

P(Delta)<0.001; C6

P(Delta)<0.001; C9

P(Delta)<0.001; C8

0
0.2Ic

.s
hr

in
k

0
0.2

0

0.2

0
0.2

8 6 2 1 12 13 14 15 9 10 4 5 3716 11

2
6

8

9

Ibarra-Soria 2018 cell cluster

G H

P < 2e-16

ExE mesoderm

C9: mixed mesoderm.a
C8: endo.a
C6: endo.c
C2: endo.d

0

0 2 4 6

0
1

2

Average Expression in log2

S
ta

nd
ar

d 
D

ev
ia

tio
n

B
1.9k cluster-specific HVG

1.1k other global HVG
10.9k expressed genes

C15 
n=67 

0
2

C6 
n=90

C16 
n=79 

C13 
 n=60

cluster marked by CTS candidates 

D

C
TS

 s
co

re

Analyzing 7,240 cells 7,240 E8.25 cells of 19 clusters

Figure 4. Applying BioTIP to data of developing mesoderm identified four significant and reproducible CTSs. (A) Uniform manifold approximation and
projection (umap) plot of 15.9k developing mesoderm cells (E8.25, GSE87038, published in 2019) colored and numbered by 19 clusters of transcriptionally
similar cells (See Supplementary Figure S7a, b). Blue hollow arrows illustrate the knowledge-based pseudo-orders. ExE: extra-embryonic. (B) Similar to
Figure 3b, showing the smooth scatter plot of 10.9k expressed genes. (C–E), Similar to Figure 2C–E. Each illustrates the results in 11 of 19 clusters that
have module identifications. See Supplementary Figure S7d for stability. (F) Validating the four CTSs in independent profiles of 11 039 E8.25 cells of 16
pre-defined sub-cell types (published in 2018). Ic.shrinks of each CTS across these sub-cell types (line) were compared to their empirically simulated scores
(box, 1000 runs). Calculation was conducted after mapping all CTS genes (n = 79, 60, 67, 90) to this profiling, extracting >98% of CTS genes (n = 79, 60, 65,
88, respectively) measured. The sub-cell type with the highest Ic.shrink is highlighted with a red dot, and the p-value for the Delta is shown. The red number
on the x-axis indicates ‘CTS-mapped’ states of bifurcation. (G) Venn-diagram comparing the up-regulated biomarkers of each bifurcation state (in 2019
profiles) with the biomarkers of the mapped sub-cell types (in independent 2018 profiles). The numbers in the Venn count the up-regulated biomarkers (See
Supplementary Figure S8). Circle color represents the four CTSs. Fisher’s Exact tested P value. Some shared markers are displayed to the right. (H) Umap
showing 2018 E8.25 cells, colored and indexed by 16 unique sub-cell types. Blue hollow arrows illustrate the knowledge-based pseudo-orders. Colored text
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the pseudo-order of the four CTS-indicated bifurcations
(Figure 4H versus A). These concordances suggest that the
four CTSs are biologically reproducible in characterizing
multiple bifurcations in the developing mesoderm.

In summary, we identified four significant CTSs as the
readout of imminent developmental bifurcations and vali-
dated their significance in independent cells. These CTSs re-
veal the plastic and transcriptional regulatory mechanisms
in early mesoderm development.

Comparing BioTIP with other methods for the detection or
characterization of CT events

We first detailed how BioTIP corrects Ic’s problem using
the E8.25 2019 data (35). A higher Ic score indicates a CT
state (7). However, there exists a positive correlation be-
tween the Ic scores calculated with random genes and the
cell-population sizes (P = 8e–6); and the three smallest-
sized clusters presented the highest Ic scores. This bias is
consistent regardless of the number of genes tested (from
50 to 1000) (Figure 5A, top). We then asked if the Ic’s
bias causes trouble in predicting CT events. Cells have been
bootstrapped to generate simulation data with variable or
equal cell-population sizes, allowing an easy validation of
methods. Tested with 200 random genes, C10 exhibited
the highest Ic in the down-sampled simulation, making the
highest score at C15 in the full dataset irreproducible (Fig-
ure 5B, top).

By contrast, using Ic.shrink to analyze the same dataset
removed the unwanted bias (Figure 5A, bottom). The bene-
fit of Ic.shrink over Ic exists regardless of the number of ran-
dom genes tested (from 50 to 1000). Additionally in the sim-
ulation study, the highest Ic.shrink stayed at C10, regardless
of cell-population sizes per state (from 60 to 1025) (Figure
5B, bottom). Although the C10 cluster is a branching point
in the constructed trajectory, the cell cluster C13 (early
HEP) prior to C10 is the most interesting––it is predicted
by both BioTIP and QuanTC for the coming haemato-
endothelium branching event (Supplementary Figures S7f,
S9, S10). We conclude that when using Ic.shrink instead of
Ic, BioTIP has no longer a risk of confounding predictions
when working with data sets of variable population sizes.
Similarly, we illustrated how Ic.shrink corrects Ic’s bias in
the EB dataset (Supplementary Figure S11).

We then compared BioTIP with three other methods for
detecting one or more CT states, using the same six datasets.
These datasets present linear, bifurcation, or complex tree
topology in their developmental trajectories (Figure 5C).
Each dataset has one best-studied bifurcation event (Fig-
ure 5c, the red labeled cluster) among its robustly predicted
gold-standard bifurcations (Materials and Methods, Sup-
plementary Figure S1). Both QuanTC and BioTIP reached
the highest similarity between their CT predictions and the
gold standard in two datasets (Figure 5D), in line with a
report that 92% of transition-cell subpopulations exhibited
higher Ic scores than the cells in stable states (30). We ob-
served that QuanTC was more accurate for data with a
small set of selected genes and simple trajectory (e.g. the
EMT dataset), while BioTIP was more accurate for data
with high-dimension genes and complex trajectory (e.g. the
E8.25 2018 dataset).

Next, we compared BioTIP with two methods––DNB
and QuanTC––for CTS identifications at each best-studied
transition state. In four of the six datasets, BioTIP’s output
recaptured the proxy gold standard (i.e. the highest F1 per
dataset) (Figure 5E). We observed a higher F1 score with Bi-
oTIP rather than DNB in half of the case studies. This is ex-
pected because BioTIP can detect multiple significant CTSs
per bifurcation and multiple bifurcations per datasets, while
the one CTS predicted by the DNB model alone do not al-
ways mark the best-studied transition (e.g. in the E8.25 2019
and EB datasets). However, in the extreme case of only 18
selected genes, BioTIP functions only without the assess-
ment of empirical significance (Supplementary Figure S15),
suggesting global HVG is a requirement in assessing sig-
nificance. Compared to QuanTC, we found more biologi-
cally meaningful CTS genes with BioTIP. For example, in
the hESC data with two known bifurcation markers, we de-
tected one with QuanTC (Supplementary Figure S1a, red
boxes), while both were detected with BioTIP.

Additionally, we compared these methods by the abil-
ity to identify conserved markers across datasets, e.g. for
haemato-endothelial bifurcation from the three developing
mesoderm datasets. Applying DNB alone with the highest
score, we found significantly shared markers between two
E8.25 datasets but not the EB dataset (P < 0.001, Supple-
mentary Figure S16a). QuanTC also reported a common
marker (Kdr, P = 0.001) across two datasets but failed to
analyze the E8.25 2018 profiles over 5k cells. In contrast, Bi-
oTIP is unique in discovering significantly recurring mark-
ers across all three datasets (P < 0.001, Figure 5F). Intercel-
lular communications among these markers include promi-
nent Etv2-Rhoj and Etv2-Tal1 coactivations that may drive
heterogeneity during haemato-endothelial bifurcation (46–
50).

Overall, BioTIP presents broad applications to variable
scales of scRNA-seq data, consistency with other tools in
CT detection, and a unique ability to identify conserved
transition markers. Therefore, we anticipate BioTIP to be
useful for characterizing developmental critical bifurca-
tions.

Significant CTS discloses an Etv2-centred transcriptional
and epigenetic regulatory dynamics during haemato-
endothelial bifurcation

We have shown that a significant CTS contains or is the tar-
get of TFs marking or driving the bifurcation, using the
benchmarking hESC dataset. Here, we asked whether the
identified CTSs disclose fate-decisive TF activities in the
complex E8.25 2019 dataset. From four identified CTSs, we
isolated three upstream-regulatory TFs whose fluctuation
in expression most likely impacts other genes’ fluctuation
in two CTSs (Figure 6A, Supplementary Figure S7e). They
were Gata1 at the more blood-committed later HEP, Etv2
and its direct target Ets1 (51) at early HEP (C13). These
agree with the literature that Gata1 drives stem cells toward
blood fates (52); and transient Etv2 activation specifies HE
lineages, which is required until HE bifurcation (51,53). We
are interested in how the mRNA variance of Etv2 explains
the expression changes of other CTS genes, given that C13
sits just before the HEP branching point (Figure 4A).
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Figure 6. ETV2-centred transcriptional and epigenetic dynamics during haemato-endothelial bifurcation. (A) Disclosing fate-deciding TFs from two CTSs
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deviation.
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To inspect the driver role of Etv2 fluctuation during the
well-studied HE bifurcation, we checked the two key fea-
tures of a tipping point (33): threshold-dependence and au-
toactivation. First, the variance and mean value of Etv2 ex-
pression peaked at HEP clusters (C13 or C10) (Figure 6B).
This is consistent with the report that an expression thresh-
old of Etv2 is required for HE bifurcation (50,53). Second,
Etv2 autoactivation in hematoendothelial specification has
been reported (54). Here, the variance and mean value of
Tal1 expression peaked at early HEP and then maintained
its value for blood progenitors. These temporal activations
are consistent with the data in a time-resolved experiment
(1) and go along with the literature that Etv2 activation in-
duces a positive Etv2-Tal1 loop (50). Therefore, we reason
that Etv2 fluctuation in expression is a new transcriptional
feature for HE bifurcation.

We then verified Etv2’s central role in this CTS for C13
in two steps. First, we confirmed Etv2 as an upstream
regulator of the 60 CTS genes with three pieces of evi-
dence (S Methods). (a) An enrichment of ETS motifs pre-
sented at the proximal promoters (Supplementary Figure
S16b). (b) There was a significant overlap with Etv2 direct
targets derived from ChIP-seq binding data of differenti-
ated embryonic stem cells (51) (P = 3.8e–7, Figure 6C).
(c) Another significant overlap was observed with 73 pre-
viously verified Etv2 targets during haemangiogenic dif-
ferentiation (50) (P = 3.2e–11, Figure 6C). Second, we
investigated the gene co-expression changes impacted by
Etv2 fluctuation during the transition, focusing on five CTS
members that are verified Etv2 direct targets: Tal1, Lyl1,
Rhoj, Rasip1 and Plvap. Along the developmental path
from the extraembryonic mesoderm to HE bifurcations,
the pairwise correlations among these six genes change
(Figure 6d). A transient anti-correlation between Etv2 and
its three target genes exhibits only at the CT state, which
is also observed before the HE bifurcation in the E8.25
2018 dataset (Supplementary Figure S16c). This data sug-
gests that there exists an Etv2-coordinated transcriptional
priming.

Etv2 induction-dependent chromatin remodification (48)
could be one mechanism underlying the transient gene
covariance of the identified CTS. To test this hypothe-
sis, we compared the published ATAC-seq data between
Etv2-overexpressed (Etv2KOiEtv2) cells and its control
Etv2KO cells at the EB differentiation day 4.75 (55). This
Etv2KOiEtv2 EB cells mimic a normal later HEP state be-
cause Etv2 expression ceases around EB day 5 (55,56).
For the 60 CTS genes, most Etv2-binding sites gain chro-
matin accessibility in Etv2KOiEtv2 than Etv2KO cells (ad-
justed P = 0.06, Figure 6E, comparing two red lines atop).
This pattern is consistent with our recent in-vitro observa-
tion (57), and holds true at the promoters of all the five
Etv2 targets (Figure 6E, yellow embeds). Even without ev-
idence of Etv2 binding, most CTS genes gain accessibil-
ity in the Etv2-overexpressed Etv2KOiEtv2 cells (adjusted
P = 1e–4, Figure 6e, comparing two black lines atop, shown
at Hspg2, blue embed). This data suggests Etv2 overexpres-
sion itself impacts chromatin remodeling. Interestingly, an
Etv2-binding proximate (<1k bp upstream from TSS) pro-
moter of Etv2 is accessible in the Etv2KO control but inac-
cessible in Etv2KOiEtv2 (Figure 6E, pink embed). Because

Etv2 binds to this region for autoactivation (54), we rea-
son there is an instrumental epigenetic control terminating
Etv2 autoactivation at the later HEP state. This instrumen-
tal epigenetic control might underlie the reported expres-
sion threshold of Etv2 during HE bifurcation, thus coordi-
nating the CTS expression changes.

Based on changes in co-expression, the observed chro-
matin remodeling, and literature, we propose an Etv2-
induced HE bifurcation (Figure 6F). In this transcriptional
and epigenetic co-modification model, Tal1 and other Etv2
targets are co-activated before the bifurcation. At the transi-
tion state, the Etv2-autoactivation and onset of several posi-
tive feedback loops amplified the oscillations of Etv2 and its
five targets. Cells continue to differentiate into distinct sta-
ble states after Etv2 expression reaches a threshold. Then,
the inaccessibility to its promoter region terminates Etv2-
autoactivation. Consequently, Etv2 expression decreases,
coinciding with gene regulatory network changes. After en-
tering a stable cellular state, some oscillating CTS genes gain
lineage-specific expressions, such as Tal1 in hematopoietic
progenitor (46), and Plvap, Rasip1 and Rhoj in the endothe-
lium (47–49). The fate specification is also under the con-
trol of chromatin remodeling driven by Etv2-induction (48).
Across these states, four pairs of instant Etv2-target correla-
tions disappear or switch the directionality, while Etv2-Rhoj
correlation appears in endothelial lineages.

In summary, our efforts to detect significantly intercon-
necting CTS genes from a noisy background bring us one
step closer to understanding the dynamic TF regulation, in
which the transient induction of TFs concur with or drive
critical state changes. The above results provide an impetus
to adopt tipping-point models to uncover the roles of tran-
scriptional oscillation using single-cell transcriptomes.

DISCUSSION

In this study, we developed BioTIP to characterize tran-
scriptional priming before cells transition from one sta-
ble state to another. The major challenge we overcome is
that cells may also determine their fate by taking devel-
opmental cues from stochastic fluctuations. Using BioTIP,
we identified multiple significant, reproducible, and trajec-
tory topology-independent CTSs. We achieve this by pars-
ing out regulated stochastic signals from the transcriptional
background. For example, in the lung, E8.25 2018, and
EB datasets (Figure 3e, Supplementary Figure S12e, Sup-
plementary Figure S13e), the results show that the iden-
tified CTS (the colored line rather than background gene
signals) is the only readout of the best-known lineage bi-
furcation. In contrast, Ic alone was able to capture some
CT events in the hESC, E8.25 2019, and EMT datasets,
showing how random gene signals can be indicative of a
tipping point (Supplementary Figure S3a, c, f). In both
cases, we showcase our significant CTSs consist of or are
targets of fate-determining TFs (Figure 6C, Supplementary
Figure S2c, d).

To exploit the regulated stochasticity via single-cell gene
expression data, BioTIP adapts the tipping-point theory
and high-throughput data analytical algorithms. Compared
to existing works on transition states, the methodological
contributions of this work are:
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1) BioTIP allows a fair comparison among cellular states
with variable population sizes in high-throughput
datasets. The between-state comparison of Ic is biased
towards small-sized states. Given that the sizes of cellular
clusters vary in a scRNA-seq dataset, this bias results
in Ic being inaccurate. We corrected Ic’s inaccuracy
by introducing an improved approximation of the true
correlation matrixes and designed Ic.shrink (Figure 5A,
B). Therefore, BioTIP detects small-sized transition
states more accurately than Ic.

2) BioTIP advances DNB’s application in identifying mul-
tiple, significant, and reproducible CTSs from high-
throughput scRNA-seq profiles. Due to the increased
number of cell states detectable, a subset of module genes
can interact in multiple states. Therefore, by modeling
gene co-expression alone, the DNB scores of a mod-
ule detected from one state might be undesirably high
at other states. Knowing this drawback, current appli-
cations of DNB identify only one CTS with the high-
est score in a system (16,17,28,58–60). By overcoming
this restriction, BioTIP can detect multiple modules per
dataset then discover conserved transition markers across
multiple datasets (Figure 5F).

3) Compared to transcriptional entropy-based methods, for
example QuanTC (30) and MuTrans (29), BioTIP does
not assume a smooth activation or silencing of mark-
ers during a transition. Therefore, BioTIP predicts more
transition markers rejected by this stable-state-central
assumption. Additionally, BioTIP models gene-gene in-
terconnections, thus enabling the divination and under-
standing of transition-driver TFs.

These methodological contributions can potentially help
understand transcriptional priming at transition states in
three angles:

1) A significant CTS is not only reproducible across inde-
pendent datasets but also informs key TF regulations that
could be valuable for investigating cellular engineering.

2) By realizing the independence of the CTS identifications
from cellular states’ trajectory topologies, we can uncover
previously undetectable multiplications (e.g. the saddle-
noddle bifurcation before fate commitment and the tran-
sition states at the branch end of a snapshotted trajec-
tory).

3) BioTIP is a unique toolset for identifying significant
CTSs from given single-cell transcriptomes. It provides
versatile functions with a user-focused tutorial, thus war-
ranting more biological applications.

The CTSs identified from mouse gastrulation data may
serve as the initial attempt to bridge transition-marker iden-
tifying to investigate lineage-determining TFs at the tran-
sition. For example, the cooperated expressional dynam-
ics between Tal1 and Lyl1 has been observed during the
endothelial-to-hematopoietic transition of cells originating
in endothelial lineages (61). Our results show that these two
Etv2-targets are co-expressed only in the CT cluster before
HE-bifurcation but not in later differentiated states. The
results elaborate on the coordination of competing regu-
latory factors’ alternative fate potentials in transition cells

that has been noted in other tissues (14). Second, our infer-
ence of Etv2 as a CTS driver suggests its potential in repro-
gramming the plastic cells at the transition. ETV2 reactiva-
tion was reported to reset the chromatin and transcriptome
of human endothelial cells to become adaptable, vasculo-
genic cells (47). We found exciting evidence to suggest Etv2-
overexpression remodels CTS genes’ chromatin accessibil-
ity (Figure 6E). Both suggest an Etv2-governed cell plas-
ticity via transcriptional and epigenetic remodeling, poten-
tially explaining the notion that transition cells can undergo
a ‘temporal switch’ (back towards a more plastic progeni-
tor) (1). Such reprogramming factors are promising as cell-
based therapeutic reagents for treating diseases, during an
unstable, plastic state.

Compared with standard gene signatures, CTSs were
reported to be depleted with differentially-expressed
genes (62). We found they are unrelated. Four CTSs of
developing-mesoderm were either distinguished from or
recaptured 8–21% of the up-regulated genes of their CT
clusters (Supplementary Figure S7e, colored cycles). This
independence suggests that CTSs (modeling variance and
correlation) detect new features of dynamics, regardless of
traditional analysis relying on group means.

As an alternative approach to estimating critical transi-
tions in silico from their RNA-Seq profile, transcriptional
entropy could be used rather than tipping-point theory.
Transcriptional entropy-based approaches (QuanTC, Mu-
Trans) have inferred subpopulations that undergo transi-
tions and exhibit higher entropy than stable populations
(29,30). Despite different underlying theories, QuanTC and
BioTIP converged at the same best-studied bifurcations in
six datasets (Figure 5D). Of note, transcriptional entropy
should not be confused with signaling entropy measure. Sig-
naling entropy estimates cell’s overall differentiation poten-
cies and thus decreases continuously during developmental
differentiation (23,63). In contrast, transcriptional entropy
exhibits a local peak before a critical cell-fate transition oc-
curs (29,30).

Both transcriptional entropy and signaling entropy re-
veal TFs important for state transitions (23,30). TFs identi-
fied by these entropy-based approaches should not be con-
fused with those inferred from BioTIP. In entropy-driven
approaches, the TF drivers significantly change from one
to another stable state along the pseudotime. In contrast,
BioTIP considers that TFs can be responsible for state
transitions by propagating intercellular communications
to downstream target genes (23,30) and therefore infers
transition-driver TFs from CTS genes identified. We found
overlaps between these two types of TFs (e.g. EOMES in
the hESC data, Supplementary Figures S2c, S4b). We in-
terpret this co-identification as a fluctuating TF that re-
sponds to bidirectional forward and reverse signals and also
changes significantly after the transition. However, infer-
ring transition-driver TFs from CTS genes remains chal-
lenging. We recommend checking different levels of ev-
idence, including manually curated repositories, interac-
tions, and TF-promoter binding derived from ChIP-seq
data in a related system (64,65).

There are three suggestions for a biologically meaning-
ful BioTIP application. First, we recommend removing un-
wanted artifacts of expression variance following a standard
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scRNA-seq analytical pipeline before applying BioTIP. Sec-
ond, cell clustering is a prerequisite. While different clus-
ter resolutions may affect BioTIP’s prediction, a reason-
able clustering method (with reasonably chosen parame-
ters) will not have a major impact on the CTSs identified
(Supplementary Figure S1). We designed BioTIP for the
case where local transition cells can be assembled as a clus-
ter and therefore had no prediction from only the stable cells
nor from some clustering procedures (Supplementary Fig-
ure S1). Third, applications to the cell populations of inter-
est will likely present high stability. For example, the out-
puts of 6 clusters connecting on the developmental trajec-
tory recaptured the gold standard better than those of all
19 clusters of the E8.25 2019 data (Supplementary Figure
S1c). In general, proper data procession and confidently in-
ferred clusters are required by BioTIP; and an established
trajectory topology should enhance computational sensitiv-
ity and biological interpretation.

In conclusion, we present the BioTIP approach for iden-
tifying CTSs from noisy, large-scale, and heterogeneous cel-
lular gene expression profiles. We use identified CTSs to
infer lineage-determining TFs and provide computational
validation of these CTSs in independent profiles. Our CTS
identifications reflect regulated oscillations in gene expres-
sion at critical transition states and offer hypotheses about
the transcriptional or epigenetic priming related to early bi-
ases in cell fate choices. We anticipate that transcriptomic
tipping-point analysis will be widely applicable for a deeper
understanding of the plasticity, heterogeneity, and pheno-
typic changes in dynamical biological systems.
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