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Expanding the Boundaries of RNA Sequencing as
a Diagnostic Tool for Rare Mendelian Disease

Hernan D. Gonorazky,1,10,12 Sergey Naumenko,2,12 Arun K. Ramani,2,12 Viswateja Nelakuditi,2

Pouria Mashouri,2 Peiqui Wang,2 Dennis Kao,2 Krish Ohri,3 Senthuri Viththiyapaskaran,3

Mark A. Tarnopolsky,4 Katherine D. Mathews,5 Steven A. Moore,6 Andres N. Osorio,7,8

David Villanova,9 Dwi U. Kemaladewi,10 Ronald D. Cohn,3,10 Michael Brudno,2,10,11,*
and James J. Dowling1,3,10,*

Gene-panel and whole-exome analyses are now standard methodologies for mutation detection in Mendelian disease. However, the

diagnostic yield achieved is at best 50%, leaving the genetic basis for disease unsolved in many individuals. New approaches are thus

needed to narrow the diagnostic gap. Whole-genome sequencing is one potential strategy, but it currently has variant-interpretation

challenges, particularly for non-coding changes. In this study we focus on transcriptome analysis, specifically total RNA sequencing

(RNA-seq), by usingmonogenetic neuromuscular disorders as proof of principle.We examined a cohort of 25 exome and/or panel ‘‘nega-

tive’’ cases and provided genetic resolution in 36% (9/25). Causative mutations were identified in coding and non-coding exons, as well

as in intronic regions, and the mutational pathomechanisms included transcriptional repression, exon skipping, and intron inclusion.

We address a key barrier of transcriptome-based diagnostics: the need for sourcematerial with disease-representative expression patterns.

We establish that blood-based RNA-seq is not adequate for neuromuscular diagnostics, whereas myotubes generated by transdifferentia-

tion from an individual’s fibroblasts accurately reflect the muscle transcriptome and faithfully reveal disease-causing mutations. Our

work confirms that RNA-seq can greatly improve diagnostic yield in genetically unresolved cases of Mendelian disease, defines strengths

and challenges of the technology, and demonstrates the suitability of cell models for RNA-based diagnostics. Our data set the stage for

development of RNA-seq as a powerful clinical diagnostic tool that can be applied to the large population of individuals with undiag-

nosed, rare diseases and provide a framework for establishing minimally invasive strategies for doing so.
Introduction

Identifying a causative genetic variant (mutation) in an

individual with Mendelian disease is a critical event

that ends the diagnostic odyssey, enabling accurate antici-

patory care and prognostic guidance and providing the

opportunity for individualized treatment. In the case

of neuromuscular disorders, the diagnostic algorithm his-

torically has included muscle biopsy, muscle imaging,

and targeted genetic testing.1–4 Recently, gene panels and

whole-exome sequencing (WES) have dramatically

improved the diagnostic yield, enabling genetic resolution

in 35%–50% of cases (as compared to 10% resolved

with chromosomal microarray), and have been associated

with reducing health care costs and improving out-

comes.2,5–9 Despite these advantages, a substantial per-

centage of individuals remain undiagnosed and thus

have not derived the many benefits that genetic diagnosis

provides.10–13

There are several potential explanations to account for

the large fraction of unresolved cases. These include (1)
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the challenge of interpreting variants of unknown signifi-

cance (VUSs),14,15 (2) the fact that WES cannot delineate

certain changes (e.g., structural rearrangements, copy-

number variants (CNVs), and tandem-repeat expansions),

(3) the uncertainty of evaluating variants in genes not yet

linked to diseases, and (4) the fact that WES does not

adequately capture intronic and regulatory regions.16 The

exact number of mutations residing in the non-coding

genome is debatable.17 Evidence suggests that as many as

9%18 to 30% of disease-causing variants impact RNA

expression and/or processing and are found in non-coding

regions.16

Whole-genome sequencing (WGS) enumerates variants

in both coding and non-coding regions, and it can provide

information related to CNVs.19 However, WGS presents

important (and currently unresolved) challenges to data

interpretation for the more than 3 million SNVs per sam-

ple.20,21 Moreover, the validation of non-coding variants

(as well as coding changes that impact RNA expression

and splicing) usually requires additional functional studies

at the transcriptional level.3,22
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Figure 1. Overview of the Diagnostic
Pipeline
70 samples were processed through our
pipeline. Total RNA was extracted from
muscle biopsies, fibroblasts, and t-myo-
tubes, was polyA selected, and then
sequenced at a depth of 50–100 paired-
end reads. Our RNA-seq diagnostic algo-
rithm compares undiagnosed individuals
with our in-house database and with con-
trol transcriptome data obtained from
GTEx. We worked first from a panel of
genes known to be mutated in neuromus-
cular disorders (n ¼ 132), and we focused
our analysis in parallel on (1) novel
splicing events (far left), (2) imbalances
in allelic expression (middle left), (3) statis-
tically significant differences in expression
(middle right), and (4) rare sequence vari-
ants of clinical relevance (far right). Using
this strategy, we were able to solve 36%
of cases that were ‘‘negative’’ according to
the gene panel and/or exome sequencing
(n ¼ 25 total unknown cases).
The number of discovered pathogenic splicing mecha-

nisms related to human disease is rapidly growing.23–34

For example, aberrant splicing events in LMNA (MIM:

150330), DMD (MIM: 300377), SMN1 (MIM: 600354),

TTN (MIM: 188840), and HNRPDL (MIM: 607137) have

been linked to several neuromuscular disorders, and 185

deep intronic mutations have been identified across 77

genes associated with neuromuscular disease.24–27 Tran-

scriptome sequencing (i.e., RNA-seq) is ideal for detecting

such changes because it allows for the detection of both

coding and non-coding variants and provides transcript-

level information for interpreting splice changes. More-

over, RNA-seq enables the comparison of expression levels

in an individual sample with the levels in controls, and it

can reveal expression outliers and imbalances in allele

expression, changes that can then be used to prioritize

DNA variants.35 In a cohort of rare, undiagnosed muscle

disorders, RNA-seq analysis from muscle biopsies provided

a diagnosis in 35% of cases.33

Of note, each cell type is known to have a unique gene-

expression profile that includes expression of tissue-

specific isoforms and alternative splicing. Hence, a key

consideration for RNA-seq analysis is the requirement

for disease-relevant source material. As an example, RNA

sampled from blood does not adequately represent the

transcriptome necessary for the analysis of many rare dis-

orders.33,36,37 Diagnostic biopsies are most likely the best

tissue source for RNA-seq but are not available in many

cases.
The American Journal of Human G
In this study we focus on transcrip-

tome analysis as ameans of validating

the utility of RNA-seq for mutation

detection (Figure 1). In support of pre-

vious data,33 we demonstrate that

RNA-seq from muscle biopsies can
resolve a substantial portion of panel and exome ‘‘nega-

tive’’ cases (36% in our cohort). Because biopsies are inva-

sive and not available inmany cases, we additionally tested

the suitability of derived cell lines for RNA-seq-based

diagnostics. We demonstrate that, in contrast to blood, pri-

mary skin fibroblasts and myotubes created by transdiffer-

entiating fibroblasts (t-myotubes) share significant aspects

of the expression profile of skeletal muscle and can be used

for accurate identification of mutations.34,38–41 Lastly, we

developed PAGE (Panel Analysis of Gene Expression), a

web-based tool that (1) enables the comparison of gene

expression across multiple tissues and the identification

of the optimal tissues to study and (2) allows for the explo-

ration of variants and splicing changes identified in our

analysis. In total, we describe the strengths and challenges

of transcriptome analysis and establish a minimally inva-

sive strategy for RNA-seq-based diagnostics.
Material and Methods

Study Design
We analyzed 70 samples from 29 families (Table 1 and Table S1).

The genetic diagnosis was undetermined in 25 families; in nine

of these it was still undetermined after testing by gene panel

(‘‘negative’’; 162-gene panel), 12 lacked a diagnosis (‘‘negative’’)

after WES, and four were ‘‘negative’’ for both. The four families

wherein causative mutation(s) had previously been established

(families 4, 7, 9, and 10) served as our positive controls. In 25 fam-

ilies, only samples from the proband were available, but in four
enetics 104, 466–483, March 7, 2019 467



families we had access to samples from additional family mem-

bers. For reference controls, we used healthy skeletal muscle sam-

ples from the Common Fund (CF) Genotype-Tissue Expression

Project (GTEx)36,37 (50 controls for expression analysis and 184

for junction analysis); the controls were selected according to

quality metrics established by Cummings et al.33 (Table S2). Addi-

tionally, we used data from 10 immortalized fibroblast controls

from GTEx and 10 blood controls characterized as ‘‘fast death –

natural causes’’ (Table S2).

Individuals were recruited through an REB (research ethics

board)-approved protocol and were identified at the Hospital for

Sick Children (HSC) and at different centers across Canada, the

USA, and Europe. All participating individuals signed an REB-

approved consent form. Except for four positive controls, all

selected families lacked a conclusive genetic diagnosis. Muscle bi-

opsies were obtained from the Department of Pathology and Lab-

oratory Medicine (DPLM) at HSC or were shipped frozen from

referring centers. Skin-derived fibroblasts were obtained at HSC,

were shipped frozen, or were submitted in culture media. We

used 15–25 mg of muscle per muscle biopsy. RNA was extracted

from the muscle biopsies with the miRNeasy fibrous tissue mini

kit (QIAGEN, Cat No./ID: 74704) according to the manufacturer’s

instructions, and a minimum of 200 ng of RNA for library prepa-

ration. The cutoffs for the RNA integrity number (RIN) and the

DV200 value were 8 and R92%, respectively.
Generation of T-Myotubes via the Transdifferentiation

of Fibroblasts Derived from Affected Individuals
Fibroblast cultures were obtained from skin biopsies of selected in-

dividuals according to previously described protocols.41,42 The fi-

broblasts were cultured in DMEM with 10% fetal bovine serum

(FBS) without the addition of antibiotics. All of the fibroblasts

we used for RNA extraction were 70%–80% confluent at the

time of extraction. We employed early-passage (<10) fibroblast

lines for transdifferentiation. They were seeded at 50% confluence

in 10 cm dishes coated with 20% matrigel (Corning Matrigel

Matrix). At 70% confluence, the cells were infected with ad-

MyoD (Vector Biolab cat. no.1492), with a MOI of 100, that was

in infection medium (skeletal-muscle cell-growth medium; Pro-

mocel cat. no. 23060). Infected dishes were swirled every 20 min

and incubated at 37�C for 3 h. Then, the medium infected with

the virus was replaced with fresh skeletal-muscle cell-growth me-

dium and left for 24 h, after which the medium was changed to

differentiationmedium (DMEMplus 2%horse serum and 0.1% in-

sulin). Differentiation was carried out for 21 days, and 50% of the

medium was replaced every other day. On the 5th day of differen-

tiation, the dishes were coated again with 20%matrigel according

to the manufacturer’s recommendations.

To evaluate the differentiation process, we extracted RNA on

days 1, 3, 5, 14, and 21. qRT-PCR quantification was carried out

for selected transcripts (RYR1 [MIM:180901], DMD, DES [MIM:

125660], MYOD1 [MIM: 159970], MYH3 [MIM: 160720], and

MYOG [MIM: 159980]) known to be present at different stages of

t-myotube maturation (Figure S1). The results were compared

against qRT-PCR carried out on RNA from control human muscle.

To corroborate the expression of proteins unique to skeletal

muscle, we performed immunofluorescence (IF) for dystrophin,

alpha actinin, and ryanodine receptor type I (antibodies were

mouse dystrophin, MANDRA 1[7A10 DSHB], mouse musculo-

skeletal a-actinic, sarcomeric [A7811 Sigma], and rabbit RyR1

[HPA056416 Sigma]; secondary antibodies were Alexa Fluor 555
468 The American Journal of Human Genetics 104, 466–483, March
goat anti-rabbit and Alexa Fluor 555 goat anti-mouse [Life

Technology]).

Generating Sequencing Data
Sequencing was done at the Centre for Applied Genomics (TCAG)

at the HSC and involved poly-A selection of mRNA (Illumina

TruSeq) or total RNA extraction followed by ribosomal RNA deple-

tion (in family 4 only). Paired-end 126þ126 bp sequencing was

performed with Illumina HiSeq 2000 instruments at a sequencing

depth of 50–100 million paired reads per sample. Raw sequencing

reads for GTEx control samples were downloaded from dbGAP

(accession no. phs000424.v6.p1) with the Sequence Read Archive

(SRA) toolkit.43,44

Gene Panels
We created eight virtual neuromuscular-disease-associated gene

panels containing 132 genes in total (Table S3); the panels were

created on the basis of the 2017 gene table of monogenic neuro-

muscular disorders.45 We focused our initial analysis on the genes

in these panels and extended the analysis, when necessary, to all

OMIM genes or all protein-coding genes according to ENSEMBL

annotation.46,47 In family 40 we also used a mitochondrial Mito-

carta gene panel (1,158 genes).48

Read Alignment, Quality Control, and Read

Quantitation
Alignment, variant calling, and quality control were carried out

via the RNA-seq workflow from the bcbio-nextgen bioinformatics

framework (version 1.1.0). In brief, raw reads were aligned to the

GRCh37 (hg19) version of the human reference genome with

the splice-aware aligner STAR in two-pass mode (the first pass dis-

covers new splice junctions and inserts them into the junction

database, and the second pass calls junctions and calculates their

counts).49 Multiqc was then used for quality control and assurance

analysis of the resulting bam file by comparing tometrics gathered

from bcbio-nextgen, samtools, and fastqc.50,51 Finally, we quanti-

tated reads by assigning them to genes (features) annotated in

Ensembl (release 75) and counting them with the featureCounts

tool.47,52

Expression Analysis
Gene-level and exon-level expression values were calculated with

the edgeR package (R version 3.5.0, edgeR version 3.22.3, bio-

conductor version [Biobase package] 2.40.0).53 Heatmaps of the

expression of the genes in the gene panels were plotted with the

pheatmap R package (version 1.0.10) (Figure S2). To prioritize

splicing events and genomic variants, we selected genes expressed

at R1 RPKM and identified expression outliers. We carried out

outlier detection at the gene level to detect expression outliers.

We calculated Z scores for the RPKM expression values of every

gene in every skeletal-muscle sample and compared these to the

mean and standard deviation of the 50 GTEx controls, as well as

the mean and standard deviation of the 25 skeletal-muscle sam-

ples from the cohort. We filtered genes with an average expression

in GTEx of R0.1 RPKM and jZ scorej R 1.5 and reported them as

potential outliers for the set of 132 neuromuscular genes, 3,739

OMIM genes, and 1,158 Mitocarta genes in family 40. We focused

on downregulated genes and ordered them according to n-fold

decrease in expression. We confirmed the outlier status with

OUTRIDER (version 0.99.31) and reported genes whose expression

had changed by 2-fold versus their mean expression in the control
7, 2019



Table 1. Families Studied with RNA-Seq

Family Sample Phenotype Diagnosis Splice Classification Transcript levels Allele Imbalance

4a f; m; myo CM RYR1 (GenBank: NM_001042723.1) c.2862G>A (p.Pro894Pro);
RYR1 c.9859C>T (p. Arg3287>Cys)

exon extension down 23 no

5 f; m; myosingleton CMD GMPPB heterozygous (GenBank: NM_013334.3) c.94C>T
(p.Pro32Ser); GMPPB heterozygous, 50 UTR variant,
g.349761246 G>A, new start codon

new start codon down 4,13 no

6 f; m; myosingleton CMD POMT2 (GenBank: NM_013382.5) c.1502A>C (p.Glu501Ala)
homozygous

N/A no yes

7a f CMD LAMA2 (GenBank: NM_000426.3) c.9212–1G>A homozygous exon extension down 2,13 no

8 msingleton CM TTN (GenBank: NM_001267550.2) c.74837_74840dupTTAG
(p.Arg24947Ser*2);TTN c.28114 þ1G>A

exon extension no no

9a f; m; myo DMD DMD g.chrX: 32,366,860 A>C dbSNP: r.5326_5327ins51bp novel exon down 4,83 X-linked disorder

10a m CM MTM1 (GenBanK: NM_000252.2) c.1262G>A (p.Arg421Gln) N/A no X-linked disorder

12 f; m; myosingleton CM N/A N/A N/A N/A

13 msingleton CM N/A N/A N/A N/A

14 f; m; myo siblings multiple pterygium
syndrome

N/A N/A N/A N/A

15 ftrio MDC1A LAMA2 (GenBank: NM_000426.3.) c.4860G>A; LAMA2
(GenBank: NM_000426.3) c.2584T>C (p.Cys862Arg)

exon skipping down 23 yes

16 f; myosingleton restrictive cardiomyopathy N/A N/A N/A N/A

17 f; m; myosingleton Pompe GAA (NM_000152.5) c.�32–13T>G (intron 1); GAA c.1927G>A
(p.Gly643Arg)

splice polypyrimidine
tract variant

down 23 yes

18 f; m; myosingleton CMD N/A N/A N/A N/A

21 f; myosingleton LGMD N/A N/A N/A N/A

26 f; m; myosingleton DMD UI for specific mutation UI down 73 X-linked disorder

27 f; myosingleton myopathy N/A N/A N/A N/A

28 f; m; myosingleton CMD N/A N/A N/A N/A

29 fsingleton myopathy N/A N/A N/A N/A

30 f; myosingleton CMD N/A N/A N/A N/A

31 msingleton arthrogryposis multiplex
congenita

N/A N/A N/A N/A

32 msingleton CM N/A N/A N/A N/A

33 msingleton distal myopathy N/A N/A N/A N/A

(Continued on next page)
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GTEx cohort. Detailed expression information is provided in

Tables S4–S15.
Variant Calling and Annotation
The coverage across reference nucleotides in RNA-seq is highly

variable because of the differential expression of genes, isoforms,

and alleles. These factors, plus post-transcriptional modifications,

result in lower variant-calling precision when RNA-seq data are

used. On the basis of previous data, RNA-seq-specific filters enable

the calling of R95% (compared to >99% in WES or WGS) patho-

genic genomic variants.54

We measured the precision of small-variant calling of the

Genome Analysis Toolkit (GATK) HaplotypeCaller (version

4.0.1.2) using the RNA-seq data of the GM12878 cell line,

sequenced by ENCODE (SRA accession number in SRR307898),

and the National Institute of Standards and Technology (NIST)

Genome-in-a-Bottle variant calls as a true positive set.55–57 We

found that the GATK HaplotypeCaller 4.0.1.2 had lower precision

than the GATKHaplotypeCaller 3.6: 85% versus 98% for SNVs and

52% versus 70% for indels, and thus we chose the latest version of

the GATK HaplotypeCaller branch 3.63.

Variants were called with the GATK HaplotypeCaller (version

3.8) according to the GATK best practices for variant calling in

RNA-seq as implemented in the bcbio-nextgen RNA-seq pipeline.

Namely, we used the GATK SplitNCigarReads command to prepare

bam files, and we set the RNA-seq specific filters (–cluster-window-

size 35–cluster-size 3–filter-expression ‘FS > 30.0’–filter-name FS–

filter-expression ‘QD < 2.0’–filter-name QD). We filtered out sites

of RNA editing according to the RADAR database (version

2-20180202).58 Variants were annotated with Ensembl VEP

(version 93.3), vcfanno (version 0.3.0), and CRE with data sources

from GEMINI (version 0.20.1), bcbio-nextgen (version 1.1.0),

gnomAD (version 2.0.1), dbNSFP (version 3.5a), and the

Human Gene Mutation Database (HGMD) (version 20180411_

v2018.1).59–63 Rare variants (allele frequency [AF] < 0.01 in

gnomAD WES and WGS) that had significant impact (MED or

HIGH according to GEMINI terms) and that were covered by at

least 5 reads were selected. We combined the variant reports

within a family to prioritize variants according to the inheritance

pattern of the particular disease and to check for the consistency of

variant calling across the tissues.
Identification and Annotation of Splice Variants
To compare methods of genomic variant calling and to choose the

best one, we used standard benchmarks (Genome in a Bottle,

Illumina Platinum Genomes) to assess the specificity and sensi-

tivity of different tools.57,64 The evidence of splicing abnormalities

that have been confirmed as true positives is growing; however,

this evidence is not sufficient for the creation of a benchmark.

Most splicing analysis methods are compared through the use of

synthetic tests.27 Thus, we chose the method on the basis of its

ability to call pathogenic splicing changes in several published

cases.

Several tools that predict the pathogenicity of splice-affecting

variants have been developed.65–67 In our splicing analysis, we

chose the Mendelian RNA-seq method described in Cummings

et al.33 Unlike other splicing analysis methods, which were devel-

oped by expanding on the idea of the differential expression anal-

ysis of genes, Mendelian RNA-seq treats splice junctions similarly

to how they are treated in genomic variant analyses: it calls a junc-

tion in a large cohort of skeletal muscle controls from GTEx and
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then annotates it with the frequency.68 Junctions with a frequency

of zero are considered as candidates for pathogenic events, and

then additional evidence (genomic variants, phenotype, expres-

sion status, functional studies, and Sanger or RT-PCR validation)

is explored to assess the pathogenicity. This approach significantly

simplifies the analysis, reduces computing time, and allows the

identification of a limited set of candidate pathogenic events for

further investigation.

Wemade several improvements toMendelian RNA-seq. First, we

built a reusable database of junctions generated from the 184 con-

trols, and we utilized this database for comparison, thus speeding

up our analysis. Second, we opined that the requirement for a

novel junction to be absent from all controls might lead to false

negatives because a random read originating from the

transcriptional noise in a few of the controls might mask the

well-covered novel junction in a sample. We therefore reported

junctions for further analysis if they were present in %5/184

(2.7%) controls. This allowed us to detect pathogenic splice events

in families 38 and 34, where aberrant junctions were present in

1 or 2 GTEx samples with very low coverage (1 or 2 reads).

We annotated rare (absent or appearing %5 times in GTEx con-

trol samples) splicing junctions with the following statuses in

GENCODE: (1) both donor and acceptor sites are present in

GENCODE, i.e., the junction is not new; (2) only the donor site

is present in GENCODE, and the acceptor site (junction end) is

absent, i.e., there is a new acceptor site; (3) only the acceptor

site is present in GENCODE, and the donor site (junction

start) is absent, i.e., there is a new donor site; (4) both the donor

and acceptor sites of the junction are present in GENCODE

annotation, but separately (i.e., not as one junction), i.e., there

is a new incidence of exon skipping; (5) neither the donor or

acceptor sites are present in the GENCODE annotation. We

report rare junctions having at least one site absent in GENCODE

(Table S16).

Our system of filters was designed to remove splicing junctions

that fit the following criteria: (1) they are present inR5 of the 184

GTEx skeletal muscle controls; (2) they are annotated in

GENCODE with both sites as a single junction; (3) they are

covered by <5 reads; (4) they have a normalized coverage

score %0.05 (normalization accounts for coverage in other junc-

tions of the same gene and removes sequencing noise; see the defi-

nition of the normalization score in Figure S5B from Cummings

et al.14); and (5) they are shared between >2 samples in a cohort.

Finally, we annotated novel splicing events with information

about gene expression (e.g., the expression outlier status and

whether it is up- or down-regulated) for better filtering. For

splicing junctions in genes that are not part of the gene panels,

we added two additional filters to remove (1) junctions with

read coverage <30, (2) junctions with normalized coverage <0.5,

and (3) junctions with a frequency in the cohort of<7 (Table S17).
Coverage Analysis
The coverage of a gene in RNA-seq data depends on both the level

of expression of the gene, as well as the depth of sequencing. The

read coverage of a gene determines the ability to call variants and

splice junctions in a gene. In our work we set the minimum

coverage threshold at five reads.

We measured average per-nucleotide coverage in our muscular,

fibroblast, and t-myotubes samples for the genes in our gene

panels. We split the genes into bins according to average

coverage: <103, 103–1003, 1003–1,0003, 1,0003–10,0003,
The Ameri
and >10,0003 (Figure S4). Genes in the lowest coverage bin

were deemed not suitable for variant detection by RNA-seq.

Allelic Imbalance Analysis
We filtered variants in heterozygous sites with a coverage

depth R20 by using bcftools, and we calculated minor-allele

read-count ratios by using information from the AD (allelic depth)

format field of a vcf file produced by GATK HaplotypeCaller.51

Then, we calculated a median of these ratios for genes having

R5 variants; we used this value to characterize the allelic imbal-

ance of a gene by computing a Z score and comparing sample

data with data from 50 GTEx controls. We prioritized genes ac-

cording to absolute Z scores (Table S22). This approach is a modi-

fication of allele imbalance analysis used in Cummings et al..33

PAGE—A Web Interface for Exploring the Data
Wedeveloped PAGE, a web interface for exploring the data and the

results generated in this project. The PAGE web application is built

with React and Redux JavaScript libraries for front-end visualiza-

tion and a Python FLASK framework for the back end API. PAGE

uses a SQLITE3 database to store gene information such as the

gene name, Ensembl ID, and HGNC synonyms. This database

also stores gene-panel information such as the panel name and

the list of genes included in each panel. PAGE uses a MongoDB

database to store gene expression data such as RPKM and RAW

expression counts for every exon in the gene across various tissues

in GTEx and our samples. Finally, the webpage interfaces with a

JBrowse instance—a genome browser for visualizing expression

and splice-junction data in our sample cohort, along with the

aggregated data from 184 GTEX controls. User inputs to the

PAGE application are handled by the React library, which commu-

nicates with the Python FLASK API end points to fetch query-spe-

cific data from the SQLITE3 and MongoDB databases in JSON

format; the data are then parsed and displayed on the webpage.
Results

In this study, we applied our transcriptome analysis

pipeline to 65 samples from individuals with monogenetic

neuromuscular disorders (Figure 1); we performed RNA-seq

on 26 skeletal-muscle biopsies, 22 skin-fibroblast cultures,

17 transdifferentiated-myotube cultures (t-myotubes;

Table 1 and Table S1), and 5 fibroblast control samples,

for a total of 70 samples.

Variability of Expression in Muscle Biopsies

We assessed the quality and variability of our muscle sam-

ples by comparing them with the transcriptomes from

GTEx skeletal muscle controls. On the basis of the multidi-

mensional scaling plot of expression profiles (Figure 2A),

our samples clustered with GTEx skeletal muscle, indi-

cating that our cohort had a transcriptome profile similar

to that of GTEx controls. However, more than half of

our samples came from pediatric individuals, 60% of

them %10 years old. When our cohort is stratified by

age, we see that the expression profile of affected pediatric

individuals differs from that of affected adults, and we

found that the transcriptome tends to adopt an ‘‘adult pro-

file’’ at �10 years of age (Figure 2B).
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Figure 2. Sample Distribution and Gene-Expression Profile
(A) A multi-dimensional scaling (MDS) plot of our cohort of 70 samples (primary fibroblasts, t-myotubes, and muscle) compared with
tissue-matched sets from GTEx (blood, transformed fibroblasts, and muscle). There is significant overlap between the muscle samples
from our cohort and GTEx. Samples from blood, muscle, and fibroblasts formed distinct clusters, but transdifferentiated myotubes clus-
ter as a group between the fibroblasts and muscle samples.
(B) A principal-component analysis (PCA) of only our muscle samples shows a clear clustering of samples on the basis of age (x axis; 1st
PCA). There is increased variability in expression in the younger samples; this variability diminishes with increased age of the samples.
(C) We identified 9,932 genes expressed at >1 RPKM. Of these genes, �92% were expressed at R1 RPKM in t-myotubes, 88% in fibro-
blasts, and 71% in blood.
(D) Comparison of expression between ourmuscle samples and GTExmuscle for the five highest- and lowest-coverage genes. There is no
significant difference between our samples and those from GTEx.
In our cohort of muscle biopsies, 9,932 protein-coding

genes were expressed, on average, at >1 RPKM (Figure 2C).

Out of 132 genes previously associated with neuromus-

cular disease (Figure S3 and Table S5), 15 genes (ALG14

[MIM: 612866], CACNA1A [MIM: 601011], CCDC78

[MIM: 614666], CHAT [MIM: 118490], CHKB [MIM:

612395], CHRNE [MIM: 100725], CLN3 [MIM: 607042],

CNTN1 [MIM: 600016], DUX4 [MIM: 606009], GMPPB

[MIM: 615320], ISPD [MIM: 614361], KCNA1 [MIM:

176260], KCNE3 [MIM: 176263], POMK [MIM: 615247],

and SYT2 [MIM: 600104]) were expressed at <1 RPKM in

our cohort and in GTEx skeletal-muscle controls. Among

these 15 genes with low expression, seven (CACNA1A,

CCDC78, CHAT, DUX4, KCNA1, KCNE3, and SYT2) had
472 The American Journal of Human Genetics 104, 466–483, March
an average per-base coverage below 103. Given the overall

high sequencing depths in our experiment (50–100 M

paired reads), we predict that detecting variants in these

seven genes with RNA-seq will be challenging. An addi-

tional three genes (AGRN [MIM: 103320], MEGF10 [MIM:

612453], and MSTN [MIM: 601788]) were expressed below

1 RPKM in GTEx but not in our samples. We thus estimate

that 95% of genes in a comprehensive neuromuscular gene

panel can be studied with an RNA-seq analysis of skeletal-

muscle biopsies.

Each gene in our 132-gene panel presented some

degree of expression variability. 33.8% of the genes in

our muscle biopsies have a coefficient of variation (CofV;

defined as the ratio of the standard deviation to the
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mean) >50% (Table S11), a value similar to the CofV of

these genes in GTEx. To examine this further, we chose

five genes (CHRNA1 [MIM: 100690], CHRNG [MIM:

100730], CHRND [MIM: 100720], TTN, and LAMA2

[MIM: 156225]) with high variability and five genes

(GAA [MIM: 606800], HNRNPDL [MIM: 607137], DNM2

[MIM: 602378], EMD [MIM: 300384], and SGCA [MIM

:600119]) with low variability, and we showed that their

CofV is comparable between our samples and GTEx con-

trols (Figure 2D).

Splice Changes

Abnormalities in RNA processing are a potential muta-

tional pathomechanism that can be captured by RNA-

seq. We hypothesized that these should be uncovered by

examining novel junctions. In our 25 polyA purified mus-

cle-biopsy transcriptomes, we identified a total of 166

novel junctions that were present in %10 GTEx controls

(Table S16); 84 of them were present at a low frequency

(%2 samples) within our cohort (we designated them as

low-frequency novel junctions [LFNJs]). The median num-

ber of LFNJs per muscle sample was 5 (min 1, max 20). The

LFNJs we encountered (including four pseudo-exons) were

as follows: new acceptors (n ¼ 63), new donors (n ¼ 18),

and exon-skipping events (n ¼ 3). We discovered no rare

junctions where neither end site was annotated in

GENCODE (Figure 3A). Using more stringent quality fil-

ters, but not restricting analysis to our gene panels, we

discovered 50 novel junctions: 23 new donor sites, 20

new acceptor sites, and seven exon-skipping events (Table

S16). LFNJs were considered disease-causing changes in

eight of our affected families. Examples are described in

Figure 3 and explained below.

We identified four cases of exonic extensions that were

pathogenic (Table 1). One example is found in individual

4, an individual with centronuclear myopathy, where we

found an exonic extension caused by a synonymous point

mutation in the last nucleotide of exon 21 of RYR1. The ca-

nonical donor splice site of exon 21 was suppressed, and

two alternative cryptic donor splice sites were activated

(Figure 3B). The first (GenBank: NM_001042723.1; chr19:

38,954,212) extends exon 21 by 44 bp, causing a þ1

frameshift and the occurrence of a premature stop codon

TGA at chr19: 38,955,338–341. The second (GenBank:

NM_001042723.1; chr19: 38,954,309) extends exon 21

by 141 bp and causes a �1 frameshift in exon 22 and a re-

sulting premature stop codon at chr19: 38,954,395–397.

Correspondingly, there is a 2.1-fold drop in RYR1 expres-

sion compared to that in controls.

We identified three cases of novel pathogenic pseudo-

exons caused by deep intronic mutations. In family 38,

the presence of new start and stop junctions (Figure 3C)

helped us to identify an intronic splice gain (resulting in

a new exon) in DYSF [MIM: 603009]. In proband 34,

who presented a clear phenotype for Duchenne muscular

dystrophy but for whom no diagnosis was reached

after multiplex ligation-dependent probe amplification
The Ameri
(MLPA) and sequencing forDMD, we found an intronic in-

clusion (pseudo-exon) between exons 1 and 2. In sample 9

(a positive control), we previously reported a reduced

expression of DMD (103 lower) and a deep intronic muta-

tion that created a pseudo-exon with a premature stop

codon; we now confirm the discovery of this new junction

in t-myotubes as well (see below).32

We also uncovered one exon-skipping event (in family

15) caused by a synonymous variant (GenBank: NM_

000426.3: c.4860G>A) in the splice region of exon 33 of

LAMA2 (Figure 3D).

Genomic Variants Identified by RNA-Seq

Identifying coding variants from RNA-seq data is compli-

cated by multiple factors, including uneven coverage

stemming from the variable expression of genes, exons,

isoforms, and alleles.26 In our cohort, we observed that,

on average, 80% of the nucleotides found in the 132 genes

in the neuromuscular panel are covered by at least 20 reads

(Table S19). In family 14, we had both skeletal-muscle

RNA-seq and blood WGS data for two samples, enabling

us to compare the variants identified from each of the data-

sets (Table S20). Excluding KCNJ12 [MIM: 602323] variants

(excluded because of misassembly in the reference

genome), RNA-seq correctly identified 90% (259/287 and

272/305 variants) of variants identified by WGS. The re-

maining 10% of variants not detected by RNA-seq came

from three sources: sites of good coverage where a variant

was not called by a variant-calling program (GATK false

negatives), sites of low or zero coverage (e.g., exons that

are not expressed in muscle but are included in the canon-

ical isoform), and variants filtered out by an RNA-seq-spe-

cific variant filter (for example, when many variants are

detected in a small window). 2% of variants detected by

RNA-seq across the neuromuscular gene panel of 132 genes

were not found in the WGS. These might represent so-

matic variants and/or false discoveries.

RNA-seq identified pathogenic variants in nine of our

cases (Table 1) and additionally provided resolution on a

rare variant found in a 50 untranslated region (UTR). Family

5 presented with a phenotype compatible with congenital

muscular dystrophy, and WES identified a heterozygous

missense variant in GMPPB (GenBank: NM_013334.3)

c.94C>T [p.Pro32Ser]). RNA-seq analysis additionally un-

covered a heterozygous variant in the 50 UTR of GMPPB

(g.349761246 G>A) in trans with c.94C>T (Figure 4A).69

This SNV is predicted to create an alternative ATG start

codon that adds 29 new amino acids to the protein.

Expression of GMPPB in this case was decreased by 43

(compared to in our cohort) and by 573 (compared to in

GTEx skeletal muscle) (Table S6).

Expression Outliers and Allele Imbalance

We next used comparative gene expression and allelic

imbalance as ways to prioritize genes and variants for sub-

sequent analysis. After multiple testing correction with the

Bonferroni method, the mean number of abnormally
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Figure 3. Analysis of Low-Frequency Novel Junctions
(A) 177 novel junctions were detected in the transcriptomes of our muscle samples, and we divided them into high-frequency junctions
(HFJs) and low-frequency novel junctions (LFNJs). The LFNJs were subdivided into new acceptor (n¼ 63), new donor (n¼ 18), and exon-
skipping (n ¼ 3) events. Pseudo exons (n ¼ 4) are counted within new acceptor or donor events.
(B) Example of a novel donor site detected in t-myotubes and muscle biopsy (family 4). The canonical donor splice site of exon 21 of
RYR1 was reduced (551 reads), and two alternative, cryptic donor splice sites were activated. The first (chr19: 38,954,212) (new donor
with 107 reads) extends exon 21 by 44 bp, causing a þ1 frameshift and stop-gain at chr19: 38,955,338341. The second (chr19:
38,954,309) (new donor with 140 reads), extends exon 21 by 141 bp, causing a 1 nt frameshift with stop-gain at chr19:
38,954,395397. Overall, RYR1 expression is decreased 2.1-fold in affected cells compared to in controls.
(C) Example of a pseudo exon (family 38). A novel exon was found in the muscle between exons 50 and 51 in DYSF (supported by 107
reads), creating a premature stop codon at chr2: 71,900,460–71,900,462.
(D) Example of exon skipping (family 15). An exon-skipping event was detected in fibroblasts in LAMA2 (supported by four reads),
causing a frameshift with stop-gain in exon 35 at chr6: 129,704,311–313. Overall, LAMA2 expression was decreased (see also Figure 4C).
expressed genes in our muscle gene panel (jZ scorej > 1.5)

per muscle sample was 17 (Table S10). In seven of the 10

previously undiagnosed families, we found that the candi-

date gene was within the group of expression outliers. In

six of these seven cases, the causative gene was one of

the top 5 outlier genes (it was the 31st outlier gene in the

other). The following cases, where the causative gene was

downregulated by more than 2-fold, are examples of the

utility of expression analysis: family 4, RYR1 (Figure 3B);

family 5, GMPPB (Figure 4A); and families 9, 26, 34, and

35, DMD (Figure 4B).
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An examination of the balance of allele expression,

particularly in combination with expression level analysis,

might also reveal causative mutations. Allele imbalance

was observed in instances of mutations in RYR1 (abnormal

junctions, Figure 3B) and GMPPB (50 UTR variant, Fig-

ure 4A), but not in the case of the DYSF pseudo exon,

which occurs between exons 50 and 51 out of 55 exons

total and thus probably evades the nonsense mediated

decay pathway (NMD), Figure 3B. Allele imbalance also

directed us to the cause of disease in three additional cases

(described below).
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Figure 4. Analysis of Variants, Expression Profiles, and Allele-Specific Expression
(A) Detection of a 50 UTR mutation with RNA-seq. WES for family 5 reported a heterozygous missense variant in GMPPB c.94C>T
(p.Pro32Ser). We identified this variant in RNA from the fibroblasts (left arrow; labeled ‘‘Exon1 mutation’’), along with a heterozygous
50 UTR variant, g.349761246G>A (right arrow; labeled ‘‘50UTRmutation’’), that results in a new start codon. This variant was seen only in
the transcriptome data and not by WES. It produces an in-frame insertion of 116 bp, potentially adding 29 new amino acids to the pro-
tein. Of note, both variants were absent from control fibroblasts.
(B) The left panel depicts the n-fold difference in DMD RNA levels between GTEx control muscle and 4 cases of Duchenne muscular
dystrophy (in family 9¼ intronic splice gain, family 26¼mutation still elusive, family 34¼ intronic splice gain, and family 35¼ disrup-
tion of exon 1 ATG). The right panel shows the top 3 most downregulated genes (from a panel of 132 neuromuscular genes) for each of
these cases.

(legend continued on next page)
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Family 15 included the proband, diagnosed with

congenital muscular dystrophy, and samples from both

parents. We examined RNA from fibroblasts; in the

proband, we observed a missense variant (GenBank:

NM_000426.3: c.2584T>C [p.Cys862Arg]) in exon 19 of

LAMA2 in 85% of reads. In the father, we found an exon

33 skipping event, resulting from c.4860G>A (GenBank:

NM_000426.3), in LAMA2 (Figure 3D). This exon 33 skip-

ping was also supported at very low coverage (four reads)

in the proband. In the mother we found the p.Cys862Arg

variant in 50% of reads (Figure 4C). Taken together, we

concluded that the individual had compound-heterozy-

gousmutations in LAMA2 that resulted in almost complete

loss of expression from the paternal (exon-skipping) allele

(Table S21).

A similar scenario was present in an individual 17,

who had a phenotype consistent with Pompe disease.

RNA-seq identified an exonic missense variant in GAA

(GenBank: NM_000152.5) c.1927G>A (p.Gly643Arg) in

74% of reads. It also uncovered a second variant,

(GenBank: NM_000152.5) c.32–13T>G (intron 1), associ-

ated with intronic inclusion and the introduction of a pre-

mature stop codon. This variant was represented in only

16% of reads, consistent with allele-specific reduction,

which together with the missense mutation in trans re-

vealed compound-heterozygous GAA mutations as the

cause of the disease in this case.

Lastly, we clarified with RNA-seq one case of an individ-

ual with congenital muscular dystrophy and suspected

dystroglycanopathy (family 6). RNA-seq identified a ho-

mozygous POMT2 mutation, (MIM: 607439) (GenBank:

NM_013382.5.) c.1502A>C (p.Glu501Ala), that resulted

in no reduction of expression of the POMT2 transcript.

This homozygous variant, which originally was poorly

delineated by exome sequencing, was subsequently identi-

fied in the individual’s DNA by exome reanalysis. Maternal

DNA was heterozygous for the same variant. Further anal-

ysis of the transcriptome showed that adjacent genes also

had mono-allelic expression. A chromosomal microarray

confirmed a large region, approximately 15 Mb in length,

of homozygosity on chromosome 14 (chr14: 75,699,438–

90,713,574) but no other regions of homozygosity

throughout the remainder of the genome, thus supporting

an argument in favor of uniparental isodisomy.70

Blood Is an Inadequate Source Material for the Analysis

of the Muscle Transcriptome

A major limitation of RNA-seq is the need to have source

material with a disease-relevant transcriptome. In most

cases this requires biopsied material. In addition, as with

WES, trio analysis greatly improves data interpretation,
(C) Transcript expression ([C1], in RPKM) of LAMA2 from fibroblasts (
and from the parents (father in green and mother in blue) (family 1
expression as compared to his mother. (C2) He also had a materna
[p.(Cys862Arg)]). This variant demonstrated mono-allelic expression
the reads in the mother, and not found in the father.
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as exemplified in family 15 earlier. For neuromuscular dis-

eases, biopsies are invasive and limited in amount and/or

availability, and parental samples are rarely (if ever) avail-

able. Thus, we looked for alternate, minimally invasive

sources for study.

First, we compared the expression profiles of blood and

skeletal muscle from the GTEx database. Of the 9,932

genes expressed in muscle at >1 RPKM, only 71% were ex-

pressed in blood at >1 RPKM (Figure 2C and Table S4).

Moreover, the genes most commonly associated with mus-

cle disease have low expression in blood. 89% of 132 genes

from the neuromuscular panel are expressed at >1 RPKM

in skeletal muscle, but only 53% of the 132 genes reach

this level in blood (Table S5). Thus, blood is an inadequate

source for transcriptome analysis for most neuromuscular

diseases.

Proband-Derived Fibroblasts Recapitulate Aspects of the

Muscle Transcriptome

We next examined skin fibroblasts because these can be

obtained via minimally invasive means and can be reprog-

rammed into other cell types.41,71–73 We obtained tran-

scriptomes from fibroblasts from 26 individuals, and we

additionally considered the GTEx control data for immor-

talized fibroblasts. Our skin fibroblasts (passage 1–4) clus-

tered together in a similar way as immortalized fibroblasts,

though their expression profiles overlapped incompletely

(Figure 2A). When we compared our cohort of fibroblasts

to skeletal muscle, we found an increased coverage of

known neuromuscular genes as compared to blood, and

there was particularly high coverage of genes associated

with congenital muscular dystrophy (Figure 2D). In total,

88% of all genes, including 61% of genes from the neuro-

muscular gene panel (Table S5), expressed in muscle were

also expressed in fibroblasts at >1 RPKM (Figure 2C and

Table S4). In terms of specific disease-gene coverage, the

transcripts that were poorly expressed in fibroblasts were

components of the excitation-contraction coupling appa-

ratus (e.g., RYR1, CACNA1S [MIM: 114208]), and some

components of the sarcomere (e.g., NEB [MIM: 161650]

and TTN) (Table S5).

Transcriptomes from Transdifferentiated Myotubes

Match Those from Skeletal Muscle

Given that transcriptomes from blood and fibroblasts did

not adequately represent skeletal muscle, we lastly turned

to an ex vivo model of muscle (skeletal myotubes derived

by myoD overexpression in fibroblasts; see Material

and Methods). We first verified transdifferentiation and

measured myotube maturation at different time points

by monitoring several markers of myotube differentiation
in orange) from an individual with congenital muscular dystrophy
5). The proband had a greater-than-2-fold reduction in transcript
lly inherited pathogenic missense variant in LAMA2 (c.2548T>G
, and it was found in 85% of the reads in the proband, 50% of
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Figure 5. Most Common Muscle-Disease-Causing Genes, Classified by Their Main Function, That Are Expressed at >1 RPKM
We organized 123 of the 132 genes in our panel into seven distinct groups associated with muscle function, and we determined their
expression in four different tissues (skeletal muscle, t-myotubes, fibroblasts, and blood). We calculated the percentage of genes in
each category that were expressed at R1 RPKM in each of the tissues, and we saw that most of the muscle genes are poorly expressed
in blood and fibroblasts and sufficiently expressed in t-myotubes (adapted from Dowling et al., 201779).
(using qRT-PCR and immunofluorescence) and by evalu-

ating cell morphology (Figure S1). Between 50% and 85%

of fibroblasts were converted to t-myotubes with our tech-

nique. Resulting t-myotubes continually progressed in dif-

ferentiation status throughout the time course; 21 days

after differentiation marked the point at which cultures

were most mature and still fully viable. Of note, despite

the variable conversion and differentiation rates, for

simplicity we did not remove fibroblasts from the t-myo-

tubes for subsequent RNA sequencing.

In t-myotubes, 11,185 protein-coding genes were ex-

pressed at >1 RPKM. Among the 9,932 genes expressed

at >1 RPKM in skeletal-muscle samples, 9,106 (92%)

were expressed in t-myotubes at >1 RPKM (Figure 2C

and Table S4). Importantly, 87% of the genes in the neuro-

muscular panel were expressed in t-myotubes at >1 RPKM;

only ANO5 [MIM: 608662], CAPN3 [MIM: 114240], CLCN1

[MIM: 118425], COLQ [MIM: 603033], KBTBD13 [MIM:

613727], SCN4A [MIM: 603967], and SYNE2 [MIM:

608442] were expressed at <1 RPKM in t-myotubes and

at >1 RPKM in skeletal muscle (Figures 5 and S3 and Table

S5). Cluster analysis showed that t-myotubes have an

expression profile intermediate between fibroblasts and

skeletal muscle, and they have much more variability

compared to either (Figure 2A). From the 117 (out of
The Ameri
132) genes that were expressed at >1 RPKM in muscle,

we detected a coefficient of variation >0.5 in 34% (40/

117) in muscle, 49% (57/117) in t-myotubes, and 9%

(10/117) in fibroblasts (Tables S6–S8). This variability is

likely driven by the variable percentage of fibroblasts and

t-myotubes in our cultures, as well as by the variable differ-

entiation state of the t-myotubes. The muscle-disease-asso-

ciated genes with the highest variability in t-myotubes are

ACTA1 (MIM: 12610), KLHL1 (MIM: 605332),DES, TNNT1

(MIM: 191041), and CHRNA1.

For data analysis, we began by looking at sequence vari-

ants present in our neuromuscular panel. In t-myotubes,

we could detect 75% of the total exonic variants identified

in matched skeletal muscle biopsies. Correspondingly,

t-myotubes had a median of 74% of base pairs covered

at 203, whereas 83% of base pairs were covered in

skeletal muscle. Of note, fibroblasts only had 50% median

coverage of neuromuscular gene variants (Tables S19

andS20).

We next looked at splicing events in our 13 matched

sample sets (muscle biopsy, t-myotubes, and fibroblasts)

(11 unknowns and two positive controls, Table S18). Out

of 49 novel junctions detected in muscle, we detected six

in t-myotubes and two in fibroblasts. Interestingly, 55.3%

of the muscle novel junctions not found in t-myotubes
can Journal of Human Genetics 104, 466–483, March 7, 2019 477



belonged to NEB, TTN, or TPM3 (MIM: 191030) (27.7%;

19.1%; and 8.5%, respectively), although 13% belonged

to genes with low expression in the reprogrammed cells

(mainly SYNE2 and ANO5). In t-myotubes we detected a

median of 15 novel splice junctions unique to t-myotubes

(these were novel junctions that were absent in primary

fibroblasts and muscle). The genes with a higher number

of splicing events in the t-myotubes are mainly involved

in the extracellular matrix (COL6A3 [MIM: 120250] and

COL6A1 [120220]), membrane trafficking (SYT2 and

CAV3 [MIM: 601253]), and the sarcolemmal membrane

structure (SGCA and SGCB [MIM: 600900).

Lastly, we analyzed the suitability of t-myotubes for

identifying disease-causing genetic variants. Importantly,

in our cohort of 11 unknown matched samples, in all

five cases in which pathogenic disease-causing changes

were found in skeletal muscle and/or fibroblasts, the

disease-causing changes were also found in t-myotubes

(Table 1).
PAGE—An Interface for Data Exploration

As exemplified by our t-myotube data and by the compar-

isons between blood and skeletal muscle, one of the key

considerations for RNA-seq is source material. In an effort

to provide a simple platform for interrogating RNA-seq

data to determine the most suitable tissue for study, we

created a web-based, searchable data portal (PAGE). This

portal enables the user to search for genes or gene panels

of interest and then visualize the coverage of those genes

in different tissues. This platform incorporates the new

data we generated for fibroblasts and t-myotubes and addi-

tionally includes the major tissue types from GTEx.

In PAGE, we enable comparisons at the exon level—the

user picks genes (or a pre-loaded panel of genes) and two

(or more) tissues of interest to compare. For each gene in

the panel, PAGE counts the number of exons that are ex-

pressed in the primary tissue and checks if the same

exon(s) are also expressed in the other tissues of interest.

On the basis of the percentage overlap in the number of

exons expressed in the tissues being compared, the tissues

are ranked as in descending order of similarity to the pri-

mary tissue of interest. The user also has the ability to

view the expression of the exons across all the samples as

box plots by clicking on the genes of interest. Additionally,

the user can explore the identified variants, expression

levels, and splicing changes of the gene through a link to

JBrowse.74 We have precomputed the similarity of all pro-

tein-coding genes across 31 tissues in GTEx and ranked the

tissues on the basis of the similarity in expression of the

exons. PAGE is freely available (see Web Resources).
Discussion

Taken together, our results validate RNA-seq as a tool for

the detection and discovery of rare disease mutations. We

demonstrate that it provides a considerable improvement
478 The American Journal of Human Genetics 104, 466–483, March
in the overall diagnostic rate over exome sequencing alone

and provides clarity for the interpretation and validation

of non-coding variants. Our pipeline allowed us to arrive

at a diagnosis in 36% (9 of 25) of instances previously un-

solved by gene panels or WES. Furthermore, we provide

extensive data supporting the suitability of using cell lines

derived from individuals with the disease in RNA-seq-

based diagnostics. Specifically, we show that transdifferen-

tiated myotubes accurately reflect the transcriptome of

skeletal muscle; these data open the door to minimally

invasive strategies for transcriptome-based diagnostics.

In terms of primary-mutation discovery, all of our solved

cases represent examples of mutations either that would

not have been discovered by exomic analysis or that would

have required validation by secondary methods. Our data

thus broaden the range of mutations that can be discov-

ered via RNA-seq. In addition to identifying exonic,

splice-site, and deep intronic mutations, we validate the

capability of transcriptome analysis to identify variants

in regulatory upstream regions (promoters, enhancers,

and UTRs) and variants that impact allele-specific expres-

sion. Allele imbalance is a particularly useful phenomenon

to observe because it can point to more complex disease

mechanisms, such as imprinting, uniparental disomy, X

inactivation, and chromosomal rearrangements.35 More-

over, the findings from our families demonstrate the utility

of RNA-seq for providing clarity to some variants in large

genes, such as TTN and RYR1, with frequently encountered

VUSs; such genes are notoriously challenging to evaluate.

Our study identified several additional points related to

the use of RNA-seq for mutation discovery. Somewhat un-

surprisingly, and in keeping with WES and WGS, the yield

of proband analysis was improved through the use of sib-

ling and parental samples.75 Specifically, in those families

in which we had samples available from the proband and

a relative, the difficulties of filtering and identifying post-

transcriptional defects were significantly reduced. This

not only impacted the accuracy of detecting aberrant

splicing and/or variant calling, but also enabled better

interpretation of potential allelic imbalance. The challenge

to this, of course, is that trio analysis necessitates obtaining

disease-relevant tissue from the proband as well as the par-

ents; in the case of myopathies, these tissue samples would

historically be skeletal muscle biopsies. We show, however,

as discussed below, that cells derived from skin biopsies

provide a suitable alternative that makes trio studies

feasible.

Another important consideration that emerged from our

study (and is also consistent with exome and genome

sequencing) is the importance of accurate clinical pheno-

typing for data interpretation. In our cohort, we arrived

at a diagnosis primarily for the individuals or families

where the phenotype was well delineated. This was partic-

ularly true for families with a clinical or pathological

phenotype, such as Duchennemuscular dystrophy, Pompe

disease, and merosin-deficient congenital muscular dystro-

phy, associated with mutations in a single gene.
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A further consideration from the overall data is the age of

the sample vis-a-vis the GTEx control database. The GTEx

consortium provides an invaluable reference database for

transcriptome analysis and the identification of posttran-

scriptional abnormalities. However, these data are limited

to samples from adults >18 years old. We observed a wider

variability in the expression profile in children under the

age of 10 years old and noticed a trend of clustering after

this age was reached.We did not do a deeper pediatric tran-

scriptome analysis because it was not the primary aim of

our project, and we currently lack sufficient control sam-

ples to fully understand and define the critical differences

between pediatric and adult cases. We believe, however,

that that pediatric controls and an analysis of the differ-

ences in pediatric and adult samples are necessary to better

understand the changes in the transcriptome during the

maturation of the skeletal muscle, especially in the pediat-

ric population and, eventually, during the aging process,

and thus advocate for efforts related to developing control

datasets for these age ranges.

Lastly, we have made advances in terms of the pipeline

and analysis of RNA-seq data for mutation detection. In

particular, we have focused on novel junctions, as well as

on the combination of outlier expression sets and allele

balance. Interestingly, our approach identified in our sam-

ples, as compared to in GTEx, a median of 5 LFNJs.

Although a handful of these junctions proved to be patho-

genic, there were several additional and equally rare junc-

tions that were identified in our samples. Some of these

‘‘novel’’ junctions could be due to samples’ biological vari-

ability, caused by known and yet-to-be-identified splicing

mechanisms. Because all of our samples are pediatric, this

could result in biased usage of some junctions. We classify

these rare, novel junctions as ‘‘junctions of unknown sig-

nificance (JUSs)’’ and feel their biological role and pathoge-

nicity will become clearer with the analysis of a much

larger number of RNA-seq samples. Additionally, the focus

of our splicing analysis was to identify novel junctions and

not to look for changes in splice-site usage and shifts in iso-

form levels. In the future, we would like to extend the pipe-

line to study changes in splicing, as well as novel splicing,

as more mature algorithms become available for tackling

this problem.

One of the important developments from our study

is the description of the suitability of fibroblasts and

transdifferentiated myotubes for muscle transcriptomics.

Although blood is the easiest sample to obtain, it only ex-

presses�75% of muscle genes at>1 RPKM and only half of

the most common genes used in clinical panels of muscle

disorders. In particular, genes involved in the sarcomere,

sarcolemmal membrane, and the neuromuscular junction

are poorly represented in the blood transcriptome. Tran-

scriptomes from skin fibroblasts offer an improvement

over those from blood, particularly for genes associated

with congenital muscular dystrophies (CMDs). This cor-

roborates previous studies showing the utility of fibroblasts

for studying CMDs and particularly for mutation discovery
The Ameri
for dystroglycanopathies.38,76,77 RNA-seq analysis of fibro-

blasts has previously been explored for individuals with

mitochondrial disease, and it was shown to improve diag-

nostic accuracy in this setting by 10%.34 However, primary

fibroblasts lack the expression of most of the genes

involved in the sarcomere (30%) and neuromuscular junc-

tion (18.8%) (Figure 5). This limitation is greatly compen-

sated for by their potential to be reprogrammed into

different cell types, such as myotubes.

Our study reports a thorough and extensive transcrip-

tomic analysis of transdifferentiated myotubes. We show

that most of muscle-disease-related genes, including all

components of the sarcomere, the sarcolemmal mem-

brane, and the neuromuscular junction, are expressed in

t-myotubes (Figure S1). Variants found in both exonic

and intronic regions can be reliably uncovered in t-myo-

tubes. Critically, in our matched cohort of biopsies and

t-myotubes from the same individuals, we successfully

identified all causative mutations that were present in

the muscle biopsies. We conclude therefore that t-myo-

tubes can effectively be used for RNA-seq-based diagnostics

when a biopsy is not available, and they can offer addi-

tional clarity for variant evaluation by providing easy ac-

cess to parental samples.

There are also a few limitations of RNA-seq performed on

t-myotubes as compared to that performed on muscle

biopsies. Although we achieved >1 RPKM expression in

nearly all disease-relevant muscle transcripts, the expres-

sion of these transcripts in t-myotubes is lower for most

genes. This might hinder the identification of expression

outliers and allele imbalance. Expression analysis is also

complicated by the variability of the cultures (which

contain a mix of fibroblasts and myotubes at different

stages of maturity), by the lack of a control dataset, and

by the influence of forced overexpression of MyoD.78 In

terms of specific sequence evaluation, we could identify

only 75% of genomic SNVs seen in blood (as compared

to 90% in biopsies) and uncover only a portion of the

novel junctions seen in muscle RNA-seq. These last two

challenges most likely relate, at least in part, to reduced

gene expression (providing lower coverage for SNVs) and

to splice changes that accompany myotube maturation

(causing some exons found inmuscle biopsies not to be ex-

pressed in our myotubes). To address these limitations, we

are aiming our future work at increasing our cohorts of

controls and t-myotubes derived from affected individuals

and on developing improved culture settings to promote

more uniformity and maturation.

Our study underscores the importance of source mate-

rial for RNA-seq-based diagnostics. Although we have

convincingly demonstrated that t-myotubes derived

from affected individuals can be used in diagnostics for

muscle diseases when biopsies are not available, we appre-

ciate that these particular cell lines are not suitable for

other subsets of rare disease. In these settings, biopsies

of an affected tissue will likely remain the gold standard

for transcriptomics. However, there is an opportunity to
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employ similar strategies of fibroblast transdifferentiation

to generate other disease-relevant cell models (neurons,

cardiomyocytes, etc.). Future studies will focus on the

development of these cell models and thus will hopefully

expand the breadth of diseases that can be evaluated by

RNA-seq.

Of note, in order to simplify the choice of suitable source

material for a mutation-discovery study with RNA-seq, we

developed our PAGE interface. PAGE currently contains

transcriptome data from the tissues present in GTex and

from our fibroblasts and t-myotubes, and it will incorpo-

rate information from new cell derivatives as they are

developed. The goal of the PAGE portal is to provide users

with the ability to quickly and easily evaluate the expres-

sion levels of a gene or a set of genes in tissue(s) of interest.

For example, a clinician working on neuromuscular disor-

ders could evaluate whether genes expressed in skeletal

muscle are also expressed at ‘‘sufficient’’ levels in fibro-

blasts. This will give the clinician the ability to decide

whether they can use fibroblasts for transcriptome analysis

instead of a muscle biopsy.

In addition to the advantages of using RNA-seq for diag-

nostics, some caveats need to be considered. Even though

we identify many disease-relevant mutations, the use of

RNA-seq for variant discovery is mainly restricted to

gene-coding regions of the genome (and particularly to

highly expressed genes that have typically high coverage).

Furthermore, as has been shown here, because expression

is tissue specific, analysis requires the sequencing of dis-

ease-relevant tissues. The ability to identify variants and

splicing changes of interest is dependent on the gene of in-

terest, tissue of expression, and high depth of coverage;

because of this, the cost associated with RNA sequencing

can be a major factor in utilizing the technology in a clin-

ical diagnostic setting. Differential expression analysis re-

quires many replicates for sample comparison, and this is

especially true when one is looking to identify subtle (yet

significant) changes in gene expression. Finally, gene

expression is a highly regulated process and therefore re-

quires matched ‘‘normal’’ samples; this will require the

sequencing of samples from multiple tissues over multiple

developmental stages, and all of these have to be analyzed

in a consistent manner.

In summary, we provide convincing support for the util-

ity of RNA-seq for the detection of rare, disease-causing

mutations associated with neuromuscular disorders, and

we show that RNA-seq can identify mutations in settings

where gene panels and exome sequencing do not. Further-

more, we demonstrate the feasibility of using minimally

invasive material derived from individuals for transcrip-

tome-based diagnostics, and we thus establish the ground-

work for using easily obtainable cell models for trio studies

and in settings where biopsies are not available. We also

fully describe RNA-seq’s strengths (providing clarity on

some coding variants, identifying deep intronic variants,

and illuminating UTR mutations) and point out some of

the challenges that remain with its interpretation (age
480 The American Journal of Human Genetics 104, 466–483, March
dependent variation and the presence of novel junctions

of unclear significance).
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Web Resources

bcbio-nextgen, https://github.com/chapmanb/bcbio-nextgen

The Centre for Applied Genomics, http://www.tcag.ca

Common Fund (CF) Genotype-Tissue Expression Project (GTEx),

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id¼phs000424.v7.p2

CRE, https://github.com/ccmbioinfo/cre, https://github.com/

naumenko-sa/cre

CRT, https://github.com/ccmbioinfo/crt, https://github.com/

naumenko-sa/crt

Ensembl, http://www.ensembl.org

fastqc, https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/

GATK Best Practices. Calling Variants in RNA-seq, https://software.

broadinstitute.org/gatk/documentation/article.php?id¼3891

GENCODE, https://www.gencodegenes.org/

MITOCARTA: An Inventory of Mammalian Mitochondrial Genes,

https://www.broadinstitute.org/scientific-community/science/

programs/metabolic-disease-program/publications/mitocarta/

mitocarta-in-0

OMIM, https://www.omim.org

OUTRIDER, https://github.com/gagneurlab/OUTRIDER
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PAGE, https://page.ccm.sickkids.ca

Portal, https://gtexportal.org/home/

The R Project for Statistical Computing, https://www.r-project.

org/

R Studio, https://www.rstudio.com/

RNA-seq of GM12878, SRR307898, https://www.ncbi.nlm.nih.

gov/sra/?term¼SRR307898GTEx

vcfanno, https://github.com/brentp/vcfanno
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