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Abstract: A microfluidic chip, which can separate and enrich leukocytes from whole blood, is proposed.
The chip has 10 switchback curve channels, which are connected by straight channels. The straight
channels are designed to permit the inertial migration effect and to concentrate the blood cells, while
the curve channels allow the Dean flow to further classify the blood cells based on the cell sizes.
Hydrodynamic suction is also utilized to remove smaller blood cells (e.g., red blood cell (RBC)) in the
curve channels for higher separation purity. By employing the inertial migration, Dean flow force,
and hydrodynamic suction in a continuous flow system, our chip successfully separates large white
blood cells (WBCs) from the whole blood with the processing rates as high as 1 × 108 cells/sec at a
high recovery rate at 93.2% and very few RBCs (~0.1%).

Keywords: blood separation; microfluidics

1. Introduction

Blood is an important compartment of the body; it circulates in the body and helps to keep
the functions of life. Since blood may contain disease information, it is collected and stored for
medical treatment when needed, with this information widely applied in disease detection and medical
treatment [1]. As blood is composed of various types of cells, including erythrocytes (i.e., red blood
cells (RBCs)), leukocytes (i.e., white blood cells (WBCs)), and thrombocytes (i.e., platelets (PLTs)),
the capability to effectively separate blood cells can provide us with vital information for diagnosis of
disease immune deficiency and genetic abnormalities [2–4].

In blood cell separation, size-based filtration using porous membranes has been a popular
approach, although it may suffer from clogging, high flow stress and cell damage. On the other
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hand, microfluidics have been demonstrated to separate particles or cells, including pinched flow
fractionation (PFF) [5–9], cross-flow filtration [10–14], microfluidic disk [15], laminar vortices [16–18],
centrifugation/inertial focusing [19–21], and Dean flow [22–25]. Cell separation using microfluidics on
a microchip provides advantages over conventional methods by scaling down the instrumentation size,
simplifying the operation procedures for automation, as well as enabling the downstream integration
for cellular isolation, analysis, and processing.

Recently, particle separation in microfluidics using inertial migration has received much attention
because of its possibility in high throughput applications with simple designs [26–31]. The particles/cells
flow in rectangular channels are focused near the cross-sectional corners of the channels due to the
wall-crowding effect, whereby the wall repulsion forces push the particle away from the wall while
the shear-gradient force draws the particle towards the wall. Hence, the balance between these two
oppositely directed forces induce an equilibrium force at certain equilibrium positions [32].

Although the inertial migration technique permits high-throughput separation, higher separation
efficiency is still desirable when it applies to separate biological cells (e.g., blood cells or rare cells) that
usually have a large variety of sizes, shapes and rigidities for clinical applications. Herein, we propose
to enhance the separation purity and efficiency of the inertial migration by adding (1) curve channels
for Dean flow, (2) trench structures to induce additional secondary flows, as well as (3) hydrodynamic
suction to improve the separation purity. Our microchip is designed to possess the advantage of the
inertial migration with Dean flow and hydrodynamic suction; it has been created and successfully
shows the RBC separation from whole blood with the WBC enrichment in a continuous flow system.

2. Device Design and Working Principle

Figure 1 depicts the design of our separation chip with three types of channel: (i) a main straight
channel, (ii) curve channels, and (iii) suction channels. Each type of the channel plays different roles to
separate the cells. The whole separation chip consists of ten switchback curve channels connected by
the main straight channel. The sample flow is injected from the inlet, passes through the main channel,
then through the curve channel, which has the sample flow eventually injecting higher concentrations
into the “concentrate outlet”. Meanwhile, each curve channel has one suction channel at the inner
curve with all suction channels being connected to draw the smaller blood cells then collected into the
filtrate outlet.
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(1) Main Straight Channel for Inertial Migration Effect 

Figure 1. Our separation chip has three types of channel: (i) a main straight channel, (ii) curve channels,
and (iii) suction channels. The main straight channel has the inertial migration to move the cells into
different equilibrium regions. The curve channels (with the close-up view in the inset) push the white
blood cells (WBCs) toward the outer part while the red blood cells (RBCs) move toward the inner
part. The suction channel allows the RBCs to be sucked away. Note: the main dimensions of the
microchannels used in this work are: W = 200 µm, H = 58 or 85 µm, radius of curvature = 100 µm, and
W (suction) = 7 µm.

(1) Main Straight Channel for Inertial Migration Effect
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The main straight channel with rectangular cross sections is located in the entrance, and connects
the curve channels. As Poiseuille flow naturally presents in the microchannels, particles/cells usually
are acted upon by two fluid dynamic effects—wall-induced lift forces and shear-gradient lift forces—for
their discrete equilibrium positions [33,34]. The wall-induced lift forces push the particles/cells away
from the walls, while the shear-gradient lift forces push the particles/cells towards the walls [35]. These
two effects result the particles/cells with different sizes in equilibrium positions between the channel
walls and centerlines, as shown in Figure 2A.
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Figure 2. (A) A particle/cell experiences the wall-induced lift force (FWL) and shear-gradient lift force
(FSL) inside a microchannel with a WxH cross section. The small particles/cells (e.g., RBC) tend to move
toward the corners of the microchannel as the lift forces are larger than the drag forces. The large
particles/cells (e.g., WBC) tend to move toward the outer region of the microchannels. (B) Due to the
inertial migration effect, the cells with different sizes move into different cross-sectional regions in the
microchannel. Based on the relationship between FD and FL, the cells are: (B-1) uniformly distributed,
when FSL > FWL, or Re < 1; (B-2) close to the top and bottom walls of the microchannels, when FSL =

FWL, or 100 > Re > 1; and (B-3) around the corners of the microchannels when FSL < FWL, Re > 100.
(C) The microscopy views of the whole bloods flowing in the microchannel with (C-1) blood cells
distribute uniformly at 5 µL/sec or Re < 1; (C-2) blood cells concentrate close to the top, bottom and
sidewall surfaces at 250 µL/sec, or 100 > Re > 1; (C-3) blood cells concentrate around the corner of the
microchannel at 1.1 mL/sec, or Re > 100.

Furthermore, the wall-induced lift force (FWL) encountered by the particles/cells can be expressed
by Stoke’s law.

FWL = 3πµapUL (1)

where µ is the fluid viscosity, ap is the particle diameter and UL is the minimum fluid velocity to induce
the particles moving toward the channel walls.

The shear-gradient lift force (FSL) on particles/cells derived from a shear-gradient flow field can
be expressed as:

FSL =
2ρU2

f a4
p

D2
h

(2)

Dh =
4A
P

=
2WH

(W + H)
(3)

where ρ is the fluid density, U f is the flow average velocity in a microchannel and Dh is the hydraulic
diameter for the microchannel.

Based upon the above expressions, the values of these two forces of FWL and FSL depend on the
particle/cell sizes (ap). By varying the values of these two forces, FWL and FSL differential migration of
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particles/cells based on their sizes can be utilized for separation. Figure 2B depicts the three possible
situations for FWL > FSL, FWL = FSL, and FWL < FSL Moreover, when the cells reach the equilibrium at
FWL = FSL, the terminal velocity UL of the cells can be expressed as:

UL =
FSL

3πµap
=

2ρU2
f a3

p

3πµ
(

2WH
W+H

)2 (4)

L =
Umax

(
1
2 W

)
UL

=
3πW
2Re

(
Dh
ap

)3

(5)

where Umax is the maximum velocity in a parabolic flow field, and it is commonly assumed as
Umax ∼ 2U f . L is the channel length required for cells to reach lateral equilibrium position in
rectangular channels.

For better separation, a microchannel, whose width is larger than the height (e.g., aspect ratio
= (height/width) <1), is devised, leading large lift forces to move cells laterally toward the channel
sidewalls for the next stage of the cell separation in the curve channels. The larger lift forces moreover
can reduce the channel length required for cell migration and create better cell separation. Thus, our
main straight channel is designed by considering a proper Re numbers (e.g., 100 > Re > 1), aspect ratio
< 1 and FWL = FSL so the inertial migration can effectively separate RBCs/WBCs within short distances
and prepare for the separation in the next curve channels.

A series of the flow rates are tested at 5 µL/sec, 250 µL/sec, and 1.1 mL/sec to evaluate the cell
separation performance with the whole blood using the inertial migration effect in the main straight
channels. The channel width and height are 200 and 58 µm. Figure 2C demonstrates the results of this
preliminary study. It is found that the blood cells distribute quite uniformly at 5 µL/sec (or Re < 1) for
Figure 2C(C-1). The blood cells begin to concentrate around the top and bottom walls when the flow
rate increases (e.g., 250 µL/sec or 100 > Re > 1 for Figure 2C(C-2). Once the flow rate further increases,
the blood cells move and concentrate around the corners of the microchannel (e.g., 1.1 mL/sec or Re >

100) for Figure 2C(C-3). The inertial migration effect is confirmed for our initial RBC/WBC separation.
(2) Curve Channel for Dean Flow
Since the inertial migration could provide a RBCs/WBCs separation efficiency at ~89.8% [36,37] in

the straight rectangular channel, a secondary flow by using Dean flow is introduced to further enhance
the separation efficiency. A series of curve channels are added to provide Dean flow, which can aid
lateral particle/cell migration. Depending on particle/cell size, these secondary Dean flows tend to
entrain particles in one of the two vortices formed and force them to follow fluid movement within the
vortices. A dimensionless parameter, Dean number (De), is usually defined as:

De = Re

√
Dh
R

(6)

where R is the curvature radius of the curve channel. When De is large enough, the secondary flow
forms Dean vortices, vertical to the flow inside the channel. Due to these Dean flows, the drag force
exerted on a particle. Larger cells (e.g., WBC) experience larger forces and move toward the outer part
of the curve channels; the smaller cells (e.g., RBC) have smaller forces and remain in the inner part.

(3) Suction Channel for Hydrodynamic Suction
When the blood cells move along the curve channels, some of the smaller cells are sucked into the

suction channels. To enhance the separation performance in the suction channels, an array of obstacle
structures, or trench structures, are induced in the curve channel to create additional secondary flows
so better separation can be obtained before the suction. To compare their effects in the cell separation
efficiency, two designs—(A) without obstacle and (B) with an array of obstacles—in the curve channels,
as illustrated in Figure 3, are tested. In Design (A), although the Dean flow moves the RBCs toward the
inner part of the channels, these RBCs mostly keep moving along the curve channel, together with
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WBCs. Contrarily, in Design (B), some of the RBCs falls inside the trenches (with the height at 15 µm)
and are guided into the suction channels, while the WBCs roll over the obstacles and keep moving
along the main channel. As a result, some of the RBCs are removed from the sample flow, while the
rest of the blood cells stay downstream for further separation. The RBCs can be collected from the
suction channels and the recovery rate can be enhanced.
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Figure 3. When the blood cells move along the curve channels, some of the smaller cells are sucked
into the suction channels. Two designs—(A) without obstacle and (B) with an array of obstacles—are
tested to compare the suction efficiency in the curve channels.

Finally, our device has Dean number (De) approximately set at 11.33, as the radius of the curvature
is 200 µm. This Dean number is in the range for Dean flow effect in the curve channel with the
geometric parameters of the straight and the curve channels, as well as the flow rate.

3. Material and Methods

3.1. Fabrication of Our Separation Microchip

To create the main straight channels and curve channels, the molds were first fabricated by
patterning two layers of SU-8 3050 (Nippon Kayaku, Tokyo, Japan) negative photoresists on silicon
wafers. Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, Midland, MI, USA) prepolymer
was mixed in 10:1 (w/w) ratio then poured onto the molds for curing for 2 h at 85 ◦C. The PDMS
structures were released at room temperature to reduce thermal stresses. Finally, the holes for inlets
and outlets were punched with the PDMS molds irreversibly bonded to microscopic glass slides by
briefly exposing them to an oxygen plasma. The devices were left at room temperature for eight hours
before usage to avoid any further deformation. The whole process flow was illustrated in Figure 4.
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Figure 4. Fabrication process of the blood cells separation device. I-III are the steps for standard
lithography with the negative photoresist SU8. IV–V are the steps for soft lithography with
polydimethylsiloxane (PDMS) and then bonding the device on a glass substrate after plasma treatment.
Note: (I–III), the SU8 process follows the standard procedure, provided from official data sheet.
A two layers of SU8 are made: a first SU8 layer with a 20–50 µm thickness is spun-coated at 1500
rpm, exposed and baked; a second SU8 layer is then coated upon, exposed and baked with similar
processing parameters.
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3.2. Sample Preparation

Human whole blood, drawn from donors, was mixed with EDTA (Trtriplex®, Merck, Kennersburg,
NJ, USA) as anticoagulant; the ratio of EDTA to blood is 10:1. The cell concentration was measured at
4.3 × 108 cells/mL using cell counter plates.

3.3. Experimental Setup

The sample flow of the whole blood was introduced into our separation chip. A syringe connected
to a device with 1/16” peek tubing and fittings (Upchurch Scientific, Oak Harbor, WA, USA) provided
input flow using a syringe pump (KD Scientific, Holliston, MA, USA). Prior to the experiment,
95% alcohol was injected into the microchannel for pre-treatment with the sample solution injected.
The flow behavior was first visualized using an inverted epi-fluorescence microscope (IX71, Olympus
Inc., Tokyo, Japan) equipped with a 12-bit high-speed charge-coupled device (CCD) camera. To image
cross-sectional flow, confocal microscopy was performed using Zeiss LSM710 LIVE Duo Confocal
Microscope with the aforementioned experimental set-up. Cross-sectional images were taken at each
micro channel main and section. The images were acquired at resolution of 1024 × 768 pixels.

3.4. Recovery Rate

Recovery rate is one of the most common parameters to quantify the separation efficiency.
The recovery rate is defined as the ratio of the number of the cells retrieved from the target outlet to the
number of the cells introduced into the inlet.

Recovery rate =

(
Ntarget

)
Outlet(

Ntarget
)
Inlet

× 100% (7)

where Ntarget was the number of the target cells (e.g., cells of the interests, or WBC in this work).

4. Results and Discussion

4.1. Inertial Migration Effect

To investigate the relationship between flow velocity and channel length required for cells totally
migrating toward the side of the wall, Reynolds number should be greater than one (1) to ensure the
occurrence of this hydrodynamic phenomenon.

Experimental evidence from Figure 5A(A-1–A-3) show the blood separation results when the
sample solution is injected at 5 µL/sec, 250 µL/sec and 1.1 mL/sec flow rates (Qi). Lateral movements of
the cells become obvious, as the flow rates increase. In other words, the lift forces are larger than the
drag forces (FL > FD) to push the cells moving laterally toward the channel walls at high flow rate,
or Re > 100, as shown in Figure 5A(A-3). On the other hand, the lift forces are smaller (FL < FD) at low
flow rate, or Re < 1
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Figure 5. Inertial migration effect in whole blood separation (A) with different flow rate, and (B) with
different blood cells concentration.

Meanwhile, to identify the effect of the cell concentration, various concentrations at 109 cells/mL,
108 cells/mL and 103 cells/mL are tested, with the results shown in Figure 5B. At cell concentration of
108 cells/mL and flow rate 250 µL/sec, the device provides a separation condition with most of the cells
accumulated close to the upper and lower channel walls. It is noted that channel irregularities from the
fabrication and unexpected changes in boundary conditions that sometimes create flow deformations
or uneven cell distribution, as seen in Figure 5A(A-2,A-3),B(B-2).

4.2. Separation Efficiency with Hydrodynamic Suction

To realize the hydrodynamic suction effects and the separation efficiencies, two different chip
designs (e.g., Chip 1 and Chip 2) with a total of 48 chips were tested. Their critical dimensions,
including channel width, height, and length were listed in Table 1. Both chip designs were utilized
in different flow rate conditions (5 µL/sec, 20 µL/sec, 250 µL/sec and 1.1 mL/sec for Chip 1; 5 µL/sec,
20 µL/sec, 100 µL/sec and 1.1 mL/sec for Chip 2). The optimal flow rates (based on their separation
distribution in the main straight channels by visual examinations) were found at 250 µL/sec for Chip 1
and 100 µL/sec for Chip 2.

Table 1. Parameters used for blood cell separation using Chip 1 and Chip 2.

Microchannel
Dimension (µm)

Obstacle
in Curve Channel

Sample Solution
(Whole Blood)

Flow Rate
(µL/sec)

Chip 1 W × H = 200 × 58
R = 200

NO
(shown in Figure 3A) 4.3 × 108 cells/mL 5, 20, 250, 1100

Chip 2 W × H = 200 × 85
R = 100

YES
(shown in Figure 3B) 4.3 × 109 cells/mL 5, 20, 100, 1100

The blood cell separation in the curve channel was examined under an optical microscope. Figure 6
showed the image taken during a test where RBCs and WBCs flow into a curve channel using Chip
1. When Re > 100, the blood cells in the main straight channel would be moving and focused near
the corners in the microchannels due to the inertial migration effect. This inertial migration effect
increases the number of red blood cells that enter the suction channel, and enhances the cell separation.
The larger cells (e.g., WBC and others) move long the curve channels (as shown in the yellow arrows),
while a portion of the smaller cells (e.g., RBC) move into the suction channels (as shown by the green
arrows).
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Figure 6. Blood cell separation in the curve channel. Once the sample flow moves along the curve
channel, small cells (e.g., RBC) move along the suction channels (green arrow), while larger cells (e.g.,
WBC and others) move long the curve channels (yellow arrow). Qi = 100 µL/sec; Qs = 20 µL/sec. Chip
1 is used here as an example.

Furthermore, different suction flow rates (Qs) were tested to evaluate the separation efficiencies,
as depicted in Figure 7. Three experiments were conducted. The ratio of RBCs/WBCs was used as
the indicator for separation efficiency, since a low value of RBCs/WBCs represented fewer RBCs and
more WBCs in the outlet. A local optimal separation efficiency was found at Qi/Qs = 5.4 for Chip 1,
and Qi/Qs = 1.7 for Chip 2 (the 1st test), and Qi/Qs = 3.7 for Chip 2 (the 2nd tests). In other words,
when the suction flow rates were too high or too low, the separation efficiencies may not be better than
the one with the optimal suction flow rates. This could be because only a few RBCs were removed
from the curve channels into the suction channels when Qs was low. Contrarily, although more RBCs
were moved into the suction channels, some of the WBCs in the sample flows also were removed into
the suction channels when Qs was high, leading the decrease of the separation efficiencies. As the
result, the optimal suction flow was found at 37 µL/sec for Chip 1, and at 58 or 27 µL/sec for Chip 2.
The separation efficiencies (or RBCs/WBCs) were about 64 for Chip 1, and 40 or 18 for Chip 2.
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Figure 7. Separation efficiencies to the ratio of injection (Qi) and suction (Qs) flow rates for Chip 1 and
Chip 2. (Note: Chip 1 has no obstacle in the curve channels; Chip 2 has obstacles in the curve channels).
(Note: Chip 2 (1st and 2nd) has two optimum, as the conditions of the blood samples vary between the
1st and 2nd tests.).

4.3. Overall Separation Efficiency

The separation performance of the chip was then examined. Figure 8 showed the recovery rates
of RBCs and WBCs when the sample flow passed through each curve channel—from the first curve
channel to the tenth curve channel, using Chip 2. Passing through the first curve channel, the sample
flow had 99.7% of RBCs. It decreased to 85.8% of RBCs when it passed through the second curve
channels, or 14.2% of RBCs were removed through the suction channel. It further decreased to 75.4%,
or 24.6% of RBCs were removed after the third curve channel. It continued to decrease to 10.2% after
the ninth curve channel, and to 0.1% after the tenth curve channel. Therefore, almost all the RBCs in the
sample flow were removed through the suction channels after they passed through 10 curve channels.
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On the other hand, the sample flow had 96.2% of WBCs remaining after the first curve channel.
The percentage decreased a little bit after every curve channel, and it decreased to 93.2% of WBCs still
remaining after the tenth curve channel. The results show a very high recovery rate for WBCs, while
very few RBCs were found after the separation chip.

To compare the separation performance, Table 2 exemplifies some of existing inertial and other
cell/particle separation techniques in microfluidics. In particular for the separation of biological cells,
Y.-Y. Chiu et al. demonstrate hydrodynamic-focusing cross-flow filters in a microfluidic chip to separate
PC3 cells from the sample flow (PC3 cells mixed in whole bloods) with a ~94% recovery rate, but at
40 µL/min (or cell processing rate at 4 × 106 cells/sec) [14]. Another research works for cell separation
present with a high throughput with processing rates at 7.5 × 106 cells/sec for larger cancer cells spiked
in blood from the smaller blood cells [16]. S.Y. Choi and J.K Park report a hydrophoretic filtration
device using slanted obstacles to separate WBCs and RBCs from the whole blood with a purity of
76.8% [19]. The flow rate is 1 µL/sec (or cell processing rate at approximate 1 × 108 cells/sec), with over
one hour of operation with a recovery rate at 30%. Comparatively, our chip shows great improvement
in purity and recovery rate at a high processing rate, or higher throughput in biological cell separation.

Table 2. Comparison of some existing microfluidic techniques for particle/cell separation.

Channel
Type Mechanism

Particles/Cell
Size (D =

diameter in µm)

Channel
Dimension (µm)

Width (W) ×
Height (H)

Flow Rate
(or

Throughput)

Recovery Rate, or
Capture Efficiency

(η)
Ref

Channel
with filters

Hydrodynamic
focusing,
filtration

PC3 cells in whole
bloods.

W = 100,
H = 30

Wgap = 4 (filter)
10 µL/min 94.5%

(PC3 cells) [14]

Trapping
reservoir

Inertial/
Trapping by

vortices

MCF7 cells; HeLa
cells

W = 50
H = 70 m

7.5 × 106

cells/sec
η = 10% (HeLa)
η = 23% (MCF7) [16]

Asymmetric
serpentine

Differential
inertial focusing

Polystyrene beads
(D = 3.1, 9.0)

W = 100~650
H = 50 ~1.0 mL/min ~56% (3.1 µm

particle, two tiers) [20]

Double
spiral Dean flow MCF-7, Hela

in whole blood
W = 300
H = 50

3.33 × 107

cells/min
88.5% [22]

Slanted
spiral Dean flow

T24, MCF-7,
MDA-MB-231 in

blood

W = 600;
H = 80 /130

(inner/outer)
1700 µL/min.

η = 80% (T24)
85% (MCF-7)

87%
(MDA-MB-231).

[23]

Symmetrical
serpentine Inertial polystyrene beads

(D = 3, 10; 5, 13)
W = 200
H = 42 600 µL/min

>97% (large
particles);

>92% (small
particles)

[31]

Serpentine
with Suction

channel

Inertial,
Dean flow and

suction

RBC, WBC
(D = 8, 15).

W = 200
H = 58

1 × 108

cells/sec, or
250 µL/sec

93.2% Our
Work

As inertial microfluidics (i.e., inertial migration and Dean flow) is a fast-growing field, many related
non-linear fluid physics and basic directions are still uncharted. For instance, some analytical models
have been presented for straight and curve microchannels for particle/cell separation, but our devices
must be re-designed and fabricated for the separations whenever the threshold sizes of the particles/cells
change. The flow conditions of the injection and suction flow rates must be experimentally optimized.
This is an inherent limitation of our passive inertial microfluidic devices. Also, the physics of how the
secondary flow and cell trapping in an obstacle array are created and affected by obstacle arrangement
and geometrical parameters is complicated and yet to be understood. Further optimization can be
also experimentally conducted for even higher throughput or separation efficiency on these related
design variables. Additionally, the interaction of Dean drag and lift forces within the microchannel
and related flow condition and channel geometry require diligent experiments. Channel irregularities
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from the fabrication and unexpected changes in boundary conditions that create flow deformations or
uneven cell distribution offer a vast number of other aspects to be studied.

5. Conclusions

We have demonstrated a microfluidic device, which can remove most of the RBCs from whole
blood by employing the inertial migration effect, Dean flow, and hydrodynamic suction. An array
of obstacles was created in the curve channels, which redirected the RBCs to move into the suction
channels. A 93.2% recovery rate of WBCs and very few RBCs in the sample flow were obtained in a
high operation flow rate (e.g., 250 µL/sec). Our separation technique, therefore, was advantageous for
continuous processing, while reducing the clogging problem—a problem commonly seen in particle
separation using a microchannel. Additionally, it provided advantages over conventional methods by
scaling down the instrumentation size, simplifying the operation procedures for automation, as well as
enabling the downstream integration for cellular isolation, analysis, and processing. It is expected
that the results from this work will benefit a wide range of analytical, environmental, biological, and
manufacturing applications that require rapid, low-cost, continuous filtration, and/or separation of
microscale objects.
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