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DNA double-strand breaks (DSBs) are the most lethal form of damage to cells from irradiation. 
γ-H2AX (phosphorylated form of H2AX histone variant) has become one of the most reliable and 
sensitive biomarkers of DNA DSBs. However, the γ-H2AX foci assay still has limitations in the time 
consumed for manual scoring and possible variability between scorers. This study proposed a novel 
automated foci scoring method using a deep convolutional neural network based on a You-Only-Look-
Once (YOLO) algorithm to quantify γ-H2AX foci in peripheral blood samples. FociRad, a two-stage 
deep learning approach, consisted of mononuclear cell (MNC) and γ-H2AX foci detections. Whole 
blood samples were irradiated with X-rays from a 6 MV linear accelerator at 1, 2, 4 or 6 Gy. Images 
were captured using confocal microscopy. Then, dose–response calibration curves were established 
and implemented with unseen dataset. The results of the FociRad model were comparable with 
manual scoring. MNC detection yielded 96.6% accuracy, 96.7% sensitivity and 96.5% specificity. 
γ-H2AX foci detection showed very good F1 scores (> 0.9). Implementation of calibration curve in the 
range of 0–4 Gy gave mean absolute difference of estimated doses less than 1 Gy compared to actual 
doses. In addition, the evaluation times of FociRad were very short (< 0.5 min per 100 images), while 
the time for manual scoring increased with the number of foci. In conclusion, FociRad was the first 
automated foci scoring method to use a YOLO algorithm with high detection performance and fast 
evaluation time, which opens the door for large-scale applications in radiation triage.

Upon exposure to ionizing radiation, several types of DNA damage occur including base damage, single- and 
double-strand breaks1. Of these, DNA double-strand breaks (DSBs) are the most lethal to the cells. Several 
techniques have been used to quantify the amount of DNA DSBs, such as comet assay2,3, radiation-induced foci 
assay4, pulsed-field gel electrophoresis5. DNA damage and repair proteins come into play after damage is caused 
following exposure to ionizing radiation. One of the signaling responses includes the phosphorylation of histone 
H2AX at serine 139 (γ-H2AX) within the DNA damage site when DSBs are formed6. ATM and DNA-PK play 
important roles in the phosphorylation of γ-H2AX7–10. γ-H2AX has become a potential biomarker of DNA DSBs 
(which increase in proportion to radiation dose)11. Following the formation of DNA damage, several repair 
proteins (such as those involved in homologous recombination and nonhomologous end joining pathways) are 
recruited to the damage sites to repair the broken ends12,13. If DNA DSBs are left unrepaired, they can lead to 
mutagenesis, disease and cancer14. γ-H2AX quantification to determine the amount of DNA DSBs were applied 
in nuclear medicine15,16, radiotherapy monitoring17–19, diagnostic monitoring20–22, genotoxicity testing23 and 
biological dosimetry (biodosimetry)24–26.

To assess the radiation dose received by a population where physical dosimetry is not available, several 
biodosimetry methods can be applied such as dicentric, micronucleus, premature chromosome condensation, 
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fluorescence in-situ hybridization (FISH) translocation and γ-H2AX assays27. The dicentric assay has been the 
gold standard for cytogenetic assessment. However, the dicentric assay requires several days for cell culture and 
assessment by trained personnel28. To date, the γ-H2AX assay has been widely used as a rapid and sensitive 
technique to assess radiation exposure29. The quantification of γ-H2AX can be performed by Western blot, flow 
cytometry or foci counting30,31. The quantified γ-H2AX values are interpolated onto an established dose–response 
calibration curve to estimate the received dose in an individual. The number of γ-H2AX foci is typically quanti-
fied directly by eye. Manual γ-H2AX foci scoring relies on time-consuming and tedious work, and it is prone to 
human bias32–35, however it is still the most accurate and hence is preferred by many biodosimetry laboratories36.

In recent decades, automated and semi-automated foci scoring approaches (based on image processing algo-
rithms, such as TGI37, FociCounter38, AutoRIF39, AKLIDES®34, FoCo40, Focinator41,42, AutoFoci43, FocAn44 and 
others33,45–48) have used multiple object identification algorithms to segment nuclei and allow discrimination of 
γ-H2AX foci. These image processing algorithms utilize various techniques to distinguish foci, such as Otsu’s 
thresholding49, top-hat transformation37,47,48,50, H-Dome/threshold-based segmentation37, pattern recognition51. 
Some studies37,44 also developed extended approaches to separate the overlapped foci which occur in nuclei 
with high DSB density33,39,48,52,53. In addition, FocAn44 can be used as an automated 3-dimensional analysis of 
γ-H2AX foci to overcome the limitation of 2-dimentional counting. However, automated foci identification 
software limited the option for users to train the detection algorithms based on their data and match them with 
their specific tasks32.

In microscopy, machine learning has been widely used to develop predictive tools for biomedical 
applications54–58. For foci identification and quantification, machine learning was introduced by Herbert et al. 
(2014) to train a new foci detection algorithm (called ‘FindFoci’) and provided it as an open-source plugin for 
ImageJ32 (and obtained an F1 score > 0.9). However, they studied Msh4-GFP and Zip3-GFP foci in 21 images 
with little variation of noise and artefacts. In 2019, Gu et al.59 proposed a machine learning-based linear sup-
port vector machine classifier combined with real-time image processing for sorting cells based on the count of 
γ-H2AX foci in human glioblastoma cells treated with 6 Gy gamma irradiation and reported a good correlation 
(R2 = 0.881). In 2020, Hohmann et al.60 published their examination of multiple machine-learning models [multi-
layer perceptron (MLP) classifier, support vector machine, complement naive Bayes classifier and random forest 
classifier] to classify γ-H2AX foci in fluorescently labeled images containing multiple types of artefacts. Three 
glioma cell lines (U-251 MG, LN-229 and U-343 MG) irradiated with 2 or 4 Gy were used for training their 
model. MLP produced the best results, with an F1 Score = 0.923. However, the challenge of foci overlapping due 
to clustering remained unsolved.

Deep learning based convolutional neural network (CNN) is proposed for cell biology imaging. CellPro‑
filer3.061 software has been configured to make use of cutting-edge CNNs to analyze biomedical images by 
introducing support modules for deep learning system-based TensorFlow62 or Convolutional Architecture for 
Fast Feature Embedding (Caffe)63. The ‘ClassifyPixels-Unet’ module is used for nuclei segmentation using Unet 
CNN64. ‘MeasureImageFocus’ module is used to train a deep learning model65 to detect foci in images. In 2020, 
Chen and colleagues66 proposed a deep learning-based open-source pipeline (called ‘FociNet’) which used U-Net 
CNN64 for Hela-EGFP-53BP1 cell segmentation and a VGG-19-based classification network67 for classifying a 
single cell as normal, damaged or nonsignaling. The accuracy of the classification network reached 99.15% in 
the validation data set. In the same year, Vicar et al.68 proposed a deep learning-based fully-automated method 
for 53BP1 and γ-H2AX foci counting called ‘DeepFoci’ in cell lines (NHDF, U-87) and primary cell cultures 
irradiated with 1–4 Gy gamma-rays. U-Net CNN64 was used for nucleus segmentation and foci detection, fol-
lowed by a Maximally Stable Extremal Region (MSER) algorithm69 for segmentation of detected foci. DeepFoci 
algorithm obtained F1 = 0.67 and worked with 3D confocal multichannel data.

Recently, Redmon et al. introduced the You-Only-Look-Once (YOLO) approach70–72. This uses a real-time 
object detection algorithm which is fast, simple to construct and can be trained directly on full images. The YOLO 
algorithm processes the object detection problem as a regression problem, to spatially separate bounding boxes 
and associated class probabilities. YOLO also generalizes well to new domains, thus making it ideal for applica-
tions that rely on robust object detection. Additionally, enhanced versions of the network algorithm operate faster 
than other detection frameworks73. Automated microscopic analysis using YOLO has been proposed for several 
tasks. These include peripheral leukocyte recognition74, cellular detection in fluorescence microscopy75, sperm 
cell detection76, parasite stage of malaria-infected red blood cells77. To our knowledge, the YOLO algorithm has 
not been used for automated γ-H2AX foci scoring of human peripheral blood samples.

In this study, we assessed an automated γ-H2AX foci scoring system based on confocal fluorescence micro-
scopic images which were captured from white blood cells (WBCs) irradiated with high doses in the range of 
0–6 Gy. We introduced FociRad, a two-stage (or concatenated) approach of the YOLO model, which could local-
ize mononuclear cells (MNCs) and detect γ-H2AX foci inside their nuclei. The objectives of the present research 
were (1) to develop an automated foci counting method based on concatenated deep-learning (FociRad), (2) 
to evaluate the performance of FociRad with captured WBC images, (3) to establish dose–response calibration 
curves, and (4) to implement the FociRad for radiation dose estimation in the selected dataset. All results were 
compared with those obtained from manual scoring.

Materials and methods
Ethics statement.  This study was reviewed and approved by the Mahidol University Central Institutional 
Review Board (Approval No. MU-CIRB 2019/119.1904). In this study, all experiments were performed in 
accordance with the Declaration of Helsinki.
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Dataset acquisition.  Blood collection and in vitro irradiation.  Blood samples were collected from seven 
healthy donors (four male and three female volunteers, age 21–25 years) by venipuncture into 5 mL heparinized 
tubes after informed written consent. Donors were nonsmokers with good health (no obvious illness at time of 
donation) and no history of exposure to chemotherapy or radiotherapy within the last two years.

Blood samples were aliquoted into 1.5 mL cryovials which were either irradiated with different amounts of 
X-rays (1, 2, 4 or 6 Gy) or not irradiated and kept as controls (0 Gy). A 3-dimensional radiotherapy plan consisted 
of 6 MV X-ray, dose rate of 600 MU/min, field size 10 cm2, source to surface distance of 95 cm; prescribed doses 
of 1, 2, 4 or 6 Gy at 5 cm depth were computed on a simulated water phantom using Acuros XB dose calculation 
algorithm in the Eclipse Treatment Planning System version 16.1 (Varian Medical Systems, Milpitas, CA). Tubes 
of sampled blood were set up under the treatment plan conditions, placed into the holder at a depth of 5 cm in 
the water phantom, and irradiated using a TrueBeam linear accelerator (Varian Medical Systems, Palo Alto, CA). 
In this study, the radiation dose at a depth of interest was determined using a Farmer chamber FC65-G (IBA 
Dosimetry, Germany), the standard clinical reference dosimeter for high-energy photons.

γ‑H2AX assay and image acquisition.  Irradiated blood samples were incubated at 37 °C for 1 h prior to trans-
ferring 500 µL of blood into 15 mL conical bottom tubes for fixation with 500 µL of 8% paraformaldehyde for 
10 min. Fixed blood samples were diluted with 1 × PBS to make a final concentration of 1% paraformaldehyde 
before transporting on ice to a laboratory in the Faculty of Medical Technology, Mahidol University. Blood 
samples were centrifuged at 1000 rpm at 4 °C for 5 min and incubated in 0.1% (v/v) Triton X-100 diluted in 
phosphate-buffered saline (PBS) for 30 min. Cells were washed twice with PBS. After removal of red blood cells, 
WBCs were resuspended in 1 mL 50% methanol and placed on ice for 10 min before blocking in 1% bovine 
serum albumin (BSA) for 30 min. Cells were stained with Alexa Fluor 488 anti-H2A.X Phosphor (Ser139) (Bio-
Legend, USA) (1:25) for 2 h, APC anti-human CD45 (BioLegend) (1:25) for 30 min and DAPI for 10 min. After 
incubation, cells were washed three times with PBS to remove excess antibodies, and stored in 1% paraformalde-
hyde overnight. Cells were carefully spread and mounted on glass slides and then kept at 4 °C prior to analysis.

Images were taken with a confocal laser scanning microscope (Zeiss LSM 800 Airyscan confocal laser scan-
ning microscope, Carl Zeiss, Jena, Germany). Channel mode visualization was done using the 100X objective 
with oil immersion, resulting in images with a resolution of 1024 × 1024 pixels. Three color channels [DAPI 
(blue), Alexa Fluor 488 anti-H2A.X Phosphor (Ser139) (green), and APC anti-human CD45 (red)] captured 
confocal images of nuclei, γ-H2AX foci, and surface of leukocytes, respectively. MNCs were differentiated from 
polymorphonuclear cells by morphologically distinguishing double-positive DAPI and bright CD45 expression. 
Z-stack images (5 slices per cell) with a slice interval of 0.6 µm were captured and exported as CZI file format, 
then converted to TIFF file format using modular image acquisition, processing and analysis software for digital 
microscopy (ZEN 2.1 software, Carl Zeiss Microscopy GmbH). A total of 965 images with no overlapping of 
neighboring cells were captured to obtain 700 MNCs irradiated at 0, 1, 2, 4 or 6 Gy. Examples of confocal micro-
scopic images of MNCs from different doses can be found in Supplementary Fig. S1 online.

FociRad: the concatenated deep learning model.  The concatenated deep learning approach was 
proposed as a novel technique that consists of a two-stage deep learning model. The MNC detections in the 
first-stage model were implemented on captured images using the object detection-based YOLO v4 CNN73. 
Cropped rectangular image regions that were precisely fitted to each observed MNC served as input datasets for 
the second-stage CNN model. Therefore, there was no two cells visible in a single bounding box. However, with 
the rectangular bounding box of YOLO v4, there might be a part of the neighboring cells visible at the corner 
(mostly cell surface and a very small portion of the nucleus). In the second stage, this became a training dataset 
for the γ-H2AX foci detection model. Figure 1 illustrates the process flow for the proposed method’s data prepa-
ration and use in model training.

Captured image preprocessing (label A in Fig. 1).  Three color channels of the confocal images, which captured 
nucleus (Fig. 2A), γ-H2AX foci (Fig. 2B), and the CD45 surface marker (Fig. 2C), were merged to generate 
RGB images (Fig. 2D) using MATLAB R2020a software (MathWorks, USA). During image capture in a typical 
γ-H2AX assay, there may be variation in intensity between experiments due to the staining and imaging pro-
cesses. Thus, to eliminate such variation, the standard image processing method [i.e., histogram matching, 3 × 3 
median filter, and Gaussian filters (standard deviation of 5)] was employed with all merged RGB images before 
they were used in the model training process.

Mononuclear cell detection model (first‑stage model): dataset preparation and training.  The purpose of this pro-
cedure was to create an object detection model for automatically detecting MNC regions on the captured images. 
To begin, the dataset was prepared through MNC annotation (label B in Fig. 1). A dataset of 690 images (560 
cells) was chosen at random from the group of captured MNC images. MNC annotation was performed by a 
trained biologist. MNCs were differentiated from polymorphonuclear cells by morphologically distinguishing 
double-positive DAPI and bright CD45 expression in RGB images as mentioned previously. We used a rectan-
gular bounding box to manually label each MNC on the RGB image and excluded cells near the surface as well 
as those with irregular shapes (incomplete cells). The bounding box’s central point was situated in the center of 
each MNC. The captured images were manually labelled as “MNC” (Fig. 2E). Manually scored image sets were 
assembled and used to train the MNC detection model.

The labelled MNC images were imported into an in-house deep-learning model development platform (CiRA 
CORE, https://​web.​faceb​ook.​com/​groups/​cira.​core.​comm/) to train the MNC detection-based CNN model 
(YOLO v4) (label C in Fig. 1). For training, Intel 1151 ®Core™ i5-9600 K CPU, NVIDIA GeForce RTX 2070 GPU 

https://web.facebook.com/groups/cira.core.comm/
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Figure 1.   Schematic diagram of the proposed concatenated deep-learning approach (FociRad). Workflow starts from dataset 
acquisition process. The dataset was imported into the FociRad two-stage detection models, i.e. mononuclear cell (MNC) and 
foci detection models. D1-weighted for MNC detection (D1-W) was obtained from step A to D. Automated MNC detection 
and cropping process using D1-W was performed in step E and F. D2-weighted for foci detection (D2-W) was obtained from 
step G to I. Finally, the performance of FociRad model for counting number of foci using test dataset was evaluated in step J.
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and250 GB RAM were used. The total computation time was 13 h, 29 min and 25 s. MNC detection models 
were validated with 275 images (140 cells) (label D in Fig. 1). The parameters, denoted as D1-weighted for MNC 
detection (D1-W), were obtained after the model training by choosing the best performance of the detection. 
Detection accuracy reached 96.6% (sensitivity 96.7% and specificity 96.5%) for MNC detection. The detected 
area of each MNC covered the entire bounding box (Fig. 3A).

γ‑H2AX foci detection model (Second‑stage model): dataset preparation and training.  The dataset obtained from 
635 images (500 cells) was used to develop the γ-H2AX foci detection model (label E in Fig. 1). The trained 
MNC detection model described as the first-stage model was employed with optimized D1-W parameters. It was 
used to prepare the cropped MNC images by operating with the captured images as input. The cropping opera-
tion was performed on the detected MNC regions (Fig. 3B) to obtain 2388 cropped MNC images (500 cells) 
(label F in Fig. 1). Model outputs corresponded to the data from the bounding boxes of MNCs. These bounding 
boxes were used to provide position and area for cropping the MNC images.

Subsequently, extraction of green channel data (label G in Fig. 1) was performed to separate γ-H2AX foci 
areas (Fig. 3C) using MATLAB R2020b software (MathWorks). The γ-H2AX foci were manually labelled by a 
trained biologist (label H in Fig. 1). We used a rectangular bounding box to manually label each γ-H2AX foci 
on the cropped image. These cropped MNC images were manually labelled as “foci” (Fig. 3D). Manually scored 
image sets were assembled and used to train the model for γ-H2AX foci detection. The training dataset (1,904 
cropped MNC images, 400 cells) was imported into our in-house, deep learning framework (CiRA CORE) to 
train the γ-H2AX foci detection-based CNN model (YOLO v4) (label I in Fig. 1). For training, Intel 1151 ®Core™ 
i5-9600 K CPU, NVIDIA GeForce RTX 2070 GPU and 250 GB RAM was used. The total computational time was 
37 h, 1 min and 57 s. The parameters denoted as D2-weighted (D2-W) were obtained after the model training 
by choosing the best performance of the foci detection model.

γ‑H2AX foci detection model testing and performance evaluation.  FociRad was employed to test 484 cropped 
images (100 cells) (label J in Fig. 1). Following that, the D2-W qualified weight was used for automatic γ-H2AX 
foci recognition. The experiments were carried out on a workstation with Intel 1151 ®Core™ i5-9600 K CPU, 
NVIDIA GeForce RTX 2070 GPU and 250 GB RAM.

Figure 4 presents examples of automated foci detection using FociRad. The number of γ-H2AX foci in each 
cropped image was automatically counted and recorded in a Microsoft excel file. The mean number of foci per 
cell at each dose of irradiation was calculated. A video of the foci detection model being tested was posted on 
YouTube at https://​bit.​ly/​3zrBh​cz.

To assess γ-H2AX foci detection performance, the indexes of precision and recall ratio were calculated as 
in Eqs. (1) and (2).

Figure 2.   Preprocessing and data labeling used in the first-stage model. Confocal microscopic images of white 
blood cells. The images showed nucleus in blue (A), γ-H2AX foci in green (B), and the CD45 surface marker 
in red (C). Those three channels were merged prior to use as a dataset of the cell detection model (D). The 
mononuclear cell (MNC) was manually labelled using a rectangular bounding box (E).

Figure 3.   Cell detection, cell cropping, preprocessing data (green channel extraction) and foci annotation 
process. Mononuclear cell (MNC) detection in a three-channel z-stack image with detection confidence (A), a 
cropped cell (B), green channel extraction (γ-H2AX foci) (C), and foci labeling (D).

https://bit.ly/3zrBhcz
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(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

Figure 4.   Performance testing of the FociRad. Green channel cropped images of cells irradiated with X-rays (0, 
1, 2, 4 or 6 Gy) (left column) and automated foci detection with confidence thresholds by the FociRad model 
(right column) are shown.
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where TP is true positive, FP is false positive and FN is false negative. Notably, we did not use accuracy as a 
measure, as more than 90% of the training pixels were true negatives (TN), making accuracy and specificity 
insufficient metrics60. F1 score is a harmonic average of precision and recall rate, and can be defined as in Eq. (3).

In the calculation of F1 score, true positive (TP), false positive (FP) and false negative (FN) values were used 
which has been confirmed by manual scoring.

Implementation in radiation dose estimation.  We implemented the proposed FociRad for radiation 
dose estimation in an unseen dataset, which was collected from the blood sample of one healthy female donor 
(age, 21 years), then these dose estimates were compared with those obtained by manual scoring. The unseen 
dataset contained 80 MNCs irradiated with 0, 2, 4 or 6 Gy (160 captured images). All captured images were pre-
processed before manual or automated scoring (see  “Captured image preprocessing (label A in Fig. 1)” section).

For manual scoring, two independent observers performed the foci counting. Inter-rater reliability was deter-
mined to assess overall agreement between the two observers. The images were fully blinded before analysis 
and the two observers had no information about radiation dose exposure to the blood samples. Shrout-Fleiss78 
intraclass correlation coefficient (ICC) estimates were calculated for inter-rater reliability based on a two-way, 
random effects model with mean-rating (k = 2) and absolute agreement; a two-way mixed-effect model, based 
on single rating and absolute agreement, was used to assess the intra-rater reliability for each rater. ICCs were 
calculated using SPSS statistical package, version 18.0 (SPSS, Chicago, IL). ICC was found acceptable by sta-
tistical standards (ICC = 0.8)79. Dose–response calibration curve from manual scoring was employed for dose 
estimation. For the automated scoring using the FociRad, preprocessed images were analyzed by the optimized 
D1-weighted model for MNC detection, followed by the D2-weighted model for γ-H2AX foci detection and foci 
counting. Dose–response calibration curve established from FociRad was then used for dose calculation (Fig. 5).

Radiation dose estimation in the unseen dataset was performed using the in-house dose–response calibration 
curves (i.e. the relationship between radiation dose against mean number of γ-H2AX foci per cell). To establish 
a dose–response calibration curve, mean numbers of foci per cell were scored manually by a trained biologist 
and automatically by FociRad. The FociRad was employed to establish dose–response calibration curves using 
the D1-W for MNC detection, and then the D2-W for γ-H2AX foci detection. Mean numbers of γ-H2AX foci 
per cell from manual scoring and the FociRad were fitted individually using a linear function. SPSS statistical 
package, version 18.0 (SPSS, Chicago, IL) was used for curve fitting. The established dose–response calibration 
curves for both manual and automated scoring were linear and fitted with the equation y = ax + b where y was 
the mean number of γ-H2AX foci per cell and x was the absorbed dose (Gy). Dose–response calibration curves 
established from both manual and automated FociRad scorings were employed for converting foci counts into 
dose estimates.

Estimated doses obtained from both methods were used to calculate mean absolute difference (MAD) values80 
as in Eq. (4).

Results
Model performance metric results.  The performance evaluation metrics included precision, recall, and 
F1 score. These metrics of the γ-H2AX foci detection (FociRad) model for irradiated doses of 0, 1, 2, 4 and 6 Gy 
were presented in Table 1. Overall model performance metrics were 0.924, 0.897, and 0.911 for precision, recall 
and F1 score, respectively.

Agreement of γ‑H2AX foci assessments between manual and automated (FociRad) scor‑
ing.  γ-H2AX foci per cell determined by manual scoring compared with FociRad scoring were assessed 
with intra-class correlation coefficients (ICCs)78 using SPSS version 18.0 (SPSS, Chicago, IL). Bland–Altman 
analysis81 was used to visually determine systemic differences, and estimate their means and limits of agreement 
(LOA), between manual and automated scorings. Bland–Altman plots, which presented the differences between 
the two methods versus the mean values from manual scoring with the representation of the LOA (from –1.96 
SD to + 1.96 SD), were constructed and evaluated. For determining the extent of agreement between the two 
methods, ICC estimates78 and their 95% confidence intervals (CIs) were calculated based on absolute-agreement 
and two-way random effects models. Statistical analyses were performed and plots created with SPSS version 
18.0. Mean numbers of γ-H2AX foci obtained from the FociRad showed very good agreement [ICC = 0.970 
(0.962–0.977)] with those from manual scoring (see Supplementary Fig.  S2A online); mean foci difference 
(mean number of fociHuman − fociFociRad) was – 0.001 ± 0.874 foci (see Supplementary Fig. S2B online).

Comparison of estimated doses based on manual and automated (FociRad) foci scoring.  The 
dose–response relationship of manual scoring in the range of 0–4 Gy was y = 1.996x + 0.769 (R2 = 0.968), while 
FociRad was y = 1.739x + 1.080 (R2 = 0.913). The uncertainties were presented as standard errors (see Supplemen-
tary Table S1 online). Intra-class correlation coefficient (with 95% CI) for inter-rater reliability of γ-H2AX foci 
manual scoring between two observers was 0.990 (0.986–0.992). Intra-rater reliability was 0.981 (0.977–0.985) 
and 0.968 (0.958–0.975) for observers 1 and 2, respectively. Table 2 presents the estimated doses and MAD val-
ues, which were compared between those estimated from manual scoring and FociRad.

(3)F1score =
2× Precision× Recall

Precision+ Recall

(4)MAD = |Estimated dose − actual dose|
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Figure 5.   FociRad implementation process. Three-channel z-stack images were analyzed by D1-weighted for 
mononuclear cell (MNC) recognition and cell cropping. Green channel extraction was performed to show only 
γ-H2AX foci. Green channel images were analyzed by D2-weighted for foci detection. Foci were automatically 
counted and the numbers of foci per cell were used to calculate dose by linear fitting to the established dose–
response calibration curves.

Table 1.   γ-H2AX foci detection model evaluation. Performance metrics by dose for precision, recall and F1 
score.

Metrics 0 Gy 1 Gy 2 Gy 4 Gy 6 Gy Overall

Precision 0.889 0.962 0.920 0.931 0.910 0.924

Recall 0.667 0.906 0.947 0.877 0.886 0.897

F1 score 0.762 0.933 0.933 0.903 0.898 0.911

Table 2.   Estimated doses and MAD values obtained from manual and FociRad scoring. MAD = mean absolute 
difference.

Actual dose 0 Gy 2 Gy 4 Gy 6 Gy

Average MADEstimated dose Gy MAD Gy MAD Gy MAD Gy MAD

Manual − 0.27 0.27 2.75 0.75 4.31 0.31 5.11 0.89 0.56

FociRad − 0.52 0.52 2.93 0.93 4.67 0.67 5.64 0.36 0.62
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Discussion
The intensity-based approach to quantitate γ-H2AX for dose estimation is a more rapid and reliable method for 
detecting DNA damage within the first few hours of radiation exposure compared to other cytogenetic methods 
which require several days. Still, manual scoring of γ-H2AX foci needs an extensive time for scoring and is labor 
intensive. Therefore, we proposed an automated foci scoring method (FociRad) using a concatenated deep-
learning model to overcome these limitations and compared performance with manual scoring.

Several groups32,59,60 successfully developed deep learning methods in automated foci scoring in different 
types of cells and yielded very good performances as mentioned in the introduction section. Moreover, Vicar 
et al.68 studied using 3D data and in heterogeneous cell populations. Previous studies32,59,60,68 neither used YOLO 
algorithm for object detection nor studied in human blood samples. FociRad, the two-stage learning method of 
the YOLO v4 for MNC and γ-H2AX foci detection, was applied in whole blood and yielded a very good F1 score 
of 0.911 (min 0.762, max 0.933). Moreover, automated scoring had very good correlation with manual scoring at 
0, 1, 2 Gy (ICC = 0.90–0.94), and good correlation at 4 Gy (ICC = 0.80) and 6 Gy (ICC = 0.86). At higher doses, the 
dispersion of data between automated and manual scoring may have been due to the difficulties in differentiating 
overlapped foci. This is observed at high doses36,50 and limits the γ-H2AX assay using fluorescence microscopy. 
To address this limitation, the adaptive FociRad model using deep learning-based clustering approaches82 should 
be studied in three-dimensional confocal images in the future.

In radiation emergency, biodosimetry network played an important role in radiation dose estimation. A 
previous study by Rothkamm et al.80 showed that the MAD values between estimated and actual doses based 
on the scoring of foci by four participating laboratories could be categorized into two groups: low MAD (0.5 to 
0.7 Gy) and high MAD (1.3 to 1.7 Gy). In this study, FociRad model was implemented to estimate the radiation 
dose from an unseen dataset compared to manual scoring using the established dose–response calibration curves. 
The MAD values of 0, 2, 4 and 6 Gy actual dose were within the differences of ± 1 Gy for both scoring methods. 
Our average MAD values were within their low MAD group from the estimation using both manual (0.56 Gy) 
and FociRad (0.62 Gy) scoring.

FociRad is a fast-processing approach compared with manual scoring. The evaluation times (per 100 cropped 
images) used by two observers for manual scoring and used by FociRad for automated scoring of the unseen 
dataset were assessed (see Supplementary Table S2 online). FociRad used consistently shorter times (less than 
0.5 min), while manual scoring used longer times which varied with observer. In addition, manual scoring of 
γ-H2AX foci tended to consume more evaluation time at higher doses as seen from average evaluation times of 
sevenfold, tenfold and 14-fold at 2, 4 and 6 Gy compared to that at 0 Gy, respectively. This was likely due to the 
number of overlapped foci in high dose images. Fast evaluation time is important for the application of FociRad 
in large scale accidents, as potential biodosimetry tools must rapidly estimate dose prior to further medical care. 
Increasing need of well-established biodosimetry laboratories is important for radiation emergency preparedness. 
An example is the inter-laboratory comparison exercises conducted by established biodosimetry laboratories 
as in the European Network of Biodosimetry (RENEB)83,84. However, some discrepancies arise between dose 
estimations from different laboratories80,83,84 possibly due to variation in staining and imaging set ups as well as 
observer-dependent scoring. Using a single foci counting-based, deep learning platform such as FociRad may 
reduce these inconsistencies.

This study has some limitations, and so further studies will be required. First, the calibration curves were 
established based on a single timepoint (1 h post-irradiation). However, this time point was within the window of 
peak γ-H2AX responses (between 30 min and 2 h)11,85. Following the induction of γ-H2AX, both a fast and slow 
decay of the γ-H2AX signal is observed within 24 h and up to a few days24,86. It is suggested that calibration curves 
be established at various time points for wider application. Second, the cell surface marker used in this study (i.e. 
CD45) is a leukocyte common marker which is not specific to a WBC subpopulation. For our analysis we selected 
MNCs (lymphocytes and monocytes) rather than polymorphonuclear cells (granulocytes) due to the higher 
expression of radiation-induced γ-H2AX in these cells85,87. Nonetheless, using CD45 as a surface marker may 
have helped FociRad increase the accuracy of cell recognition in the first-stage model. Moreover, FociRad might 
also be helpful in quantification of DNA damage resulting from anti-CD45 targeted radioimmunotherapy88–90. To 
further develop the FociRad model for γ-H2AX assessment in different blood cell populations, one could modify 
the model by staining with other specific surface markers (e.g. T cell – CD3, B cell – CD19, NK cell – CD56, 
monocyte – CD14, granulocyte – CD15). Finally, FociRad should be further implemented with available external 
datasets from various sources of radiation (e.g. gamma rays, alpha particles and neutrons), and different energy 
ranges to reflect those used in diagnostic radiology, nuclear medicine and radiotherapy.

Conclusion
An automated γ-H2AX foci scoring model (FociRad), with a novel two-stage deep-learning approach based on 
a YOLO algorithm, was proposed to overcome the limitations of manual scoring of γ-H2AX foci in peripheral 
blood samples. FociRad functioned with very high performance (F1 > 0.9) and rapid evaluation time (less than 
0.5 min per 100 images), when compared to manual scoring which is tedious, observer-dependent and time-
consuming. FociRad may be used for rapid and large-scale analysis of γ-H2AX foci, such as is needed for medical 
triage after a radiation incident.

Data availability
The data that support the findings of this study are available at https://​github.​com/​Khais​ang/​FociR​ad.​git. Fur-
thermore, CiRA CORE can be requested and downloaded on https://​git.​cira-​lab.​com/​cira.

https://github.com/Khaisang/FociRad.git
https://git.cira-lab.com/cira


10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5527  | https://doi.org/10.1038/s41598-022-09180-2

www.nature.com/scientificreports/

Received: 26 October 2021; Accepted: 18 March 2022

References
	 1.	 Ciccia, A. & Elledge, S. J. The DNA damage response: Making it safe to play with knives. Mol. Cell 40, 179–204. https://​doi.​org/​10.​

1016/j.​molcel.​2010.​09.​019 (2010).
	 2.	 Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in 

individual cells. Exp. Cell Res. 175, 184–191. https://​doi.​org/​10.​1016/​0014-​4827(88)​90265-0 (1988).
	 3.	 Enciso, J. M. et al. Standardisation of the in vitro comet assay: Influence of lysis time and lysis solution composition on the detec-

tion of DNA damage induced by X-rays. Mutagenesis 33, 25–30. https://​doi.​org/​10.​1093/​mutage/​gez036 (2018).
	 4.	 Goodarzi, A. A. & Jeggo, P. A. Irradiation induced foci (IRIF) as a biomarker for radiosensitivity. Mutat. Res. 736, 39–47. https://​

doi.​org/​10.​1016/j.​mrfmmm.​2011.​05.​017 (2012).
	 5.	 Wong, R., Dynlacht, J., Cedervall, B. & Dewey, W. Analysis by pulsed-field gel electrophoresis of DNA double-strand breaks induced 

by heat and/or X-irradiation in bulk and replicating DNA of CHO cells. Int. J. Radiat. Biol. 68, 141–152. https://​doi.​org/​10.​1080/​
09553​00951​45510​41 (1995).

	 6.	 Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phos-
phorylation on serine 139. J. Biol. Chem. 273, 5858–5868. https://​doi.​org/​10.​1074/​jbc.​273.​10.​5858 (1998).

	 7.	 Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. & Chen, D. J. ATM phosphorylates histone H2AX in response to DNA double-
strand breaks. J. Biol. Chem. 276, 42462–42467. https://​doi.​org/​10.​1074/​jbc.​C1004​66200 (2001).

	 8.	 Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 
64, 2390–2396. https://​doi.​org/​10.​1158/​0008-​5472.​CAN-​03-​3207 (2004).

	 9.	 Mukherjee, B. et al. DNA-PK phosphorylates histone H2AX during apoptotic DNA fragmentation in mammalian cells. DNA 
Repair 5, 575–590. https://​doi.​org/​10.​1016/j.​dnarep.​2006.​01.​011 (2006).

	10.	 An, J. et al. DNA-PKcs plays a dominant role in the regulation of H2AX phosphorylation in response to DNA damage and cell 
cycle progression. BMC Mol. Biol. 11, 1–13. https://​doi.​org/​10.​1186/​1471-​2199-​11-​18 (2010).

	11.	 Rothkamm, K. & Horn, S. gamma-H2AX as protein biomarker for radiation exposure. Ann. Ist. Super. Sanità 45, 265–271 (2009).
	12.	 Chapman, J. R., Taylor, M. R. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 

47, 497–510. https://​doi.​org/​10.​1016/j.​molcel.​2012.​07.​029 (2012).
	13.	 Kakarougkas, A. & Jeggo, P. DNA DSB repair pathway choice: An orchestrated handover mechanism. Br. J. Radiol. Suppl. 87, 

20130685. https://​doi.​org/​10.​1259/​bjr.​20130​685 (2014).
	14.	 Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078. https://​doi.​org/​10.​

1038/​natur​e08467 (2009).
	15.	 Lassmann, M. et al. In vivo formation of γ-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differenti-

ated thyroid cancer. J. Nucl. Med. 51, 1318–1325. https://​doi.​org/​10.​2967/​jnumed.​109.​071357 (2010).
	16.	 Bussink, J. & Span, P. N. γ-H2AX foci in peripheral blood lymphocytes to quantify radiation-induced DNA damage after 

177Lu-DOTA-Octreotate peptide receptor radionuclide therapy. J. Nucl. Med. 56, 501–502. https://​doi.​org/​10.​2967/​jnumed.​115.​
153841 (2015).

	17.	 Sak, A. et al. gamma-H2AX foci formation in peripheral blood lymphocytes of tumor patients after local radiotherapy to different 
sites of the body: Dependence on the dose-distribution, irradiated site and time from start of treatment. Int. J. Radiat. Biol. 83, 
639–652. https://​doi.​org/​10.​1080/​09553​00070​15961​18 (2007).

	18.	 Sak, A. & Stuschke, M. Use of γH2AX and other biomarkers of double-strand breaks during radiotherapy. Semin Radiat Oncol. 
20, 223–231. https://​doi.​org/​10.​1016/j.​semra​donc.​2010.​05.​004 (2010).

	19.	 Zahnreich, S., Ebersberger, A., Karle, H., Kaina, B. & Schmidberger, H. Quantification of radiation biomarkers in leukocytes of 
breast cancer patients treated with different modalities of 3D-CRT or IMRT. Radiat. Res. 186, 508–519. https://​doi.​org/​10.​1667/​
RR144​75.1 (2016).

	20.	 Rothkamm, K., Balroop, S., Shekhdar, J., Fernie, P. & Goh, V. Leukocyte DNA damage after multi–detector row CT: A quantitative 
biomarker of low-level radiation exposure. Radiology 242, 244–251. https://​doi.​org/​10.​1148/​radiol.​24210​60171 (2007).

	21.	 Löbrich, M. et al. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc. 
Natl. Acad. Sci. U.S.A. 102, 8984–8989. https://​doi.​org/​10.​1073/​pnas.​05018​95102 (2005).

	22.	 Vandevoorde, C. et al. γ-H2AX foci as in vivo effect biomarker in children emphasize the importance to minimize x-ray doses in 
paediatric CT imaging. Eur. Radiol. 25, 800–811. https://​doi.​org/​10.​1007/​s00330-​014-​3463-8 (2015).

	23.	 Garcia-Canton, C., Anadon, A. & Meredith, C. gammaH2AX as a novel endpoint to detect DNA damage: Applications for the 
assessment of the in vitro genotoxicity of cigarette smoke. Toxicol. In Vitro 26, 1075–1086. https://​doi.​org/​10.​1016/j.​tiv.​2012.​06.​
006 (2012).

	24.	 Chaurasia, R. K. et al. Establishment and multiparametric-cytogenetic validation of 60Co-gamma-ray induced, phospho-gamma-
H2AX calibration curve for rapid biodosimetry and triage management during radiological emergencies. Mutat. Res. Genet. Toxicol. 
Environ. Mutagen. 866, 503354. https://​doi.​org/​10.​1016/j.​mrgen​tox.​2021.​503354 (2021).

	25.	 Roch-Lefvre, S., Valente, M., Voisin, P. & Barquinero, J.-F. Suitability of the γ-H2AX assay for human radiation biodosimetry. In 
Current Topics in Ionizing Radiation Research. 21–30. https://​doi.​org/​10.​5772/​36561 (2012).

	26.	 Zahnreich, S., Ebersberger, A., Kaina, B. & Schmidberger, H. Biodosimetry based on gamma-H2AX quantification and cytogenet-
ics after partial- and total-body irradiation during fractionated radiotherapy. Radiat. Res. 183, 432–446. https://​doi.​org/​10.​1667/​
RR139​11.1 (2015).

	27.	 Ainsbury, E. et al. Review of retrospective dosimetry techniques for external ionising radiation exposures. Radiat. Prot. Dosimetry. 
147, 573–592. https://​doi.​org/​10.​1093/​rpd/​ncq499 (2011).

	28.	 de Lemos Pinto, M. M. P., Santos, N. F. G. & Amaral, A. Current status of biodosimetry based on standard cytogenetic methods. 
Radiat. Environ. Biophys. 49, 567–581. https://​doi.​org/​10.​1007/​s00411-​010-​0311-3 (2010).

	29.	 Raavi, V., Perumal, V. & Paul, S. F. Potential application of γ-H2AX as a biodosimetry tool for radiation triage. Mutat. Res. Rev. 
Mutat. Res. 787, 108350. https://​doi.​org/​10.​1016/j.​mrrev.​2020.​108350 (2021).

	30.	 Löbrich, M. et al. γH2AX foci analysis for monitoring DNA double-strand break repair: Strengths, limitations and optimization. 
Cell Cycle 9, 662–669. https://​doi.​org/​10.​4161/​cc.9.​4.​10764 (2010).

	31.	 Ismail, I. H., Wadhra, T. I. & Hammarsten, O. An optimized method for detecting gamma-H2AX in blood cells reveals a significant 
interindividual variation in the gamma-H2AX response among humans. Nucleic Acids Res. 35, e36. https://​doi.​org/​10.​1093/​nar/​
gkl11​69 (2007).

	32.	 Herbert, A. D., Carr, A. M. & Hoffmann, E. FindFoci: A focus detection algorithm with automated parameter training that closely 
matches human assignments, reduces human inconsistencies and increases speed of analysis. PLoS ONE 9, e114749. https://​doi.​
org/​10.​1371/​journ​al.​pone.​01147​49 (2014).

	33.	 Hohmann, T. et al. Automatic detection of DNA double strand breaks after irradiation using an γH2AX assay. Histol. Histopathol. 
33, 475–485. https://​doi.​org/​10.​14670/​hh-​11-​945 (2017).

	34.	 Runge, R. et al. Fully automated interpretation of ionizing radiation-induced γH2AX foci by the novel pattern recognition system 
AKLIDES®. Int. J. Radiat. Biol. 88, 439–447. https://​doi.​org/​10.​3109/​09553​002.​2012.​658468 (2012).

https://doi.org/10.1016/j.molcel.2010.09.019
https://doi.org/10.1016/j.molcel.2010.09.019
https://doi.org/10.1016/0014-4827(88)90265-0
https://doi.org/10.1093/mutage/gez036
https://doi.org/10.1016/j.mrfmmm.2011.05.017
https://doi.org/10.1016/j.mrfmmm.2011.05.017
https://doi.org/10.1080/09553009514551041
https://doi.org/10.1080/09553009514551041
https://doi.org/10.1074/jbc.273.10.5858
https://doi.org/10.1074/jbc.C100466200
https://doi.org/10.1158/0008-5472.CAN-03-3207
https://doi.org/10.1016/j.dnarep.2006.01.011
https://doi.org/10.1186/1471-2199-11-18
https://doi.org/10.1016/j.molcel.2012.07.029
https://doi.org/10.1259/bjr.20130685
https://doi.org/10.1038/nature08467
https://doi.org/10.1038/nature08467
https://doi.org/10.2967/jnumed.109.071357
https://doi.org/10.2967/jnumed.115.153841
https://doi.org/10.2967/jnumed.115.153841
https://doi.org/10.1080/09553000701596118
https://doi.org/10.1016/j.semradonc.2010.05.004
https://doi.org/10.1667/RR14475.1
https://doi.org/10.1667/RR14475.1
https://doi.org/10.1148/radiol.2421060171
https://doi.org/10.1073/pnas.0501895102
https://doi.org/10.1007/s00330-014-3463-8
https://doi.org/10.1016/j.tiv.2012.06.006
https://doi.org/10.1016/j.tiv.2012.06.006
https://doi.org/10.1016/j.mrgentox.2021.503354
https://doi.org/10.5772/36561
https://doi.org/10.1667/RR13911.1
https://doi.org/10.1667/RR13911.1
https://doi.org/10.1093/rpd/ncq499
https://doi.org/10.1007/s00411-010-0311-3
https://doi.org/10.1016/j.mrrev.2020.108350
https://doi.org/10.4161/cc.9.4.10764
https://doi.org/10.1093/nar/gkl1169
https://doi.org/10.1093/nar/gkl1169
https://doi.org/10.1371/journal.pone.0114749
https://doi.org/10.1371/journal.pone.0114749
https://doi.org/10.14670/hh-11-945
https://doi.org/10.3109/09553002.2012.658468


11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5527  | https://doi.org/10.1038/s41598-022-09180-2

www.nature.com/scientificreports/

	35.	 Ivashkevich, A., Redon, C. E., Nakamura, A. J., Martin, R. F. & Martin, O. A. Use of the gamma-H2AX assay to monitor DNA 
damage and repair in translational cancer research. Cancer Lett. 327, 123–133. https://​doi.​org/​10.​1016/j.​canlet.​2011.​12.​025 (2012).

	36.	 Rothkamm, K. et al. Manual versus automated γ-H2AX foci analysis across five European laboratories: Can this assay be used for 
rapid biodosimetry in a large scale radiation accident?. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 756, 170–173. https://​doi.​
org/​10.​1016/j.​mrgen​tox.​2013.​04.​012 (2013).

	37.	 Ivashkevich, A. N. et al. γH2AX foci as a measure of DNA damage: A computational approach to automatic analysis. Mutat. Res. 
711, 49–60. https://​doi.​org/​10.​1016/j.​mrfmmm.​2010.​12.​015 (2011).

	38.	 Jucha, A. et al. FociCounter: A freely available PC programme for quantitative and qualitative analysis of gamma-H2AX foci. 
Mutat. Res. Genet. Toxicol. Environ. Mutagen. 696, 16–20. https://​doi.​org/​10.​1016/j.​mrgen​tox.​2009.​12.​004 (2010).

	39.	 McVean, A., Kent, S., Bakanov, A., Hobbs, T. & Anderson, R. Development and validation of “AutoRIF”: Software for the automated 
analysis of radiation-induced foci. Genome Integr. 3, 1–13. https://​doi.​org/​10.​1186/​2041-​9414-3-1 (2012).

	40.	 Lapytsko, A., Kollarovic, G., Ivanova, L., Studencka, M. & Schaber, J. FoCo: A simple and robust quantification algorithm of nuclear 
foci. BMC Bioinform. 16, 1–13. https://​doi.​org/​10.​1186/​s12859-​015-​0816-5 (2015).

	41.	 Oeck, S. et al. The Focinator v2-0–graphical interface, four channels, colocalization analysis and cell phase identification. Radiat. 
Res. 188, 114–120. https://​doi.​org/​10.​1667/​RR147​46.1 (2017).

	42.	 Oeck, S., Malewicz, N. M., Hurst, S., Rudner, J. & Jendrossek, V. The Focinator-a new open-source tool for high-throughput foci 
evaluation of DNA damage. Radiat. Oncol. 10, 1–11. https://​doi.​org/​10.​1186/​s13014-​015-​0453-1 (2015).

	43.	 Lengert, N. et al. AutoFoci, an automated high-throughput foci detection approach for analyzing low-dose DNA double-strand 
break repair. Sci. Rep. 8, 17282. https://​doi.​org/​10.​1038/​s41598-​018-​35660-5 (2018).

	44.	 Memmel, S. et al. FocAn: Automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy. 
BMC Bioinform. 21, 1–11. https://​doi.​org/​10.​1186/​s12859-​020-​3370-8 (2020).

	45.	 Costes, S. V. et al. Imaging features that discriminate between foci induced by high-and low-LET radiation in human fibroblasts. 
Radiat. Res. 165, 505–515. https://​doi.​org/​10.​1667/​RR3538.1 (2006).

	46.	 Hou, Y.-N. et al. Development of an automated γ-H2AX immunocytochemistry assay. Radiat. Res. 171, 360–367. https://​doi.​org/​
10.​1667/​RR1349.1 (2009).

	47.	 Valente, M., Voisin, P., Laloi, P., Roy, L. & Roch-Lefèvre, S. Automated gamma-H2AX focus scoring method for human lymphocytes 
after ionizing radiation exposure. Radiat. Meas. 46, 871–876. https://​doi.​org/​10.​1016/j.​radme​as.​2011.​05.​012 (2011).

	48.	 Böcker, W. & Iliakis, G. Computational methods for analysis of foci: Validation for radiation-induced γ-H2AX foci in human cells. 
Radiat. Res. 165, 113–124. https://​doi.​org/​10.​1667/​RR3486.1 (2006).

	49.	 Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).
	50.	 Roch-Lefevre, S. et al. Quantification of gamma-H2AX foci in human lymphocytes: A method for biological dosimetry after ion-

izing radiation exposure. Radiat. Res. 174, 185–194. https://​doi.​org/​10.​1667/​RR1775.1 (2010).
	51.	 Hiemann, R. et al. Challenges of automated screening and differentiation of non-organ specific autoantibodies on HEp-2 cells. 

Autoimmun. Rev. 9, 17–22. https://​doi.​org/​10.​1016/j.​autrev.​2009.​02.​033 (2009).
	52.	 Cai, Z., Vallis, K. A. & Reilly, R. M. Computational analysis of the number, area and density of γ-H2AX foci in breast cancer cells 

exposed to 111In-DTPA-hEGF or γ-rays using Image-J software. Int. J. Radiat. Biol. 85, 262–271. https://​doi.​org/​10.​1080/​09553​
00090​27487​57 (2009).

	53.	 Neumaier, T. et al. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc. Natl. Acad. 
Sci. U.S.A. 109, 443–448. https://​doi.​org/​10.​1073/​pnas.​11178​49108 (2012).

	54.	 Sanders, W. S., Johnston, C. I., Bridges, S. M., Burgess, S. C. & Willeford, K. O. Prediction of cell penetrating peptides by support 
vector machines. PLoS Comput. Biol. 7, e1002101. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10021​01 (2011).

	55.	 Slattery, S. D. et al. A framework for image-based classification of mitotic cells in asynchronous populations. Assay Drug Dev. 
Technol. 10, 161–178. https://​doi.​org/​10.​1089/​adt.​2011.​0397 (2012).

	56.	 Das, D. K., Ghosh, M., Pal, M., Maiti, A. K. & Chakraborty, C. Machine learning approach for automated screening of malaria 
parasite using light microscopic images. Micron 45, 97–106. https://​doi.​org/​10.​1016/j.​micron.​2012.​11.​002 (2013).

	57.	 Sommer, C. & Gerlich, D. W. Machine learning in cell biology–teaching computers to recognize phenotypes. J. Cell Sci. 126, 
5529–5539. https://​doi.​org/​10.​1242/​jcs.​123604 (2013).

	58.	 Svensson, C. M., Krusekopf, S., Lücke, J. & Thilo Figge, M. Automated detection of circulating tumor cells with naive Bayesian 
classifiers. Cytometry A 85, 501–511. https://​doi.​org/​10.​1002/​cyto.a.​22471 (2014).

	59.	 Gu, Y. et al. Machine learning based real-time image-guided cell sorting and classification. Cytometry A 95, 499–509. https://​doi.​
org/​10.​1002/​cyto.a.​23764 (2019).

	60.	 Hohmann, T., Kessler, J., Vordermark, D. & Dehghani, F. Evaluation of machine learning models for automatic detection of DNA 
double strand breaks after irradiation using a γH2AX foci assay. PLoS ONE 15, e0229620. https://​doi.​org/​10.​1371/​journ​al.​pone.​
02296​20 (2020).

	61.	 McQuin, C. et al. Cell profiler 3.0: Next-generation image processing for biology. PLoS Biol. 16, e2005970. https://​doi.​org/​10.​1371/​
journ​al.​pbio.​20059​70 (2018).

	62.	 Abadi, M. et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467v2 [cs.DC] (16 
Mar 2016).

	63.	 Jia, Y. et al. Caffe: Convolutional Architecture for Fast Feature Embedding. In Proceedings of the 22nd ACM International Confer‑
ence on Multimedia. 675–678. https://​doi.​org/​10.​1145/​26478​68.​26548​89 (2014)

	64.	 Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In International 
Conference on Medical image computing and computer-assisted intervention. 234–241 (2015).

	65.	 Yang, S. J. et al. Assessing microscope image focus quality with deep learning. BMC Bioinform. 19, 1–9. https://​doi.​org/​10.​1186/​
s12859-​018-​2087-4 (2018).

	66.	 Chen, X. et al. Deep-learning-assisted assessment of DNA damage based on foci images and its application in high-content screen-
ing of lead compounds. Anal. Chem. 92, 14267–14277. https://​doi.​org/​10.​1021/​acs.​analc​hem.​0c037​41 (2020).

	67.	 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In 3rd International Conference 
on Learning Representations, ICLR 2015. https://​dblp.​org/​db/​conf/​iclr/​iclr2​015.​html (2015).

	68.	 Vicar, T. et al. DeepFoci: Deep learning-based algorithm for fast automatic analysis of DNA double strand break ionizing radiation-
induced foci. Comput. Struct. Biotechnol. J. 19, 6465–6480. https://​doi.​org/​10.​1016/j.​csbj.​2021.​11.​019 (2021).

	69.	 Matas, J., Chum, O., Urban, M. & Pajdla, T. Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 
22, 761–767. https://​doi.​org/​10.​1016/j.​imavis.​2004.​02.​006 (2004).

	70.	 Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition. 779–788 (2016).

	71.	 Redmon, J. & Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. 6517–6525. (2017).

	72.	 Redmon, J. & Farhadi, A. YOLOv3: An incremental improvement. arXiv:1804.02767v1 [cs.CV] (8 Apr 2018).
	73.	 Bochkovskiy, A., Wang, C.-Y. & Liao, H.-Y. M. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934v1 [cs.

CV] (23 Apr 2020).
	74.	 Wang, Q. et al. Deep learning approach to peripheral leukocyte recognition. PLoS ONE 14, e0218808. https://​doi.​org/​10.​1371/​

journ​al.​pone.​02188​08 (2019).

https://doi.org/10.1016/j.canlet.2011.12.025
https://doi.org/10.1016/j.mrgentox.2013.04.012
https://doi.org/10.1016/j.mrgentox.2013.04.012
https://doi.org/10.1016/j.mrfmmm.2010.12.015
https://doi.org/10.1016/j.mrgentox.2009.12.004
https://doi.org/10.1186/2041-9414-3-1
https://doi.org/10.1186/s12859-015-0816-5
https://doi.org/10.1667/RR14746.1
https://doi.org/10.1186/s13014-015-0453-1
https://doi.org/10.1038/s41598-018-35660-5
https://doi.org/10.1186/s12859-020-3370-8
https://doi.org/10.1667/RR3538.1
https://doi.org/10.1667/RR1349.1
https://doi.org/10.1667/RR1349.1
https://doi.org/10.1016/j.radmeas.2011.05.012
https://doi.org/10.1667/RR3486.1
https://doi.org/10.1667/RR1775.1
https://doi.org/10.1016/j.autrev.2009.02.033
https://doi.org/10.1080/09553000902748757
https://doi.org/10.1080/09553000902748757
https://doi.org/10.1073/pnas.1117849108
https://doi.org/10.1371/journal.pcbi.1002101
https://doi.org/10.1089/adt.2011.0397
https://doi.org/10.1016/j.micron.2012.11.002
https://doi.org/10.1242/jcs.123604
https://doi.org/10.1002/cyto.a.22471
https://doi.org/10.1002/cyto.a.23764
https://doi.org/10.1002/cyto.a.23764
https://doi.org/10.1371/journal.pone.0229620
https://doi.org/10.1371/journal.pone.0229620
https://doi.org/10.1371/journal.pbio.2005970
https://doi.org/10.1371/journal.pbio.2005970
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1186/s12859-018-2087-4
https://doi.org/10.1186/s12859-018-2087-4
https://doi.org/10.1021/acs.analchem.0c03741
https://dblp.org/db/conf/iclr/iclr2015.html
https://doi.org/10.1016/j.csbj.2021.11.019
https://doi.org/10.1016/j.imavis.2004.02.006
https://doi.org/10.1371/journal.pone.0218808
https://doi.org/10.1371/journal.pone.0218808


12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5527  | https://doi.org/10.1038/s41598-022-09180-2

www.nature.com/scientificreports/

	75.	 Waithe, D. et al. Object detection networks and augmented reality for cellular detection in fluorescence microscopy. J. Cell Biol. 
219, e201903166. https://​doi.​org/​10.​1083/​jcb.​20190​3166 (2020).

	76.	 Hidayatullah, P. et al. DeepSperm: A robust and real-time bull sperm-cell detection in densely populated semen videos. Comput. 
Methods Programs Biomed. 209, 106302. https://​doi.​org/​10.​1016/j.​cmpb.​2021.​106302 (2021).

	77.	 Kittichai, V. et al. Classification for avian malaria parasite plasmodium gallinaceum blood stages by using deep convolutional 
neural networks. Sci. Rep. 11, 16919. https://​doi.​org/​10.​21203/​rs.3.​rs-​282527/​v2 (2021).

	78.	 Shrout, P. E. & Fleiss, J. L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 86, 420. https://​doi.​org/​10.​1037/​
0033-​2909.​86.2.​420 (1979).

	79.	 Portney, L. G. & Watkins, M. P. Foundations of Clinical Research: Applications to Practice (Pearson/Prentice Hall, Upper Saddle 
River, 2009).

	80.	 Rothkamm, K. et al. Laboratory intercomparison on the γ-H2AX foci assay. Radiat. Res. 180, 149–155. https://​doi.​org/​10.​1667/​
RR3238.1 (2013).

	81.	 Bland, J. M. & Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327, 
307–310. https://​doi.​org/​10.​1016/j.​ijnur​stu.​2009.​10.​001 (1986).

	82.	 Karim, M. R. et al. Deep learning-based clustering approaches for bioinformatics. Brief. Bioinform. 22, 393–415. https://​doi.​org/​
10.​1093/​bib/​bbz170 (2020).

	83.	 Barnard, S. et al. The first gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network 
RENEB. Radiat. Prot. Dosim. 164, 265–270. https://​doi.​org/​10.​1093/​rpd/​ncu259 (2015).

	84.	 Moquet, J. et al. The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodo-
simetry network (RENEB). Int. J. Radiat. Biol. 93, 58–64. https://​doi.​org/​10.​1080/​09553​002.​2016.​12078​22 (2017).

	85.	 Andrievski, A. & Wilkins, R. C. The response of gamma-H2AX in human lymphocytes and lymphocytes subsets measured in 
whole blood cultures. Int. J. Radiat. Biol. 85, 369–376. https://​doi.​org/​10.​1080/​09553​00090​27811​47 (2009).

	86.	 Horn, S., Barnard, S. & Rothkamm, K. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure. PLoS 
ONE 6, e25113. https://​doi.​org/​10.​1371/​journ​al.​pone.​00251​13 (2011).

	87.	 Heylmann, D., Ponath, V., Kindler, T. & Kaina, B. Comparison of DNA repair and radiosensitivity of different blood cell popula-
tions. Sci. Rep. 11, 1–13. https://​doi.​org/​10.​1038/​s41598-​021-​81058-1 (2021).

	88.	 Dawicki, W. et al. Targeted lymphodepletion with a CD45-directed antibody radioconjugate as a novel conditioning regimen prior 
to adoptive cell therapy. Oncotarget 11, 3571. https://​doi.​org/​10.​18632/​oncot​arget.​27731 (2020).

	89.	 Orozco, J. J. et al. Anti-CD45 radioimmunotherapy with 90Y but not 177Lu is effective treatment in a syngeneic murine leukemia 
model. PLoS ONE 9, e113601. https://​doi.​org/​10.​1371/​journ​al.​pone.​01136​01 (2014).

	90.	 Pagel, J. M. et al. Pretargeted radioimmunotherapy using anti-CD45 monoclonal antibodies to deliver radiation to murine hema-
tolymphoid tissues and human myeloid leukemia. Cancer Res. 69, 185–192. https://​doi.​org/​10.​1158/​0008-​5472.​CAN-​08-​2513 
(2009).

Acknowledgements
The authors would like to thank Thailand Science and Research Innovation Fund and King Mongkut’s Institute 
of Technology Ladkrabang Fund [RE-KRIS-016-64] for providing financial support for this research, and the 
Office of Atoms for Peace of Thailand for cooperation and support in arranging biodosimetry training. In addi-
tion, we would like to thank the College of Advanced Manufacturing Innovation, King Mongkut’s Institute of 
Technology Ladkrabang, for providing the deep learning platform and software which supported the research 
project. The authors thank Ms. Naraporn Sirinonthanawech and Ms. Potchaman Sittipaisankul for helping in 
image acquisition using confocal microscopy, and the Advanced Cell Imaging Center, Institute of Molecular 
Biosciences, Mahidol University, for providing access to the instruments. Lastly, the authors thank Dr. Arthur 
Brown, research consultant at the Faculty of Medical Technology, Mahidol University, for language editing.

Author contributions
R.W. performed the experiment, constructed a dataset, cell image analysis, designed the experimental methods, 
designed models, and wrote the manuscript. K.C. designed models, performance metrics evaluation, and wrote 
the manuscript. P.P, T.A, and W.L. performed the training, validation and testing of the models. T.J. designed 
an irradiation setup, performed cell irradiation and wrote the manuscript. K.J. and P.U. discussed and designed 
the experimental methods. T.T. and C.C. designed models. S.B. designed models and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​09180-2.

Correspondence and requests for materials should be addressed to S.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1083/jcb.201903166
https://doi.org/10.1016/j.cmpb.2021.106302
https://doi.org/10.21203/rs.3.rs-282527/v2
https://doi.org/10.1037/0033-2909.86.2.420
https://doi.org/10.1037/0033-2909.86.2.420
https://doi.org/10.1667/RR3238.1
https://doi.org/10.1667/RR3238.1
https://doi.org/10.1016/j.ijnurstu.2009.10.001
https://doi.org/10.1093/bib/bbz170
https://doi.org/10.1093/bib/bbz170
https://doi.org/10.1093/rpd/ncu259
https://doi.org/10.1080/09553002.2016.1207822
https://doi.org/10.1080/09553000902781147
https://doi.org/10.1371/journal.pone.0025113
https://doi.org/10.1038/s41598-021-81058-1
https://doi.org/10.18632/oncotarget.27731
https://doi.org/10.1371/journal.pone.0113601
https://doi.org/10.1158/0008-5472.CAN-08-2513
https://doi.org/10.1038/s41598-022-09180-2
https://doi.org/10.1038/s41598-022-09180-2
www.nature.com/reprints


13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5527  | https://doi.org/10.1038/s41598-022-09180-2

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	A deep learning model (FociRad) for automated detection of γ-H2AX foci and radiation dose estimation
	Materials and methods
	Ethics statement. 
	Dataset acquisition. 
	Blood collection and in vitro irradiation. 
	γ-H2AX assay and image acquisition. 

	FociRad: the concatenated deep learning model. 
	Captured image preprocessing (label A in Fig. 1). 
	Mononuclear cell detection model (first-stage model): dataset preparation and training. 
	γ-H2AX foci detection model (Second-stage model): dataset preparation and training. 
	γ-H2AX foci detection model testing and performance evaluation. 

	Implementation in radiation dose estimation. 

	Results
	Model performance metric results. 
	Agreement of γ-H2AX foci assessments between manual and automated (FociRad) scoring. 
	Comparison of estimated doses based on manual and automated (FociRad) foci scoring. 

	Discussion
	Conclusion
	References
	Acknowledgements


