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Abstract
Astroglial networks mediated by gap junction channels contribute to neurotransmission and pro-

mote neuronal coordination. Connexin 30, one of the two main astroglial gap junction forming

protein, alters at the behavioral level the reactivity of mice to novel environment and at the syn-

aptic level excitatory transmission. However, the role and function of Cx30 at the neuronal net-

work level remain unclear. We thus investigated whether Cx30 regulates neuronal population

bursts and associated convulsive behavior. We found in vivo that Cx30 is upregulated by

kainate-induced seizures and that it regulates in turn the severity of associated behavioral sei-

zures. Using electrophysiology ex vivo, we report that Cx30 regulates aberrant network activity

via control of astroglial glutamate clearance independently of gap-junction mediated biochemical

coupling. Altogether, our results indicate that astroglial Cx30 is an important player in orches-

trating neuronal network activity.
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1 | INTRODUCTION

Rhythmic, synchronized bursting of neuronal ensembles is a hallmark of

neuronal activity in the healthy and diseased brain. Astrocytes are attrac-

tive candidates for orchestrating neuronal populations. They are indeed

part of the tripartite synapse, where they integrate and modulate ongo-

ing neuronal transmission (Perea, Navarrete, & Araque, 2009) via various

mechanisms, including metabolic supply, gliotransmitter release, or

contact-mediated signaling (Araque et al., 2014; Bernardinelli, Muller, &

Nikonenko, 2014; Clarke & Barres, 2013; Dallérac, Chever, & Rouach,

2013; Rouach, Koulakoff, Abudara, Willecke, & Giaume, 2008). Astro-

cytes are also organized in large, communicating networks that are com-

partmentalized and superposed to local neuronal ensembles. Astroglial

networks are mediated by gap junction channels, formed by connexins

(Cxs), which provide the structural basis for an extensive intercellular

communication. Gap-junction astroglial networks contribute to neuro-

transmission by both, fueling metabolic active synapses with proper

nutrients (Rouach et al., 2008) and by preventing excessive synaptic

activity through control of extracellular homeostasis (Pannasch et al.,

2011; Pannasch, Derangeon, Chever, & Rouach, 2012; Wallraff, 2006).

In addition, astroglial networks also control neuronal population bursts

(Pannasch et al., 2012; Rouach et al., 2008) and promote neuronal coor-

dination (Chever, Dossi, Pannasch, Derangeon, & Rouach, 2016).

Remarkably, gap junction channels in astrocytes are formed by two Cx

isoforms, Cx43 and Cx30, and recent data have unraveled an unexpected

complexity of each Cx, which present both channel (gap junction and

hemichannel) and non-channel functions, including protein interactions,

cell adhesion and intracellular signaling (Pannasch & Rouach, 2013).Ulrike Pannasch and Elena Dossi contributed equally to this study.
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While astroglial Cx43 is a well-known regulator of neuronal physiol-

ogy through channel and non-channel functions (Chever, Lee, & Rouach,

2014; Chever, Pannasch, Ezan, & Rouach, 2014; Clasadonte, Scemes,

Wang, Boison, & Haydon, 2017; Meunier et al., 2017; Retamal & Sáez,

2014; Roux et al., 2015; Samoilova, Wentlandt, Adamchik, Velumian, &

Carlen, 2008; Stehberg et al., 2012; Theis et al., 2003; Wang, Xu, Wang,

Takano, & Nedergaard, 2012), the contribution of Cx30 to physiological

and pathological neuronal activity as well as associated behavior remains

poorly investigated. At the behavioral level, Cx30 alters the reactivity of

mice to novel environments and object recognition memory (Dere et al.,

2003). At the synaptic level, Cx30 tunes hippocampal excitatory synaptic

transmission by determining the efficacy of astroglial glutamate clear-

ance through an unprecedented regulation of astroglial morphology

independent of gap-junction-mediated biochemical coupling. In fact, by

regulating astroglia ramification and the extent of astroglial processes

contacting synaptic clefts, Cx30 directly sets synaptic glutamate levels

through clearance (Pannasch et al., 2014). Cx30 is thus a molecular deter-

minant of astroglial synapse coverage controlling synaptic efficacy. In all,

astroglial Cx30 functions are complex and can either promote or dampen

synaptic transmission. However, what is the specific role of Cx30 on

neuronal network activity and which function of Cx30 is involved are

unknown. We, thus, investigated whether Cx30 favors or limits aberrant

neuronal network activity and associated convulsive behavior. We here

found in vivo that Cx30 expression is increased by kainate-induced sei-

zures and regulates in turn the associated convulsive behavior in mice.

Accordingly, we show ex vivo that Cx30 modulates aberrant neuronal

population bursts induced by increased excitability via control of astro-

glial glutamate uptake independently of gap-junction mediated biochemi-

cal coupling.

2 | MATERIALS AND METHODS

Experiments were carried out according to the guidelines of the

European Community Council Directives of January 1st 2013 (2010/63/

EU) and of the local animal welfare committee (certificate A751901, Min-

istère de l'Agriculture et de la Pêche), and all efforts were made to mini-

mize the number of animals used and their suffering. Cx30−/− (−/−) mice

were generated as previously described (Teubner et al., 2003) and pro-

vided by K. Willecke, University of Bonn, Germany. C57Bl6 (+/+) mice

were supplied by Charles River, France. Heterozygous mice carrying the

knockout mutation were interbred to obtain homozygous strain.

Cx30T5M/T5M mice (T5M; [Schütz et al., 2010]) were provided by

F. Mammano, Venetian Institute of Molecular Medicine, Italy. For all ana-

lyses, mice of both genders and littermates were used.

2.1 | In vivo kainate injections

The +/+ and −/− mice were injected i.p. with kainic acid (25 mg/kg) as

previously described (Hu, Koh, Torgerson, & Cole, 1998). Mice were

video-monitored for 2 hr after seizure onset. Seizure severity was

defined by grade 0 to IV (Ono, Vieth, & Walson, 1990). Grade 0: no

response. Grade I: staring, nodding, rearing. Grade II: staring, nodding,

rearing, front- or hind limb pawing. Grade III: staring, nodding, rearing,

bilateral pawing, wobbling, falling. Grade IV: status epilepticus and death.

2.2 | Immunoblot of Cx30 expression

Immunoblotting and quantification were performed as previously

described (Pannasch et al., 2014). Hippocampi were collected in a small

volume of cold SDS 2% containing a cocktail of protease inhibitors and

phosphatase inhibitors (β-glycerophosphate (10 mM) and orthovanadate

(1 mM)) to which Laemmli 5× buffer was added. Samples were soni-

cated, boiled 5 min and loaded on 4–12% polyacrylamide gels. Equal

amounts of proteins were separated by electrophoresis and transferred

onto nitrocellulose membranes. Membranes were saturated with 5%

fat-free dried milk in triphosphate buffer solution and incubated over-

night at 4 �C with primary antibodies (GAPDH rabbit monoclonal anti-

body [Sigma], Cx30 rabbit polyclonal antibody). They were then washed

and exposed to peroxidase-conjugated secondary antibodies (donkey

anti-rabbit IgG HRP-conjugated secondary antibodies, Amersham Bio-

sciences). GAPDH was used as loading control. Specific signals were

revealed with the chemiluminescence detection kit (ECL, GE Health-

care). Semi-quantitative densitometric analysis was performed after

scanning the bands with the imageJ software.

2.3 | Ex vivo electrophysiology

Acute transverse hippocampal slices (400 μm) were prepared as previ-

ously described (Chever et al., 2016) from 20 to 25 days-old wild type

(+/+), Cx30 knockout (−/−) (Teubner et al., 2003), and Cx30 T5M mice

(Schütz et al., 2010). Slices were maintained at room temperature in a

storage chamber that was perfused with an artificial cerebrospinal fluid

(ACSF) containing (in mM): 119 NaCl, 2.5 KCl, 2.5 CaCl2, 1.3 MgSO4,

1 NaH2PO4, 26.2 NaHCO3, and 11 glucose, saturated with 95% O2 and

5% CO2, for at least 1 hr prior to recording. Slices were transferred to a

submerged recording chamber mounted on an Olympus BX51WI micro-

scope equipped for infrared-differential interference (IR-DIC) microscopy

and were perfused with ACSF at a rate of 1.5 ml/min at room tempera-

ture. Extracellular field and whole-cell patch-clamp recordings were

performed. Stratum radiatum astrocytes were identified by their small

cell bodies, low input resistance (~20 MΩ), high resting potentials

(~ −80 mV) and linear IV curves. Field excitatory postsynaptic potentials

(fEPSPs) were recorded from 400 μm slices with glass pipettes (2–5 MΩ)

filled with ACSF and placed in stratum radiatum. Stimulus artifacts were

blanked in sample traces. Hippocampal population bursts were either

induced by removal of Mg2+ and inhibition of GABAergic transmission

by 100 μM Picrotoxin (0 Mg-Picro) at least 1 hr prior to recording or by

acute perfusion of slices with ACSF containing 200 μM BaCl2. Somatic

whole-cell recordings were obtained from visually identified CA1 stratum

radiatum astrocytes, using 5–10 MΩ glass pipettes filled with (in mM):

105 K-gluconate, 30 KCl, 10 HEPES, 10 phosphocreatine, 4 ATP-Mg,

0.3 GTP-Tris, and 0.3 EGTA (pH 7.4, 280 mOsm). Glutamate transporter

currents were evoked synaptically by stimulation of Schaffer collaterals

(0.1 Hz) with ACSF filled glass pipettes and were recorded simulta-

neously with fEPSPs. The field recording pipette was placed 50 μm away

from the recorded astrocyte and transporter currents were blocked

either by DL-threo-β-Benzyloxyaspartatic acid (TBOA, 200 μM). GLT-1

activity was partially inhibited by acute perfusion with 50 μM DHK.

Recordings were acquired with Axopatch-1D amplifiers (Molecular

Devices, San Jose, CA), digitized at 10 kHz, filtered at 2 kHz, stored and
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analyzed on computer using Pclamp9 and Clampfit9 software (Molecular

Devices).

2.4 | Immunohistochemistry

Saline and KA-injected mice were perfused with phosphate buffered

saline (PBS) 4 hr after injection and their brain rapidly removed and fro-

zen. Cryostat brain slices were then cut and fixed for 10 min at room

temperature with 4% paraformaldehyde (PFA), washed three times

with PBS and pre-incubated 1 hr with PBS-1% gelatin in the presence

of 1% Triton-X100. Brain slices were then immunostained overnight at

4 �C for GFAP (1:500, mouse anti-GFAP antibody, Sigma-Aldrich) and

Cx30 (1:500, rabbit anti-Cx30 antibody, ThermoFisher) and washed in

PBS three times. Appropriate secondary antibodies (goat anti-mouse

IgG conjugated to Alexa 488 and goat anti-rabbit IgG conjugated to

Alexa 561, 1:200, ThermoFisher) were finally applied for 1–2 hr at

room temperature, followed by DAPI staining (1:2,000, ThermoFisher).

After several washes, brain slices were mounted in fluoromount

(Southern Biotechnology) and examined with a spinning-disk confocal

microscope (Eclipse Ti, Nikon) equipped with CMOS camera

(Photometrics). Stacks of consecutive images were taken with a 60×

objective at 500 nm intervals and acquired sequentially with 3 lasers

(405, 488, and 561 nm). Z-projections were then reconstructed using

ImageJ software and average fluorescence intensity for Cx30 was

measured in hippocampal CA1 stratum radiatum astrocytes.

2.5 | Statistics

All data are expressed as mean ± SEM. Statistical significance for

between-group comparisons was determined by unpaired or paired t-

tests. Fisher exact test was used to compare distributions.

2.6 | Drugs

Picrotoxin was obtained from Sigma and all other drugs were from

Tocris.

3 | RESULTS

3.1 | Cx30 expression is increased by kainate and
regulates convulsive behavior

Astrocytes regulate neuronal synchronization (Chever et al., 2016;

Fellin et al., 2009; Lee et al., 2014; Poskanzer & Yuste, 2011; Sasaki

et al., 2014; Wang et al., 2012), but the underlying molecular mecha-

nisms remain elusive. Cx30 is an important player in the regulation of

synaptic activity through various mechanisms (Chever et al., 2016;

Pannasch et al., 2011, 2012, 2014). However, whether Cx30 is endog-

enously regulated by sustained network activity and regulates in turn

such activity is currently unknown. To investigate whether Cx30

expression is dynamically regulated by synchronized network activity,

we induced acute seizures in mice by injecting kainate (KA, 25 mg/kg

i.p.; Figure 1a), a proconvulsant agent. We found an upregulation of

Cx30 expression by approximately 40% (n = 4, p < 0.05) in the hippo-

campus of all KA-injected wild type mice when compared with saline
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FIGURE 1 Cx30 levels are increased by kainic acid and regulate

behavioral seizures. (a) Schematic representation of the
experimental protocol: Mice are systemically injected with kainate
(25 mg/kg, i.p). Within 2–4 hr after injection, Cx30 levels and
behavioral seizures are evaluated. (b) Top, representative Cx30
immunoblot analysis of hippocampal extracts from saline and

kainate injected wildtype mice. Bottom, quantification of Cx30
levels in saline (n = 4) and kainate (n = 4) injected mice shows
increased Cx30 expression after KA injection (p < 0.05).
(c) Representative confocal images of CA1 stratum radiatum
showing immunolabeling of astrocytes (GFAP, green), Cx30 (red),
and nuclei (DAPI, gray) in control and KA-injected mice (4 hr after
injection). Scale bar: 20 μm. (d) Quantification of Cx30 levels in
astrocytes by confocal microscopy. Data are normalized to control
(saline injection). (e) Analysis of kainate-induced seizure grade in
+/+ (n = 11) and −/− (n = 11) mice. Seizure grades were defined
during the first 2 hr after i.p. injection of 25 mg/kg kainic acid.
Grade 0: No response. Grade I: Staring, nodding, and rearing.
Grade II: Staring, nodding, rearing, front- or hind limb pawing.
Grade III: Staring, nodding, rearing, bilateral pawing, wobbling, and
falling. Grade IV: Status epilepticus and death. Inset,
quantification of total average seizure grade in +/+ (n = 11) and
−/− (n = 11) mice. Asterisks indicate statistical significance
(*p < 0.05) [Color figure can be viewed at wileyonlinelibrary.com]

1106 PANNASCH ET AL.

http://wileyonlinelibrary.com


injection within 4 hr after injection (Figure 1b), while no significant

change occurred at shorter time points (Supporting Information

Figure S1). We also performed immunostaining for Cx30 in hippocam-

pal CA1 area of control and KA-injected mice 4 hr after injection

(Figure 1c) and found a significant increase of Cx30 expression in stra-

tum radiatum astrocytes (Figure 1d). We then assessed whether Cx30

regulates in vivo kainate-induced behavioral seizures susceptibility

and severity. Wildtype mice (+/+) and mice deficient for Cx30 (−/−)

did not show spontaneous seizures before kainate injection. Behav-

ioral seizures were induced within 15–20 min after kainic acid sys-

temic injection (25 mg/kg) in all +/+ mice (n = 11), as previously

described (Hu et al., 1998), and in the vast majority of −/− mice (82%;

n = 11; Figure 1c), indicating similar susceptibility to seizures. How-

ever, the severity of the convulsive behavior was decreased in −/−

mice (Figure 1c), which displayed mostly short grade 1 seizures

(~55%; total average seizure grade: 1.27 ± 0.30, n = 11), in contrast

to +/+ mice, which presented predominantly (~73%) grade 2–3 sei-

zures (total average seizure grade: 2.27 ± 0.27, n = 11; p < 0.05).

These data indicate that Cx30 deficiency decreases behavioral sei-

zures severity.

3.2 | Cx30 controls neuronal population bursts

To investigate whether Cx30 alters neuronal network activity, we

recorded neuronal population bursts in the hippocampal CA1 area.

Aberrant bursting activity was induced in disinhibited hippocampal

slices by inhibition of GABAA receptors with picrotoxin and removal

of extracellular Mg2+ (0 Mg-Picro), and was observed in the majority

of wildtype slices (86%, n = 28). In contrast, only 64% of the slices

(n = 56; p < 0.05) from −/− mice displayed neuronal population

bursts. Furthermore, once induced, population bursts were less fre-

quent (~ −43%) in −/− slices (p < 0.005, 0.8 ± 0.1 bursts/min, n = 28)

compared with +/+ slices (1.4 ± 0.2 bursts/min, n = 24; Figure 2a,b),

while their amplitude was unchanged (−/−: 0.39 ± 0.04 mV, n = 36;

+/+: 0.46 ± 0.04 mV, n = 24; Figure 2a,c).

To evaluate whether such effect also occurs in a context of intact

GABAergic transmission, we evoked bursting activity by inhibiting K+

channels with BaCl2 (200 μM, [Kivi et al., 2000]; Figure 2d). Whereas

population bursts occurred in 64% of the slices (n = 11) from wildtype

mice, only a minority of −/− slices (28%, n = 18) displayed such activ-

ity. As found in the previous model of aberrant network activity

(0 Mg-Picro), burst frequency was reduced in −/− slices (p < 0.05,

0.8 ± 0.1 burst/min, n = 5) compared with +/+ slices (1.8 ± 0.3

burst/min, n = 6, Figure 2d,e), whereas their amplitude was similar

(−/−: 0.57 ± 0.04 mV, n = 5; +/+: 0.51 ± 0.04 mV, n = 6; Figure 2f ).

Astroglial Cx30 modulates basal hippocampal synaptic transmis-

sion independently of intercellular biochemical coupling. We thus

investigated neuronal population discharges in hippocampal slices

from Cx30 T5M mice, in which the replacement of a threonine by a

methionine at position 5 of Cx30 results in a defective Cx30 channel

pore but intact membrane targeting (Grifa et al., 1999; Schütz et al.,

2010). The pattern of neuronal bursts induced in the two models of

aberrant network activity (0 Mg-Picro and BaCl2), as described above,

were comparable in T5M and +/+ mice (Figure 3a,c).

FIGURE 2 Hippocampal neurons show reduced neuronal population bursts in Cx30−/− mice. (a–c) Burst frequency in hippocampal slices bathed

in 0 mg-Picro is reduced (p < 0.005; a,b) in −/− mice compared with +/+ mice (burst frequency: n = 28 and n = 24, respectively). Scale bars:
0.1 mV, 1 min. The burst peak amplitude was comparable in both genotypes (−/−: n = 36, +/+: n = 24; c). (d–f ) Inhibition of potassium channels
by BaCl2 (200 μM) reduced the number of bursts in −/− mice (p < 0.05, n = 5) in comparison to +/+ mice (n = 6; d,e). Scale bars: 0.1 mV, 2 min.
Burst amplitude was similar in −/− (n = 5) and +/+ mice (n = 7; f ). Asterisks indicate statistical significance (*p < 0.05)
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Altogether, these data suggest that Cx30 promotes neuronal

bursts independently of gap-junction mediated biochemical coupling.

3.3 | Enhanced glial glutamate clearance dampens
neuronal network activity in Cx30−/− mice

Cx30 deficiency reduces basal synaptic activity independently of gap

junction intercellular biochemical coupling via an increase in astroglial

glutamate transport (Pannasch et al., 2014). We thus here investigated

whether an increase in glutamate clearance from −/− astrocytes also

occurs in a high regime of activity characterized by coordinated popu-

lation bursts and whether such enhanced glutamate uptake inhibits

aberrant bursting activity. To do so, we performed simultaneous

recordings of synaptically-evoked glutamate transporter (GLT) cur-

rents in astrocytes and neuronal responses (field excitatory synaptic

potentials, fEPSPs) in the presence of BaCl2 (Figure 4a,b). Whereas

BaCl2 increased neuronal activity by approximately 50% in both geno-

types (+/+: p < 0.05, before BaCl2: 0.40 ± 0.04, during BaCl2:

0.62 ± 0.1, n = 6; −/−: p < 0.01, before BaCl2: 0.28 ± 0.03, during

BaCl2: 0.39 ± 0.05, n = 11; Figure 4b), glutamate clearance was

enhanced by approximately 180% in −/− astrocytes, as assessed by

GLT current amplitudes normalized to neuronal activity (p < 0.05;

GLT current/fEPSPslope: −/−: 127.7 ± 26.4, n = 11; +/+: 45.5 ± 9.9,

n = 6; Figure 4b,c).

If the increased astrocytic glutamate clearance is indeed decreas-

ing aberrant network activity in −/− mice, reduction of astroglial GLT

currents should have a stronger effect on neuronal populations bursts

from −/− mice than from +/+ mice. Partial inhibition of GLT1, the

most abundant glial GLT in the hippocampus, by dihydrokainic acid

(DHK, 50 μM) resulted in a more profound increase (~ +94%) in the

frequency of bursts in −/− mice (p < 0.05, n = 9) compared with +/+

mice (n = 13, Figure 4d,e), while burst amplitude was similarly reduced

by approximately 20–30% in both −/− and +/+ mice (69.4 ± 4.8%

and 76.2 ± 4.0% of control, for −/− and +/+ mice respectively,

Figure 4f ). Such effect was consistently observed at different time

points after DHK application (Figure 4g). Thus, enhanced astroglial

glutamate clearance contributes to the reduction of bursting activity

in −/− mice.

4 | DISCUSSION

We here show in vivo that Cx30 expression is increased after kainic

acid injection and that it regulates the severity of kainate-induced

behavioral seizures. Accordingly, we also found that Cx30-deficient

mice display ex vivo less frequent neuronal population bursts due to

an enhanced glial glutamate clearance, which tunes down neuronal

network activity. Interestingly, we observed that the effect on neuro-

nal burst firing is independent from gap junction-mediated biochemi-

cal coupling.

4.1 | Dynamic regulation of Cx30 expression

We found that systemic kainic acid injection in mice induces a strong

increase in Cx30 expression, in agreement with Condorelli

et al. (2002), who showed and early and transient (within 6 hr) upregu-

lation of Cx30 expression in several brain regions after intracerebro-

ventricular injection of KA in rats. Furthermore, we also observed that

Cx30 in turn controls kainic acid-induced behavioral seizures by

increasing their severity. The systemic injection of kainate in mice

FIGURE 3 Cx30-mediated impairment of bursting activity is not dependent on gap junction-mediated biochemical coupling. Representative

traces of burst firing induced by 0 mg-Picro ACSF (a) or by BaCl2 (200 μM) treatment in normal ACSF (b) in hippocampal slices from +/+ and T5M
mice. Scale bars: in a, 0.1 mV, 1 min; in b, 0.1 mV, 2 min. (c) Quantification of T5M burst frequency, amplitude and duration (normalized to +/+
values) after 0 mg-Picro incubation (light gray) and BaCl2 treatment (dark gray). The two protocols induced bursts with similar frequency,
amplitude and duration in +/+ and T5M mice (0 mg-Picro: +/+, n = 9; T5M, n = 9; BaCl2: +/+, n = 10; T5M, n = 11)

1108 PANNASCH ET AL.



represents a model of status epilepticus. Our results thus suggest that

Cx30 expression may be activity-dependent. Interestingly, several

physiological and pathological situations are associated with changes

in Cx30 expression. A 2–14 days exposure to an enriched environ-

ment increases Cx30 gene expression in mice (Rampon et al., 2000);

similarly, modafinil-induced psychostimulation augments Cx30 at

mRNA and protein levels and enhances gap junctional communication

in cortical astrocytes without affecting Cx43 levels (Liu et al., 2013).

Conversely, decreased Cx30 levels have been found during excito-

toxic brain injury in reactive astrocytes located in the area of neuronal

death (Koulakoff, Ezan, & Giaume, 2008) and during astrocyte trans-

formation into highly motile glioma cells (Princen et al., 2001). Fur-

thermore, patients with major depression disorders or suicide

completers show decreased brain levels of Cx30 (Bernard et al., 2011;

Ernst et al., 2011). Interestingly, a decrease in Cx30 expression has

also been found 6–24 hr or 7 days after KA injection in rats
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astrocytic currents, and the extracellular electrode. (b) Pharmacological isolation of astroglial glutamate transporter currents evoked by Schaffer
collateral stimulation in +/+ (left) and −/− (right) mice. Simultaneous recordings of neuronal field potential (top) and astroglial whole-cell currents
(bottom) in response to a single SC stimulation are shown in control (black traces). Application of BaCl2 (200 μM), which inhibits K+ channels,
increases neuronal response and unmasks the GLT component of astrocytic current (dark blue traces). In the presence of BaCl2 and TBOA
(200 μM), an inhibitor of GLT, a slow current component remains (light gray traces). Subtraction of this remaining current (light gray) to BaCl2-
insensitive current (dark gray) isolates the GLT current. Scale bars: Top, 0.2 mV, 4 ms; bottom, 10 pA, 50 ms. (c) GLT currents are enhanced in
−/− astrocytes (p < 0.05, n = 11) during BaCl2 induced high neuronal activity compared with +/+ astrocytes (n = 6). Representative current
traces are shown above the graph. Scale bars: 10 pA, 50 ms. (d,e) Partial inhibition of glial glutamate uptake by DHK (50 μM) results in a more
profound increase in burst firing in −/− mice (p < 0.05, n = 9) than +/+ mice (n = 13). Scale bars: 0.1 mV, 1 min. (f ) DHK reduced the burst
amplitude in both genotypes (−/−, p < 0.05; +/+, p < 0.01). (g) Differential effect of DHK in −/− slices persists over time. Asterisks indicate
statistical significance (*p < 0.05) [Color figure can be viewed at wileyonlinelibrary.com]
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(Condorelli et al., 2002; Takahashi, Vargas, & Wilcox, 2010). We can

speculate that Cx30 expression is dynamically regulated during time

and that an early (4–6 hr) initial increase of expression linked to sei-

zure development after KA injection is followed by a decrease, which

may correlate to tissue damage consequent to seizures. Altogether,

these findings suggest that Cx30 expression and function could be

regulated in an activity-dependent manner. Consistent with this

hypothesis, gap junction coupling mediated by astroglial Cx43, the

other gap junction forming protein, has been reported to be dynamic

as it is regulated by neuronal activity (Rouach, Glowinski, & Giaume,

2000; Rouach, Tence, Glowinski, & Giaume, 2002; Rouach et al.,

2008; Roux, Benchenane, Rothstein, Bonvento, & Giaume, 2011).

4.2 | Cx30-mediated regulation of bursts and
behavioral seizures

We have shown that Cx30, which is upregulated after kainate injec-

tion, worsen kainate-induced behavioral seizures and regulates neuro-

nal population bursts. These findings, together with physiological and

pathological modulations of Cx30 expression (Condorelli et al., 2002;

Koulakoff et al., 2008; Liu et al., 2013; Rampon et al., 2000; Roux

et al., 2011), suggest reciprocal regulations between neuronal activity

and astroglial Cx30. Indeed, enhanced neuronal activity may boost

Cx30 expression, which would in turn intensify neuronal activity. This

positive feedback loop could thus favor aberrant bursting ex vivo and

increase the severity of seizures in vivo.

Interestingly, we have found that Cx30-deficient mice display

enhanced glial glutamate clearance, which contributes to decrease the

frequency of hippocampal neuronal population bursts. Therefore, our

results identify the Cx30-mediated control of astroglial glutamate

clearance as a critical factor controlling neuronal bursting activity. The

enhanced astroglial glutamate transport may have the potential to

tune the threshold for neuronal burst initiation and the recovery of

neurons to the resting state by removing rapidly glutamate from syn-

aptic and extrasynaptic sites. These effects most likely result from a

reduction in glutamate receptor activation and the accompanied

depolarization of neurons.

We previously showed that the increased glutamate clearance in

Cx30 deficient mice results from changes in astrocytic morphology

and coverage of synapses independently of gap junction-mediated

biochemical coupling. This leads structurally to a closer proximity of

GLT1 to synaptic active zones and functionally to a depression of

basal excitatory synaptic transmission (Pannasch et al., 2014). In the

present study, revealing the role of Cx30-mediated enhanced gluta-

mate clearance in bursting activity independently of biochemical cou-

pling, a similar mechanism is likely to be at play. Yet, we cannot

exclude that Cx30 hemichannels also contribute to the control of

bursting activity. However, although Cx30 can form hemichannels

(Nielsen, Alstrom, Nicholson, Nielsen, & MacAulay, 2017), to date,

their presence and functional activation have not been reported in

astrocytes. Furthermore, there is presently no pharmacological tool to

selectively and acutely inhibit their activity. These limitations hinder

the study of their activation and selective implication in the regulation

of neuronal activity. The development of specific Cx30 hemichannel

blockers should allow future investigation of their contribution to

bursting activity.

Finally, our in vivo results indicate that astroglial glutamate clear-

ance play a crucial role in reducing the severity of seizures. Consistent

with our data, a reduction in astroglial glutamate transporter expres-

sion associated with increased extracellular glutamate levels has been

found in the sclerotic hippocampus of patients with temporal lobe epi-

lepsy (Cavus et al., 2005, 2008; Jabs, Seifert, & Steinhäuser, 2008;

Mathern et al., 1999; Proper et al., 2002) as well as in a tuberous scle-

rosis epilepsy model (Wong et al., 2003). Furthermore, knockout mice

for the glial glutamate transporter GLT-1 develop spontaneous sei-

zures and hippocampal pathology resembling those observed in tem-

poral lobe epilepsy patients with hippocampal sclerosis (Petr et al.,

2015; Sugimoto et al., 2018; Tanaka et al., 1997). In addition, pharma-

cological block of GLT-1 decrease the threshold to trigger epileptiform

activity and increase the occurrence of spontaneous epileptiform dis-

charges in the rat cortex (Campbell & Hablitz, 2004, 2005). Con-

versely, increase in GLT-1 expression with the beta-lactam antibiotic

ceftriaxone (Rothstein et al., 2005) has already been shown to have

anti-convulsant effects (Jelenkovic et al., 2008). In all, these findings

suggest that efficient astrocytic glutamate uptake by GLT-1 may be

essential to counteract epileptogenesis. Thus, disrupting astroglial

Cx30 to enhance GLT-1 activity could represent a novel therapeutic

strategy against seizures.
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