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Abstract

The influences of environmental factors such as weather on the human brain are still

largely unknown. A few neuroimaging studies have demonstrated seasonal effects, but

were limited by their cross-sectional design or sample sizes. Most importantly, the sta-

bility of the MRI scanner has not been taken into account, which may also be affected

by environments. In the current study, we analyzed longitudinal resting-state functional

MRI (fMRI) data from eight individuals, where they were scanned over months to

years. We applied machine learning regression to use different resting-state parame-

ters, including the amplitude of low-frequency fluctuations (ALFF), regional homogene-

ity (ReHo), and functional connectivity matrix, to predict different weather and

environmental parameters. For careful control, the raw EPI and the anatomical images

were also used for predictions. We first found that daylight length and air tempera-

tures could be reliably predicted with cross-validation using the resting-state parame-

ters. However, similar prediction accuracies could also be achieved by using one frame

of EPI image, and even higher accuracies could be achieved by using the segmented or

raw anatomical images. Finally, the signals outside of the brain in the anatomical

images and signals in phantom scans could also achieve higher prediction accuracies,

suggesting that the predictability may be due to the baseline signals of the MRI scan-

ner. After all, we did not identify detectable influences of weather on brain functions

other than the influences on the baseline signals of MRI scanners. The results highlight

the difficulty of studying long-term effects using MRI.
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1 | INTRODUCTION

Daily environmental factors such as weather and seasonality affect

mood and cognitive functions (Cedeño Laurent et al., 2018; Denissen,

Butalid, Penke, & van Aken, 2008; IJzerman et al., 2018; Keller

et al., 2005; Lim et al., 2018), and may lead to pathological affective

disorder (Elseoud et al., 2014; Kurlansik & Ibay, 2012). The effects on

individuals may be small, but the collective effects may lead to
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broader impacts, for example, on stock markets (Hirshleifer &

Shumway, 2003; Saunders, 1993). To better understand the effects of

weather and seasonality on mood or cognition, it is critical to study

their effects on brain functions. A few human neuroimaging studies

have explored this association. Seasonal effects on brain functions as

measured by functional MRI (fMRI) have been observed both in

resting-state (Choe et al., 2015) and when performing cognitive tasks

(Meyer et al., 2016). Some neural transmitter activity in the striatum

also showed seasonal effects, that is, serotonin transmitter binding as

measured by 11C–labeled 3-amino-4-(2-dimethylaminomethyl-

phenylsulfanyl)-benzonitrile ([11C]DASB) positron emission tomogra-

phy (PET) (Kalbitzer et al., 2010; Mc Mahon et al., 2016; Praschak-

Rieder, Willeit, Wilson, Houle, & Meyer, 2008) and dopamine synthe-

sis as measured by 18F-DOPA PET (Eisenberg et al., 2010; Kaasinen,

Jokinen, Joutsa, Eskola, & Rinne, 2012). A study even reported sea-

sonal changes of hippocampal volumes in human subjects (Miller

et al., 2015).

There are several limitations in these neuroimaging studies. First,

most of these studies are cross-sectional, which is limited by the large

individual differences in brain functions (Gordon et al., 2017). In addi-

tion, most of the studies examined roughly defined seasonal effects or

yearly periodical effects. But the exact phase of the seasonal varia-

tions may be different from the four seasons. Sometimes the yearly

effects showed different phases (Meyer et al., 2016), suggesting more

complicated relationships of environmental factors on brain functions.

Therefore, it is critical to examine which environmental parameters,

such as weather, have more contributions to the seasonal effects.

Among different environmental parameters, daylight length and tem-

perature represent the significant environmental differences in sea-

sonal fluctuations. Gillihan et al. have explored the weather effects on

brain functions using a small cross-sectional sample (Gillihan, Detre,

Farah, & Rao, 2011). They identified a weather index related to mood

and showed that the weather index was correlated with resting-state

cerebral blood flow as measured by arterial spin labeling (ASL) perfu-

sion fMRI mainly in the insula. But more systematic examinations of

weather effects on brain functions have not been performed. Lastly,

the most commonly used neuroimaging method is fMRI based on

blood-oxygen-level dependent (BOLD) signals (Ogawa, Lee, Kay, &

Tank, 1990), where the interpretation of the results should consider

neuronal level, neurophysiological level, and the underlying physical

level of the scanner. Specifically, if some effects on fMRI signals were

observed, they may be due to the changes in neuronal activity, which

is favorable to psychologists and psychiatrists. But the effects may

also due to the changes in neurovascular coupling (Di, Kannurpatti,

Rypma, & Biswal, 2013; Yuan et al., 2013), in brain structures, or even

the stability of the MRI scanner. Therefore, when examining the

weather effects on brain functions, alternative factors need to be con-

sidered and carefully controlled.

The purpose of the current study is to estimate to what extent

resting-state brain functions are affected by the weather. We ana-

lyzed longitudinal resting-state fMRI data from eight individuals from

three datasets, where the individuals were scanned over periods of

months to years (Choe et al., 2015; Filevich et al., 2017; Poldrack

et al., 2015). One challenge for estimating weather effects is that the

effects may be small. Therefore, we applied a machine learning regres-

sion approach to evaluate the effects. Because multiple brain regions

have been implicated in seasonal effects, for example, basal ganglia

(Kalbitzer et al., 2010; Mc Mahon et al., 2016; Praschak-Rieder

et al., 2008), insula (Gillihan et al., 2011), and hippocampus (Miller

et al., 2015), small regional effects may be aggregated into detectable

effects using machine learning technique. We performed a within-

subject prediction analysis at the single-subject level. We asked what

weather parameters have the most effects on resting-state brain func-

tions, which can be represented as high prediction accuracies in pre-

dictions of these parameters. In order to rule out possible

confounding effects, we also performed several control prediction

analyses. First, we analyzed anatomical MRI images to check whether

the observed prediction could be attributed to anatomical variations.

Second, we checked images from phantom data to examine whether

the prediction could be attributed to the stability of the MRI scanner.

2 | MATERIALS AND METHODS

2.1 | MRI datasets

Several multi-session resting-state fMRI datasets were pooled

together, where the subjects were scanned over periods of months to

years. The first subject was derived from the Kirby sample (Choe

et al., 2015), where the single subject was scanned for 156 sessions

over three and half years. The second subject was from the

Myconnectome sample (Poldrack et al., 2015), where the subject was

scanned 90 times over one and half years. The remaining six subjects

were from the Day2day sample (Filevich et al., 2017), where the sub-

jects were scanned over a similar span of about half a year. The

detailed subject and scan information is listed in Table 1.

The MRI data from the Kirby sample were scanned using a 3T

Philips Achieva scanner. The data from the Myconnectome sample

were scanned using a 3T Siemens Skyra scanner using a 32-channel

head coil. And the data from the Day2day project were scanned using

a 3T Siemens Magnetom Trio scanner using a 12-channel head coil.

For each subject, resting-state fMRI data with multiple sessions were

acquired. Within a subject, the resting-state fMRI were scanned using

the same imaging parameters, but the parameters varied between dif-

ferent sites. Some essential resting-state fMRI parameters are listed in

Table 1. For more details, we refer the readers to the original articles.

High-resolution anatomical MRI images were available for only a

few sessions in the Kirby and Myconnectome datasets. An MRI image

of one session was used to register all the functional images to stan-

dard Montreal Neurological Institute (MNI) space. For the Day2day

dataset, structural MRI images were available for all the sessions. Only

the structural MRI image of the last session of each subject was used

to aid preprocessing of the fMRI images. All the structural images of

the Day2day project were also used in the control prediction analysis.

Lastly, we obtained MRI scanner quality assurance agar phantom

data from the Day2day site. The images were scanned between June
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2013 and February 2014 on a weekly basis (37 sessions in total). One

session's data were dropped because of extreme variations in the

images. The data were acquired using a gradient echo (GRE) sequence

with the same coil as the one used for the acquisition of the human

data. Two images were acquired for each session. The parameters

include: TR = 2,000 ms; TE = 30 ms; FOV = 22 cm; matrix = 64 � 64;

slice number = 28; slice thickness = 4 mm (1 mm gap).

2.2 | Environmental data

The MRI data were acquired from three different cities in two conti-

nents, Baltimore, USA (Kirby), Austin, USA (Myconnectome), and Berlin

Germany (Day2day), which reflect different types of climates. The lati-

tudes of these three cities are approximately 39�N, 30�N, and 52�N,

respectively. The weather data for the two U.S. cities were downloaded

from (U.S.) National Centers for Environmental Information website

(https://www.ncdc.noaa.gov/cdo-web/). The Local Climatological Data

from Maryland Science Center Station and Austin Camp Mabry Station

were used to represent the weather for the Kirby and Myconnectome

datasets, respectively. We used the following measures, maximum and

minimum temperatures (Tempmax and Tempmin), air pressure (Press),

wind speed (Wind), humidity (Hum), and precipitation (Prcp). For those

with missing data, we also checked Daily Summaries data from the

NOAA website. The weather data for the Day2day dataset were col-

lected by the German researchers. Daily sunshine hours were not used,

because they were not available for the other datasets.

We also included daylight length (Dalgt) in the current analysis. It

was already available in the NOAA Local Climatological Data. For the

Day2day data, we calculated the daylight length in Berlin according to

its geographic location through the website of the Astronomical Appli-

cations Department of the U.S. Naval Observatory computes (http://

aa.usno.navy.mil/data/docs/Dur_OneYear.php). For the Day2day

dataset, there are three additional parameters that reflect local envi-

ronmental variations, that is, scanner room temperature (Temprm),

humidity (Humrm), and scanner Helium level (He). These three parame-

ters were also used in the prediction analysis when using the

Day2day data.

2.3 | MRI data processing

2.3.1 | Resting-state fMRI preprocessing

Data processing and statistical analysis were performed using

MATLAB (R2017b). SPM12 (http://www.fil.ion.ucl.ac.uk/spm/; RRID:

SCR_007037) was used for fMRI data preprocessing. The first 2, 18,

and 2 functional images for each session were discarded for the Kirby,

Myconnectome, and Day2day datasets, respectively, remaining

198, 500, and 148 images for each session. For each subject, all the

functional images were realigned to the first session. All the prediction

analysis was performed in the native space of each subject. The ana-

tomical images were coregistered to the mean functional image, and

then segmented into gray matter (GM), white matter (WM), cerebro-

spinal fluid (CSF), and other tissues. For each subject, an intracranial

volume mask was defined, and the grand mean (4-dimensional aver-

age) of the functional images was calculated for each session. For

each session, the functional images were divided by the grand mean

and multiplied by 100. At each voxel, Friston's 24 head motion model

(Friston, Williams, Howard, Frackowiak, & Turner, 1996), the first five

principal components from WM signals and the first five principal

components from CSF signals were regressed out, and then band-pass

filtering was applied between 0.01 and 0.1 Hz. The images were not

spatially smoothed, because there was no voxel-wise univariate analy-

sis involved.

The preprocessing steps were chosen to minimize potential

artifacts due to physiological noises and head motion. This may be

an over-conservative choice that may compromise too many

degrees of freedom of the fMRI time series (Bright, Tench, &

Murphy, 2017). We also tried to reduce the number of regressors

during the linear regression step. Specifically, we obtained the first

two principal components of Friston's 24 head motion variables.

The regression then included the first two components of the head

motion model, the first component of WM signals, and the first

component of the CSF signals (2 + 1 + 1 regressors compared with

24 + 5 + 5 regressors from the main analysis). The results using

the reduced regression were reported in the Supporting

Information.

TABLE 1 Subject and MRI scan information

Dataset Sex Age

# of

sessions First scan Last scan # of volumes TR (s) Voxel size (mm3)

1 Kirby M 40 156 December 7, 2009 June 20, 2013 198 2 3 � 3 � 4

2 MyConnectome M 45 83 October 23, 2012 March 11, 2014 500 1.16 2.4 � 2.4 � 2.4

3 Day2day F 23 50 July 3, 2013 December 18, 2013 148 2 3 � 3 � 3.6

4 Day2day F 31 48 July 3, 2013 January 8, 2014 148 2 3 � 3 � 3.6

5 Day2day F 29 45 July 3, 2013 January 27, 2014 148 2 3 � 3 � 3.6

6 Day2day F 24 46 July 2, 2013 December 19, 2013 148 2 3 � 3 � 3.6

7 Day2day M 30 39 July 9, 2013 February 12, 2014 148 2 3 � 3 � 3.6

8 Day2day F 29 48 July 3, 2013 February 20, 2014 148 2 3 � 3 � 3.6

Note: The number of sessions represents the effective numbers after dropout due to missing data or large head motions. The numbers of volumes

represent the numbers used in the analysis after removing the first several volumes.
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2.3.2 | ALFF, ReHo, and connectivity matrices

We calculated three resting-state parameters to represent resting-

state brain functions, that is, amplitude of low-frequency fluctuation

(ALFF) (Zang et al., 2007) and regional homogeneity (ReHo) (Zang,

Jiang, Lu, He, & Tian, 2004) to represent regional properties, and con-

nectivity matrix to represent inter-regional connectivity property.

ALFF and ReHo were calculated using the REST toolbox (REST: a

toolkit for resting-state fMRI, RRID:SCR_009641) (Song et al., 2011).

Essentially, ALFF calculated the power of the time series signals

between 0.01 to 0.08 Hz at every voxel, resulting in an ALFF map for

each session. ReHo calculated the correlations of the current voxel

with the 26 neighboring voxels, which also resulted in a ReHo map for

each session. The ALFF and ReHo values for each session within the

subject's GM mask were converted to a vector for further analysis.

The subject-specific GM masks were defined as GM intensity greater

than 0.5 based on the segmentation of the subject's anatomical image.

Because the GM masks were defined in the native spaces and the

fMRI resolution varies across datasets, the number of within mask

voxels also varied (from 20,780 to 55,368).

Correlation matrices were calculated among 164 regions of inter-

est (Di & Biswal, 2019; Dosenbach et al., 2010). Spherical ROIs were

first defined in MNI space with a radius of 8 mm, and then trans-

formed into the native space for each subject. There were in total

13,366 connectivity values (164 � [164–1]/2), which were converted

to a vector for the prediction analysis. The correlation values were

transformed into Fishers' z scores.

2.3.3 | Head motion and other potential
confounding variables

To minimize the confounding of head motion in the prediction analy-

sis, we first removed sessions with large head motions. We calculated

frame-wise displacement in translation and rotation directions (Di &

Biswal, 2015). A session's data with maximum frame-wise displace-

ment greater than 1 mm or 1� were discarded. No sessions were

removed in the Kirby data, and seven sessions (7.8%) were removed

for the Myconnectome data. In the Day2day dataset, at most two ses-

sions were removed for each subject. Secondly, we regressed out

24 motion variables using Friston's head motion model, which has

been shown to be effective to minimize the effects of head motion on

resting-state measures (Yan et al., 2013). Lastly, mean frame-wise dis-

placement of both directions were regressed out from a predicted

environmental variable before it was entered into the prediction

analysis.

2.3.4 | Global signal

The resting-state fMRI data have been scaled by the grand mean (4-D

average) of each session to account for the baseline signal variations

across sessions. However, a recent study has reported an association

between global signal fluctuations and time of day (Orban, Kong, Li,

Chee, & Yeo, 2020). We, therefore, examined whether the global sig-

nal fluctuations were associated with the environmental factors, and

whether accounting for the global signal fluctuations could affect the

predictions of these environmental factors. We calculated the aver-

aged ALFF value in the intracranial mask to reflect the global signal

fluctuations. The global signal fluctuations were correlated with day-

light length for each subject. Next, we also calculated mean ALFF

(mALFF) by dividing an ALFF map by the global mean. Prediction anal-

ysis was also performed by using the mALFF maps.

2.3.5 | Structural MRI processing

For the Day2day dataset, the MPRAGE anatomical MRI images were

available for all the sessions. Therefore, we used the anatomical

images as a control condition for the weather prediction. The analysis

was also performed in a subject's native space. The anatomical images

from all the sessions of a subject were realigned and resliced to the

image of the first session. Then each session's image was segmented

separately, and the segmented tissue probability maps of GM, WM,

and CSF were obtained. We defined GM, WM, and CSF masks as an

averaged probability greater than 0.5 for the respective tissue types.

GM, WM, and CSF probability in their masks were extracted, respec-

tively, to be used in the prediction analysis.

We also defined an air mask to study the baseline MRI signals,

which was located outside the brain (Makedonov, Black, &

MacIntosh, 2013). The mask was placed at the lower left front side of

the head to avoid potential objects in the area, and was consisted

of 21 � 41 � 41 voxels.

2.3.6 | Phantom image processing

For each session, the two images were realigned, and an averaged

image was calculated. Because the phantom was imaged in a similar

location, no cross-session registration was performed. We first calcu-

lated the correlations between daylight length and image values in

every voxel, resulting in a correlation image. Next, a cubic mask in the

center of the image was defined. The signals within the mask were

extracted for the prediction analysis.

2.4 | Prediction analysis

2.4.1 | Prediction analysis scheme

The goal of the analysis is to estimate the prediction values of resting-

state parameters on different weather or meteorological parameters.

The analysis was performed for each of the resting-state parameters

to predict each of the seven weather parameters. And we asked

which weather parameters could be better predicted by which

resting-state parameters. The prediction analysis was all done in a
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within-subject manner. Cross-validation was used to evaluate the pre-

diction accuracies.

In addition to use these resting-state parameters, we also per-

formed a series of control analyses to use other potential confounding

parameters to predict the environmental parameters. First, we used

the first fMRI image of each session after realignment to perform pre-

diction analysis. Although the single image still reflects BOLD effects,

brain structures may contribute more variations. Secondly, to future

rule out the structural contribution, we used segmented tissue proba-

bilities of GM, WM, and CSF from their respective tissue masks to

perform prediction analysis. Thirdly, we also extracted the raw image

values from the MPRAGE images in the three tissue masks to serve as

another control condition. In addition, a cuboid mask was defined for

each subject, which was located outside the brain. The raw image

values from the MPRAGE images from the air mask were used to con-

trol for baseline MRI signals. Finally, since all of the above-mentioned

analyses indicated prediction values to predict environmental parame-

ters, especially daylight length, we further analyzed the quality assur-

ance phantom data, and used the signals in the agar phantom area to

perform prediction analysis to predict daylight length.

2.4.2 | Machine learning regression analysis

We used a linear machine learning regression model to perform pre-

diction analysis. The general form of the prediction model is a linear

regression model as the following:

y¼X �βþ ε

where y is a n � 1 vector of a predicted weather parameter, X is a

n � m matrix of a resting-state parameter, β is the model parameters,

and ε is the residual. N represents the number of observations, which

in the current analysis is the number of sessions for a particular sub-

ject. M represents the number of prediction variables, which could be

the number of voxels in the ALFF or ReHo maps (see Table 1) or the

number of connections (13,366) in the connectivity matrices. Here, m

is much larger than n. Therefore, we used ridge regression to estimate

the β parameters. Briefly speaking, instead of trying to achieve the

goal of minimizing the sum of square means of the model prediction:

min
β

X
y�X�βð Þ2

Ridge regression adds one more regularized term:

min
β

X
y�X�βð Þ2þλ�

X
βk k2

where λ represents the regularization parameter. The regularization

term can constrain the sizes of beta values, thus preventing overfitting

of the model. In the current analysis, we used the MATLAB function

fitrlinear to perform the prediction analysis. There are other methods

available, such as LASSO and elastic net, but a recent study suggested

that ridge regression and elastic net can yield similar prediction

accuracies while LASSO might perform worse in the scenario that the

number of observations is much smaller than the number of features

(Cui & Gong, 2018).

There are three steps in the prediction analysis, (a) tuning the reg-

ularization parameter λ to find the optimal λ (λ tuning), (b) training the

model using the training dataset and the optimal λ to obtain a predic-

tion model β (model training), and (c) estimating prediction accuracy

by calculating the correlations between predicted and actual values in

a separate testing sample (cross-validation). Cross-validation was used

to make sure that the estimated prediction accuracies were indepen-

dent of the training data.

Because of the limited number of data in one fold (13 observa-

tions in the least case), three-fold cross-validation was adopted. We

used a nested tuning strategy to optimize the parameter λ (Cui &

Gong, 2018). Specifically, we first held out one-third of the data as an

independent testing dataset, and used the remaining two-thirds of the

data as a training and parameter tuning dataset. The data were first

sorted according to the tested weather parameter, and the three folds

were defined as the 1st, 4th, 7th, …, 2nd, 5th, 8th, …, and 3rd, 6th,

9th, … sessions of the data, respectively. Within the two-thirds train-

ing and parameter tuning dataset, we first performed a nested loop of

three-fold analysis. Specifically, one-third of the data were holden

out, and the remaining two-thirds of data were used to train the

regression model using a set of λ values, from 10�5 to 10�1 in the log-

arithmic scale with a total of 15 values. The inner loop testing data

was used to test the accuracy of the prediction by calculating the cor-

relation between predicted and actual weather parameter values. This

procedure was performed three times for the three folds, and the

mean accuracies were calculated for each of the λ values. The λ value

with the highest mean accuracy was used for the outer layer training

data to train the model. The model was then applied to the outer layer

testing data to estimate prediction accuracies. The three accuracy

values from the three folds were averaged to represent an estimate of

accuracy for a subject.

The prediction accuracies of different imaging parameters and

environmental parameters were visualized by using notBoxPlot

(https://github.com/raacampbell/notBoxPlot). The plot shows not

only the individuals' prediction accuracies, but also the mean, SD, and

95% confidence interval of the accuracies across the subjects. False

discovery rate (FDR) was used to correct for multiple comparisons of

the different parameters.

3 | RESULTS

3.1 | Predictions using the resting-state images

We first performed predictions on different environmental parameters

using the ALFF maps, ReHo maps, connectivity matrices, as well as

using a single frame of EPI images as a control condition (Figure 1). In

general, daylight length (Dalgt) and maximum and minimum environ-

mental temperatures (Tempmax and Tempmin) had higher prediction

accuracies, with daylight length usually having the highest
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prediction accuracies. The other environmental parameters had very

low prediction accuracies. In terms of the resting-state parameters,

the ALFF map usually had the highest prediction values. The average

prediction accuracy of daylight length using ALFF was 0.38. Surpris-

ingly, however, using a single frame of EPI images could achieve com-

parable and even higher prediction accuracies than any resting-state

parameters. The averaged prediction accuracy of daylight length using

the raw EPI images was 0.42. When using the resting-state parame-

ters calculated from the reduced preprocessing method to perform

the predictions, the prediction accuracies slightly increased (Figure S1).

However, they were still smaller than those using the raw EPI images.

It remains a question that whether the weather predictions using

the resting-state parameters and single EPI images are based on simi-

lar or different information. Since the daylight length had the highest

prediction accuracies, we focused on its prediction. We combined

ALFF with EPI and ReHo with EPI to predict daylight length to check

whether combining the two modalities can boost the prediction accu-

racies. Unfortunately, combing the two modalities yielded very similar

prediction accuracies as those using the single EPI images or ALFF

images (Figure 2). Therefore, ALFF and ReHo did not convey more

information than a single EPI image to predict daylight length.

Next, we examined whether the global signal fluctuations of the

resting-state data were correlated with daylight lengths, and whether

the global signal fluctuations contribute to the predictions of the envi-

ronmental factors. The correlations between global mean ALFF and day-

light lengths did not show a consistent pattern across subjects

(Figure 3a). We also used the global mean scaled ALFF maps, that is,

mALFF, to predict different environmental variables, and they yielded

similar prediction patterns as what using the raw ALFF maps (Figure 3b).

3.2 | Predictions using the anatomical images

If a single volume of EPI image can predict weather parameters like day-

light length, then the question becomes whether the prediction is due to

brain functional activity, structural information, or other factors. We,

therefore, performed similar prediction analyses using the anatomical

images, which are available in the six subjects in the Day2day dataset.

We first performed predictions using the segmented GM, WM, or CSF

density images within their respective tissue masks (Figure 4). The results

showed very similar prediction patterns for different environmental

parameters as what using the resting-state parameters. That is, the day-

light length and environmental temperatures had the highest prediction

accuracies. The prediction accuracies using all the three tissue probability

maps were above 0.5, which were higher than using any of the resting-

state parameters. However, what was more interesting was that even

higher prediction accuracies could be achieved using the raw MRI signals

in these tissue masks. The prediction accuracies were higher than 0.6

when using raw MRI signals in the GM and CSF masks. Finally, we

defined a cuboid mask outside the brain (see Figure 5a as an example),

and used the raw MRI signals in the mask to perform prediction analysis.

Surprisingly, the analysis also showed a similar pattern of prediction

F IGURE 1 Prediction accuracies (correlations) of the amplitude of low-frequency fluctuations (ALFF) maps, regional homogeneity (ReHo)
maps, connectivity matrices, and raw echo-planar imaging (EPI) maps on different environmental parameters. Each dot represents one subject's
mean prediction accuracy. The center white lines, inner dark bars, and outer light bars represent the mean, 95% confidence interval, and SD,
respectively. The asterisks on the top represent statistical significance at p < .05 after false discovery rate (FDR) correction for all the
40 predictions

F IGURE 2 Prediction accuracies to daylight length using the
amplitude of low-frequency fluctuations (ALFF), regional homogeneity
(ReHo), raw echo-planar imaging (EPI) maps, and their combinations.
Each dot represents one subject's mean prediction accuracy. The
center white lines, inner dark bars, and outer light bars represent the
mean, 95% confidence interval, and SD, respectively
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accuracies. The prediction accuracy on daylight length using the air mask

was 0.47, which was lower than using all the other anatomical parame-

ters but still higher than using any of the resting-state parameters.

To further explore the baseline MRI signals conveyed in the air

mask, we calculated the correlations between the MRI signals and day-

light length in all the voxels in the air mask for the six subjects

F IGURE 3 (a) Correlations between the global amplitude of low-frequency fluctuations (ALFF) and daylight lengths. (b) Prediction accuracies
(correlations) of the environmental parameters using raw ALFF and mean ALFF (mALFF). Each dot represents one subject's mean prediction
accuracy. The center line, inner dark bar, and outer light bar represent the mean, 95% confidence interval, and standard deviation, respectively

F IGURE 4 Prediction accuracies (correlations) of raw MRI signals and segmented densities in gray matter (GM), white matter (WM),
cerebrospinal fluid (CSF), and air masks on different environmental parameters. Each dot represents one subject's mean prediction accuracy. The
center white lines, inner dark bars, and outer light bars represent the mean, 95% confidence interval, and SD, respectively. The asterisks on the
top represent statistical significance at p < .05 after false discovery rate (FDR) correction for all the 70 predictions

F IGURE 5 (a) An example of the air mask from one subject overlaid to the subject's anatomical image. (b) Histograms of the correlations
between the MRI signals and daylight length of all the voxels in the air mask. Each line represents one subject. (c) There is an extremely high
negative correlation between the mean correlations in the air mask and the prediction accuracies of using the air mask voxels to predict daylight
length
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(Figure 5b). There were small global effects of the correlations between

the MRI signals and daylight lengths. Moreover, the global effects of

correlations were strongly correlated with the prediction accuracies

across subjects (Figure 5c), indicating that the global correlation is the

driving information that gave rise to the prediction accuracy.

3.3 | Control analysis using the phantom images

To further confirm the baseline signal changes, we analyzed the

weekly quality control phantom data around the same period of

the Day2day project. We first calculated voxel-wise correlations

between the MRI signal and daylight lengths (Figure 6a). It clearly

showed that in the phantom region, there were high negative corre-

lations. We defined a cubic mask in the center of the image, and

the distribution of correlations of all the voxels in the mask is plot-

ted in Figure 6b. The mean and median correlation in the cubic

mask was �0.78 and �0.79, respectively. We also performed simi-

lar predictions of the daylight length by using the MRI signals in the

mask, and the cross-validated mean accuracy was 0.70. Lastly, we

calculated the mean and spatial coefficient of variation of the MRI

signals in the mask, and plotted them against scan sessions

(Figure 6c,d). The mean MRI signals showed a strong negative cor-

relation with daylight lengths (r = �0.82, p < .001). However, the

spatial coefficient of variation showed only a marginally significant

correlation (r =�0.34, p = .04). The large negative correlation of

daylight length with the mean MRI signals and reduced correlation

with the spatial coefficient of variation were also confirmed by

using the air mask signals of the human subjects' MPRAGE

images (Figure S2).

4 | DISCUSSION

By applying machine learning regression to single-subject longitudinal

fMRI data that were scanned over months to years, we demonstrated

that we can predict environmental parameters, especially daylight

length and air temperature, by using resting-state fMRI parameters.

However, a series of controlled analyses showed that using a single

EPI image, the segmented tissue density, and the raw MRI signals

from the anatomical images in different tissue masks and even in a

mask outside the brain could all predict the environmental parame-

ters. The resting-state parameters did not add prediction values to

single-volume EPI images. These results indicated the prediction of

environmental parameters, especially daylight length, cannot be

explained as the weather effects on brain functions. Rather, the pre-

diction may reflect MRI scanner baseline signal variations that were

affected by the environmental parameters. The analysis of the quality

control phantom images supported our speculation.

Among all the environmental parameters analyzed the daylight

length and air temperature had the highest prediction accuracies. It is

not surprising because daylight length and air temperature are highly

correlated. Daylight length has the highest prediction accuracy proba-

bly because it is a physical quantity that does not have measurement

errors, which is in contrast to air temperature. It is noteworthy that

although the MRI scanner room temperature and humidity could not

be predicted by the functional parameters, they could be reliably

predicted by the anatomical MRI parameters (Figure 4). However,

their prediction accuracies were smaller than those of daylight length

and air temperature. It indicates that the environmental effects on

MRI signals are not directly caused by local temperature, but some

other local factors. A study has shown that the gaseous oxygen level

F IGURE 6 (a) Voxel-wise
correlation maps between MRI
image values and daylight length.

The dash-line contour indicates
the location of the cubic mask.
(b) Histogram of the voxel-wise
correlations in the cubic mask.
(c) and (d) The averaged signals
and spatial coefficient of
variation (CV) in the cubic mask
and the daylight length against
scan sessions
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in the magnet field can influence the MRI signals (Bates et al., 1995).

The oxygen level in the scanner room may fluctuate across seasons

due to different ventilation conditions, which may contribute to the

MRI baseline signal shifts. In addition, the cooling systems of the scan-

ner may be affected by either electricity supply stability or cooling

water temperature. Given that the MRI is such a sophisticated

machine, there may be other factors that mediate the association

between daylight length and scanner stability.

The current results highlighted the difficulty to study long-term

effects such as weather on brain structures and functions using MRI.

Consistent with two previous fMRI studies (Choe et al., 2015; Meyer

et al., 2016), we did find weather effects on fMRI measures. But we

demonstrated that the weather effects are likely due to the variations

of MRI scanner baseline. It is reasonable to speculate that MRI scan-

ner stability might contribute to the reported seasonal effects (Choe

et al., 2015; Meyer et al., 2016). We also showed that tissue probabil-

ity measures of GM volumes may also be affected by the scanner sta-

bility, so brain volumetric measures may also be affected by the

scanner stability (Miller et al., 2015). Careful examinations of

the effects of MRI scanner baseline signals are needed to confirm

these reported findings.

In the current analysis, a few steps have been used to correct the

MRI baseline signals. The fMRI signals have been scaled by the grand

mean of each session. And we also compared the prediction accura-

cies of using ALFF and mALFF, which have yielded very few differ-

ences. The scaling may be effective for local voxels. But due to the

spatial heterogeneity, the baseline variability may still present in some

brain regions, which could be picked up by the machine learning algo-

rithm. ReHo and connectivity measures use correlation measures,

which are insensitive or have scaled local signal variability. This may

explain why their prediction accuracies are smaller than ALFF. These

problems may arise from the fact that most of the fMRI measures are

relative measures. If absolute measures can be used, for example,

blood perfusion using arterial spin labeling (ASL) (Detre, Leigh, Wil-

liams, & Koretsky, 1992; Detre, Rao, Wang, Chen, & Wang, 2012),

then the effects from scanner stability may be minimized.

The current analysis demonstrated that machine learning is a

powerful method that can pick up small effects. The phantom data

showed the correlations between baseline MRI signals and daylight

length were about 0.7. When scanning human participants, the back-

ground MRI signals outside the brain showed much smaller correla-

tions with daylight length (Figure 5b,c). However, we could still

achieve a similar level as the prediction accuracies by using machine

learning as the phantom data (Figure 4). Indeed, the cross-validated

prediction accuracies were between 0.6 and 0.7, which are very close

to the correlation in the phantom data. Machine learning methods

have become more and more popular in studying brain-behavior rela-

tionships (Cui & Gong, 2018; Finn et al., 2015) and brain alterations in

mental disorders (Whelan et al., 2014). The current analysis illustrates

that comparing performance with chance level may not be sufficient

to control for potential confounding variables. Careful choice of con-

trol conditions is critical to make a proper conclusion. When per-

forming machine learning analysis on functional activations or

connectivity data, the structural MRI data may be a good choice as a

control condition. The structural MRI data are usually available along-

side the fMRI data, and do not reflect the functional activity of the

brain. Adding structural MRI as a control condition could rule out

potential structural variations as a source of individual differences, but

could also rule out potential MRI baseline variations as shown in the

current analysis. A phantom scan may also be considered if long-term

effects are of interest.

The current study did not completely rule out the potential sea-

sonal or daylight effects on brain structures and functions. Studies

using non-human animals have provided strong evidence of seasonal

and daylight effects on brain structural and functional variation in hip-

pocampal volume (Nissilä et al., 2012; Smulders, Sasson, &

DeVoogd, 1995; Tramontin & Brenowitz, 2000). PET studies of differ-

ent neural transmitters also provide evidence of seasonal effects

(Eisenberg et al., 2010; Kaasinen et al., 2012; Kalbitzer et al., 2010;

Mc Mahon et al., 2016; Praschak-Rieder et al., 2008). Seasonal effects

on brain functions may still exist, but are difficult to study by using

MRI due to the factors identified in the current analysis.

In conclusion, by applying machining learning on resting-state

fMRI or structural MRI data, we can predict several environmental

parameters, with the highest prediction accuracies to daylight length.

However, the predictions were not likely due to the environmental

effects on brain functions or structures, but may due to the baseline

MRI signals. The data highlight the difficulty to use fMRI/MRI data to

study long-term effects, and call for cautions to control for scanner

stability when studying long-term effects.
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