
SPECIAL SECTION: REVIEW

Nuclear PARPs and genome integrity
Kameron Azarm and Susan Smith

Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of
Medicine, New York, New York 10016, USA

Effective maintenance and stability of our genomes is es-
sential for normal cell division, tissue homeostasis, and
cellular and organismal fitness. The processes of chromo-
some replication and segregation require continual sur-
veillance to insure fidelity. Accurate and efficient repair
of DNA damage preserves genome integrity, which if
lost can lead to multiple diseases, including cancer. Poly
(ADP-ribose) a dynamic and reversible posttranslational
modification and the enzymes that catalyze it (PARP1,
PARP2, tankyrase 1, and tankyrase 2) function to main-
tain genome stability through diverse mechanisms. Here
we review the role of these enzymes and the modification
in genome repair, replication, and resolution in human
cells.

Background: PARP1 and PARP2 and tankyrase 1
and tankyrase 2

Enzymes that catalyze PARylation

ADP-ribosylation (ADPr) is a posttranslational modifica-
tion that regulates multiple cellular processes (Gupte
et al. 2017). ADPr is catalyzed by theADP-ribosyltransfer-
ase (ART) superfamily of enzymes (Palazzo et al. 2017).
The best-studied family of this group is the poly(ADP-ri-
bose) polymerases (PARPs). The PARP family is com-
prised of 17 members that share an ART diphtheria
toxin-like (ARTD) domain and, hence, is also referred to
as the ARTD family (Amé et al. 2004; Hottiger et al.
2010). PARPs transfer a single or multiple ADP-ribose
unit(s) from nicotinamide adenine dinucleotide (NAD+)
to protein acceptors. PARP family members that perform
poly(ADP-ribosyl)ation (PARylation) include PARP1 and
PARP2, which synthesize long branched chains of up to
200 units, and tankyrase 1 and 2, which synthesize shorter
unbranched chains of up to 20 units (de Murcia and
Menissier de Murcia 1994; D’Amours et al. 1999; Ripp-
mann et al. 2002; Vyas et al. 2014). The remaining mem-
bers of the PARP family are not as well studied, but
most catalyze mono(ADP-ribosyl)ation (MARylation)
and have a range of functions throughout the cell (Lüscher

et al. 2018). Here we focus on the four family members
that catalyze PARylation (PARP1 and PARP2 and tankyr-
ase 1 and tankyrase 2) and how they function in the nucle-
us to promote genome stability. We first compare and
contrast PARP versus tankyrase and discuss the role of
the poly(ADP-ribose) (PAR) modification. We provide an
overview of PARPs in DNA repair, highlighting recent
studies on their role during DNA replication and in phase
separation. Finally, we focus on the role of tankyrases in
telomere maintenance and chromosome resolution.

Compare and contrast: PARP1 and PARP2 versus
tankyrase 1 and tankyrase 2

Structure, mode of action, and function

Structure PARP1, the founding member of the PARP
family, is the most well studied and known for its role
in DNA damage repair (DDR) (Martin-Hernandez et al.
2017; Ray Chaudhuri and Nussenzweig 2017). The
primary structure of PARP1 comprises an N-terminal
three-zinc-finger domain (Zn1, Zn2, and Zn3), an internal
BRCAC terminus (BRCT) domain followed by a Trp–Gly–
Arg (WGR) domain, and a C-terminal catalytic domain
comprised of a helical domain (HD) in close association
with the ART domain (Fig. 1A; Langelier et al. 2012,
2018a). One of the earliest events inDNA repair is recruit-
ment of PARP1 to DNA. PARP1 binds to a range of DNA
structures like cruciforms (Brázda et al. 2011) and DNA
damage structures, including nicked and gapped single-
strand breaks (SSBs) and overhang and blunt-ended dou-
ble-strand breaks (DSBs) (Beck et al. 2014b). In the absence
of genotoxic stress PARP1 is catalytically inactive. The
HD regulates catalytic activity by blocking NAD+ bind-
ing. Upon detection of DNA damage, the Zn fingers and
WGR domain organize around the DNA break, inducing
an allosteric destabilization of the HD that enables
NAD+ to access the catalytic active site (Dawicki-McKen-
na et al. 2015; Langelier et al. 2018b). PARP2 and the
closely related PARP3 [a mono(ADP-ribosyl) transferase]
lack the Zn fingers and BRCTdomain of PARP1, but share
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a common WGR domain that interacts with DNA (albeit
with different substrate specificities) and regulates their
catalytic activity in response to DNA damage (Langelier
et al. 2014; Grundy et al. 2016; Obaji et al. 2016, 2018; Ric-
cio et al. 2016a).

Binding to breaks stimulates rapid and extensive syn-
thesis of PAR onto PARP1 itself (autoPARylation) (Satoh
and Lindahl 1992). The PAR thenmay prevent immediate
inappropriate processing of the damage by blocking access
to nucleases (Caron et al. 2019) while simultaneously act-
ing as a recruitment platform for nucleases (Wang et al.
2019) and other proteins that bind PAR to repair the dam-
age (Fig. 1B). Excessive PARylation can induce release of
PARP1 from the DNA. The turnover of the PAR chains
is also regulated rapidly through the glycohydrolase
PARG (Lin et al. 1997; Slade et al. 2011; O’Sullivan et al.
2019).

Tankyrase 1 and Tankyrase 2 are closely related pro-
teins with diverse cellular functions ranging from chro-
mosome resolution to Wnt/β-catenin signaling (Hsiao
and Smith 2008; Haikarainen et al. 2014). They have a
similar primary structure comprised of a C-terminal cata-
lytic PARP domain, a SAM (sterile α module) domain, an

ankyrin repeat domain, and an N-terminal HPS (His, Pro,
and Ser) domain of unknown function, unique to tankyr-
ase 1 (Fig. 1C; Smith et al. 1998). The SAM domain of
tankyrases can promote homo- and hetero-oligomeriza-
tion of tankyrase 1 and tankyrase 2; polymerization is re-
quired for full catalytic activity (De Rycker and Price
2004; Mariotti et al. 2016; Riccio et al. 2016b; Fan et al.
2018). A distinguishing feature of tankyrases is their abil-
ity to interact (through the ankyrin repeat domain) with a
broad range of binding partners (Fig. 1D). The ankyrin
domain is organized into five ankyrin repeat clusters
(ARCs), which serve as a basic unit for recognizing an
eight amino acid segment (with a strict requirement for
Arg at position 1 and Gly at position 6 [RxxxxG]) in its
binding partners (Sbodio andChi 2002; Seimiya and Smith
2002; De Rycker et al. 2003; Guettler et al. 2011; Eise-
mann et al. 2016). Four of the five ARCs (1, 2, 4, and 5)
are each capable of recognizing a peptidemotif. Proteomic
and in silico screens have identified hundreds of potential
tankyrase interacting proteins (Guettler et al. 2011;
Bhardwaj et al. 2017; Li et al. 2017). Over 40 human tank-
yrase-binding partners have been validated by coimmuno-
precipitation; they localize throughout the cell and most
contain a consensus peptide that (where it has been tested)
binds to both tankyrase 1 and tankyrase 2 (Fig. 2). This re-
view will focus on those partners that reside in the nucle-
us and have been shown to influence genome stability.

Mode of action Despite the fact that tankyrases and
PARP1 and PARP2 share the ability to catalyze synthesis
of ADP-ribose polymers, tankyrases differ from PARP1
and PARP2 in multiple ways. Tankyrases do not bind
directly to DNA and they are not induced by DNA breaks
to promote rapid synthesis of long PAR chains (Cook et al.
2002). The tankyrase 1 and tankyrase 2 catalytic ART do-
mains lack the regulatory HD found in PARPs 1 and 2,
rendering them accessible to NAD+ binding. Analysis of
the PARylation status in cells shows tankyrase 1 to be
constitutively autoPARylated with relatively short PAR
chains (Smith and de Lange 2000; Cook et al. 2002; Chang
et al. 2005). So far, there does not appear to be a mecha-
nism for dramatic induction of tankyrase PARP activity
along the lines of the massive stimulation of PARP1 by
DNA damage. Studies suggest that SAM domain-mediat-
ed polymerization can regulate tankyrase catalytic activi-
ty (Mariotti et al. 2016; Riccio et al. 2016b; Fan et al. 2018),
although how this would be regulated in vivo to stimulate
or induce tankyrase-mediated PARylation remains to be
determined. Another distinguishing feature between
PARP1 and PARP2 and tankyrases is that while PARP1
and PARP2 are predominantly nuclear, tankyrases (in ad-
dition to their nuclear localization) are distributed
throughout the cell at many sites, consistent with their
broad array of binding partners (Fig. 2). Thus, while the
regulatory mechanism for PARP1 and PARP2 occurs
through repression and activation of their catalytic ART
domains, the regulatorymechanism for tankyrases occurs
through its ankyrin repeat selection of RxxxxG-contain-
ing binding partners. Tankyrase-binding partners can re-
cruit tankyrases to different subcellular sites (Hsiao and
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Figure 1. Primary structure and mode of action for PARP1 and
PARP2 and tankyrase 1 and tankyrase 2. (A) Schematic represen-
tation of PARP1 and PARP2. (Zinc fingers) Zn1, Zn2, and Zn3;
(BRCT) BRCA C terminus; (WGR) Trp–Gly–Arg domain; (HD)
helical domain; (ARDT) ADP-ribosyltransferase. (B) PARP1 or
PARP2 is regulated through its catalytic activity. Inactive
PARP1 binds to breaks and is activated to undergo autoPARyla-
tion. PAR serves to recruit DNA repair proteins. (C ) Schematic
representation of tankyrase 1 and tankyrase 2. (HPS) His–Pro–Ser
domain; (SAM) sterile α module; (ART) ADP-ribosyltransferase.
(D) Tankyrase 1 or tankyrase 2 is regulated through its selection
of binding partners. Constitutively active tankyrase binds to
RxxxxG-containing proteins and localizes throughout the cell
for multiple functions. Tankyrase may (or may not) PARylate its
partner.
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Smith 2008). Once tankyrase binds a partner, it may or
may not PARylate it (Smith et al. 1998; Bisht et al. 2012;
Eisemann et al. 2019). Subsequently, tankyrase-mediated

PARylation can influence the stability, localization, or
function of the target.

Consequences of deletion The effect of knockout of
these PARPs in a whole organism, such as mice, indicates
a redundant and essential role for each class. Mice lacking
PARP1 or PARP2 are viable, but exhibit sensitivity to gen-
otoxic agents, consistent with a role for each protein in
DNArepair (deMurcia et al. 1997;Wang et al. 1997;Masu-
tani et al. 2000; Forsyth et al. 2002). Double deletion of
PARP1 and PARP2 leads to early embryonic lethality at
Day 8.0 in mice, indicating redundancy between the two
proteins and suggesting a role in early development
(Menissier de Murcia et al. 2003). The requirements for
PARP1 and PARP2 at the stage during gastrulation when
cellular proliferation increases dramatically, suggests a
fundamental role forPARP inDNAreplication (seebelow).
Mice lacking tankyrase 2 are viable and fertile, but have

a short stature phenotype (Chiang et al. 2006; Hsiao et al.
2006).Mice deficient in tankyrase 1 appear to develop nor-
mally and have no defects in body size (Chiang et al. 2008),
but suffer from a metabolic disorder (Yeh et al. 2009;
Zhong et al. 2016). The double knockout is embryonic le-
thal, indicating functional redundancy and suggesting a
role in development (Chiang et al. 2008). The requirement
for tankyrases in developmentmay be due to their interac-
tions with signaling proteins such as Axin and Notch that
play essential roles in development (Huang et al. 2009;
Bhardwaj et al. 2017).
In contrast to the effect of deletion on mouse develop-

ment, double deletion of PARP1 and PARP2 or tankyrase
1 and tankyrase 2 is not lethal in human cells grown in
culture. Double-knockout PARP1/PARP2 cell lines were
generated in normal human (hTERT RPE-1) and cancer
(U2OS) cells and double-knockout TNKS1/TNKS2 cell
lines were generated in cancer (HEK293T) cells (Bhardwaj
et al. 2017; Hanzlikova et al. 2017; Ronson et al. 2018).
The observation that these cell lines are viable indicate
that (at least in the absence of exogenous genotoxic stress
or other deficiencies) some human cell lines can survive
without PARP1 and PARP2 or without tankyrase 1 and
tankyrase 2.

PAR: a docking site for interacting proteins

The amino acid target sites of PARylation

Significant progress has been made on the proteome-wide
determination of PARylated amino acids in human cells.
Proteomic analyses have identified a diverse group of ami-
no acids including Asp, Glu, Lys, Arg, and Cys (Daniels
et al. 2015; Martello et al. 2016). PARP1 was previously
found to be automodified on Asp, Glu, and Lys. However,
recent analysis revealed Ser as the major target (Leidecker
et al. 2016; Bilan et al. 2017) and further that the histone
PARylation factor (HPF1) associates with PARP1 and
PARP2 to target specifically Ser-ADPr (Gibbs-Seymour
et al. 2016; Bonfiglio et al. 2017). Accurate analysis of
ADPr site localization is inherently challenging. Recent
advances in proteomic techniques will likely lead to
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Figure 2. List of validated tankyrase-binding partners and their
localizations throughout the cell. (A) A chronological list of hu-
man tankyrase-binding partners that have been validated by pro-
tein coimmunoprecipitation. For each protein, the list includes
its subcellular location(s), its “RxxxxG” consensus tankyrase-
binding site (“——” if not found in the amino acid sequence),
and a reference for the publication identifying the interaction.
Protein location(s) were curated through a literature search and
the UniProt protein database. (N.D.) Not determined. (a) The pro-
tein contains additional binding motifs in its sequence. (b) The
binding site is noncanonical. (c) The binding site is conserved
among protein family members. (B) Schematic representation of
the localization of tankyrase binding proteins (listed in A) to
the indicated organelle(s). Circle size is based on the number of
tankyrase-binding proteins localized to the organelle(s). The over-
lap between an organelle(s) circle with the “nucleus” circle repre-
sents the number proteins found in both.
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revisions of previous analyses and open up future discov-
ery. Indeed, very recent work has expanded the ADP-ribo-
sylome, identifying Tyr as an ADPr acceptor site (Leslie
Pedrioli et al. 2018) and revealing crosstalk between Ser-
ADPr and Ser phosphorylation (Larsen et al. 2018).
Much less is known about tankyrase target sites. Howev-
er, recent analysis for tankyrase 1 in vitro shows Glu and
Asp as primary targets and also that HPF1 does not alter
tankyrase 1 substrate specificity to target Ser formodifica-
tion (Eisemann et al. 2019).

PAR-binding modules

The PARmodification can serve as a docking site for PAR-
binding proteins (Teloni and Altmeyer 2016; Wei and Yu
2016). Proteins can bind to PAR through a range of inter-
acting modules including: PAR-binding motifs (PBMs),
short sequences (∼20 amino acids) with a loosely defined
consensus (Pleschke et al. 2000; Gagné et al. 2008); macro-
domains, larger (∼130- to 190-amino-acid) globular do-
mains that bind to ADP-ribose monomer or the terminal
ADP-ribosemoiety in a PARchain (Karras et al. 2005; Feijs
et al. 2013); PAR-binding zinc fingers (PBZ), shortmodules
(∼30 amino acids) that bind toADP-ribosemonomers or to
the ADP-ribose–ADP-ribose junctions of PAR chains
(Ahel et al. 2008; Eustermann et al. 2010; Li et al. 2010;
Oberoi et al. 2010); and WWE domains, comprised of con-
served tryptophan (W) and glutamate (E) residues that bind
to the iso-ADP-ribosemoiety, the internal unit of the PAR
polymer (Wang et al. 2012). Additional domains that can
recognize PAR include: the forkhead-associated (FHA) do-
mains of aprataxin (APTX) and polynucleotidekinase-3
phosphatase (PNKP), which interact with iso-ADP-ribose
(like WWE domains) and the BRCA1 C-terminal (BRCT)
domains of DNA ligase IV, XRCC1, and NBS1, which rec-
ognize the ADP-ribosyl moiety within PAR (Li and Yu
2013; Li et al. 2013; Breslin et al. 2015).

In addition to those described above, a number of pro-
tein motifs that bind to RNA and DNA have been found
to also recognize PAR, thereby broadening the potential
influence of PAR in nuclear functions. These motifs in-
clude the RNA recognition motif (RRM) found in hnRNP
proteins (Gagné et al. 2008; Ji and Tulin 2009); serine/argi-
nine repeats (SR) found in splicing factors (Malanga et al.
2008); the OB-fold found in the single-stranded binding
proteins SSB1 and BRCA2 (Zhang et al. 2014, 2015a); the
N terminus of the PilT protein (PIN) domain found in
EXO1, GEN1, and SMG5 (Zhang et al. 2015b); and regions
rich in arginines and glycines (RG/RGG), also termed gly-
cine arginine-rich (GAR) domains, found in proteins in-
volved in DNA damage signaling, transcription, and
RNA processing (Thandapani et al. 2013).

PAR-binding modules in chromatin remodeling
and DNA repair

Proteins containing PAR-binding modules can be recruit-
ed in a PAR-dependent manner by PARP1 to sites of DNA
breaks to modify chromatin structure and facilitate DNA
repair. For example, the chromatin remodeler amplified in

liver cancer 1(ALC1), also known as chromodomain–heli-
case–DNA-binding protein 1-like (CHD1L), contains a
PAR-binding macrodomain that is activated in a PAR-de-
pendent manner to enable nucleosome remodeling and
DNA repair (Ahel et al. 2009; Gottschalk et al. 2009,
2012). Two DNA damage repair proteins, checkpoint
with forkhead and ring finger domains (CHFR) and apra-
taxin polynucleotide kinase-like factor (APLF) contain, re-
spectively, single and tandem PBZ motifs (Ahel et al.
2008). APFL is recruited to sites of DNA damage through
interactions with ADP-ribose through its PAR-binding
PBZ motif to promote DNA repair by nonhomologous
end joining (NHEJ) (Rulten et al. 2008, 2011). CHFR is re-
quired for the antephase checkpoint, dependent on its
PBZ domain and PAR synthesis (Ahel et al. 2008). The
chromatin remodeler CHD2 is recruited to DSBs by
PAR binding through an uncharacterized motif, where it
promotes chromatin decondensation to facilitateDNA re-
pair by NHEJ (Luijsterburg et al. 2016). X-ray repair cross-
complementing protein 1 (XRCC1) is recruited in a
PARP1 dependentmanner through a PBM, to act as a scaf-
fold in assembly and activation of the DNA base excision
repair (BER) machinery (Masson et al. 1998; Okano et al.
2003).

PAR-binding modules in protein degradation

Most examples of PAR-binding module recruitment
that have been described thus far relate to PARP1.
This may be due to the greater abundance of PARP1-in-
duced PAR chains in cells compared with tankyrase-in-
duced PAR chains. However, one PAR interactor, the E3
ligase RN146, associates specifically with tankyrase 1
and tankyrase 2. RNF146 interacts with PARylated sub-
strates through its internal WWE domain (Callow et al.
2011; Kang et al. 2011; Zhang et al. 2011; Zhou et al.
2011; Wang et al. 2012). The PAR ligand allosterically ac-
tivates the E3 ligase through a conformational change in
the N-terminal RING domain to promote K48-ubiquiti-
nation of its targets (DaRosa et al. 2015). RNF146 can
also bind to the ARC domains in tankyrase 1 or tankyrase
2 directly throughmotifs in its C terminus, thereby favor-
ing PARylated tankyrases and their bound PARylated tar-
gets for ubiquitination and degradation (DaRosa et al.
2015, 2018). In this way, tankyrases regulate the cellular
levels of several disease-related cytoplasmic proteins
including Axin, 3BP2, PTEN, and the angiomotins, which
are key regulators of the Wnt/β-catenin, SRC, AKT, and
Hippo signaling pathways, respectively (Huang et al.
2009; Levaot et al. 2011; Li et al. 2015; Wang et al.
2015). Whether this mechanism is used to target degrada-
tion of tankyrase targets in the nucleus to influence ge-
nome integrity has not been determined.

Chromosome repair

PARP1 and PARP2 are central components in the single-
strand break (SSB) repair pathway. They are also activated
at double-strand breaks (DSBs) and at stalled replication
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forks, where they promote homologous recombination
(HR) and NHEJ. In contrast, tankyrase 1 and tankyrase 2
do not have a canonical role in DNA repair, although sev-
eral recent studies suggest an indirect role through their
binding partners. Finally, recent studies show that
PARP1-dependent PAR can facilitate DNA repair through
phase separation and transient compartmentalization of
DNA damage sites.

PARP1 and PARP2 in DNA repair

Single-strand break repair SSBs can arise directly by ox-
idative damage to the sugar backbone, indirectly during
DNA BER, or as a result of the abortive activity of topo-
isomerase 1 (Ray Chaudhuri and Nussenzweig 2017).
Spontaneous single-strand breaks are rapidly detected
and bound by PARP1. DNA-binding activates PARP1 to
undergo autoPARylation (Satoh and Lindahl 1992). PAR
recruits XRCC1, a core factor in SSBR that serves as a scaf-
fold for SSB proteins (Caldecott et al. 1994). XRCC1 has an
internal BRCT domain that binds directly to PARylated
PARP1 or PARP2, thereby directing its recruitment to ac-
tivated PARP1 or PARP2 (Caldecott 2019). XRCC1 then
acts as a scaffold for protein-binding partners necessary
to process damaged termini, including PNKP, APTX,
and tyrosyl-DNA phosphodiesterase 1 (TDP1). XRCC1 re-
cruits Pol β through its N-terminal domain to replace the
single missing nucleotide at the SSBs and LIG3 through a
C-terminal BRCT domain to ligate the nick (Ray Chaud-
huri and Nussenzweig 2017; Caldecott 2019).

Double-strand break repair DSBs are produced follow-
ing exposure to DNA-damaging agents such as γ-irradia-
tion. DSBs are repaired by either HR or NHEJ (Martin-
Hernandez et al. 2017; Ray Chaudhuri and Nussenzweig
2017). PARP1 detects and binds DS breaks, activating its
autoPARylation. PARP1 may promote recruitment of
the MRE11 nuclease (through its putative PAR-binding
domain), which could contribute to DNA end processing
and channel the pathway choice to HR (Haince et al.
2008). PARP1 also contributes to early recruitment of
BRCA1 (through its PAR-binding domain), which subse-
quently loads RAD51 onto DNA, an essential step for
HR (Li and Yu 2013). In G1, when the sister chromatid
is not available for HR, NHEJ is the preferred mechanism
for DSBR. DSBs are bound by KU70–KU80 dimers, which
recruit DNA-PK catalytic subunit (DNA-PKcs). PARP1
binds and PARylates DNA-PKcs, stimulating its kinase
activity, and may additionally help to recruit the chroma-
tin remodeler CHD2 to promote LIG4-dependent classical
NHEJ (cNHEJ) (Ruscetti et al. 1998; Spagnolo et al. 2012;
Luijsterburg et al. 2016). Alternative NHEJ (aNHEJ) facil-
itates ligation independently of KU and LIG4, instead rely-
ing on MRE11 (Truong et al. 2013). PARP1 can compete
with KU for access to DNA ends. In the absence of KU,
PARP1 may promote recruitment of MRE11 to process
the ends and channel repair to aNHEJ (Haince et al.
2008; Cheng et al. 2011). In a highly mutagenic process,
the resected ends are then joined through sequence

microhomology, and the gaps are filled in by POLQ and li-
gated by LIG3 (Ceccaldi et al. 2015; Mateos-Gomez et al.
2015).

Stalled replication forks An obstruction in the DNA
template (such as an SSB in the leading strand template)
can lead to a stalled fork, which can either undergo fork re-
versal where the nascent strands anneal in a “chicken
foot” structure or fork collapse due to replication run-off
of the leading strand (Cortez 2015). Either scenario results
in a one-ended DSB that can be detected by PARP1 or
PARP2 (Ray Chaudhuri and Nussenzweig 2017; Hanzli-
kova and Caldecott 2019). PARP-binding suppresses KU
binding to preventNHEJ, which can be toxic at one-ended
DSBs (Hochegger et al. 2006; Sugimura et al. 2008). At the
reversed fork PARP1 also inhibits the RECQ1 helicase to
prevent premature fork reset and restart (Popuri et al.
2012; Berti et al. 2013). PARP activity can then promote
the HR pathway. PARP1 or PARP2 physically recruits
MRE11 (potentially through PAR binding) to promote
DNA end-resection creating a 3′ single-stranded tail for
BRCA2-assisted RAD51 loading (Haince et al. 2008; Li
and Yu 2013). RAD51 facilitates DNA stand exchange/
template switching to promote reannealing of the two
strands of the reversed or collapsed forkwith their compli-
mentary sisters for DNA replication restart (Pasero and
Vindigni 2017). In the case of reversed forks, this can also
be achieved by RECQ1 once the lesion is repaired and
PARP1 is released.

MARylating PARPs in DNA repair

Several PARP family members that catalyze mono(ADP-
ribosylation) also function in DNA repair and genome in-
tegrity. PARP3, which is structurally related to PARP1
and PARP2, contributes to the cellular response to DSBs
(Boehler et al. 2011; Rulten et al. 2011). PARP3 cooperates
with KU to drive pathway choice to cNHEJ (Beck et al.
2014a) and facilitates association of APFL to damaged
DNA, which promotes retention of XRCC4/DNA ligase
IV to accelerate ligation during NHEJ (Rulten et al. 2011;
Fenton et al. 2013). Two other MARylating PARPS,
PARP10andPARP14,whichare structurallyand function-
ally related to each other, play distinct roles in alleviating
replication stress. PARP10 recognizes ubiquitinated
PCNA,which is required to recruit translesionDNApoly-
merases for restart of stalled replication forks (Nicolae
et al. 2014; Shahrour et al. 2016; Zafar and Eoff 2017).
PARP10 and its interaction with PCNA is required for ef-
ficient translesion synthesis and resistance to replication
fork stalling (Nicolae et al. 2014). PARP14 interacts with
RAD51 to promote HR for relief of replication stress (Nic-
olae et al. 2015).

Tankyrase 1 and tankyrase 2 in DNA repair

Unlike PARP1 and PARP2, tankyrase 1 and tankyrase 2 do
not bind directly to DNA and there is little evidence to
suggest a direct role for tankyrases in DNA damage-in-
duced repair. Depletion of tankyrase 1 does lead to an
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increase inDNAdamage foci, but thismay be indirect due
to defects in telomere and rDNA resolution (see below)
(Hsiao and Smith 2009; Daniloski et al. 2019). However,
several recent studies suggest that tankyrases may play
a role in DNA repair, indirectly through its binding
partners: mediator of DNA damage checkpoint protein
1 (MDC1), MERIT40, or TRF1. MDC1 is essential for
spreading of theDDR signaling on chromatin surrounding
DSBs and plays a role in DNA repair (Jungmichel and
Stucki 2010). Tankyrase 1 and tankyrase 2 bind to
MDC1 through tankyrase binding sites 948-RGEPEG
and 1993-RRLLEG (Nagy et al. 2016). Tankyrase 1 or tank-
yrase 2 (overexpressed in the nucleus) localizes to sites of
DNA damage (laser stripes or I-SCEI-induced DS breaks)-
dependent on MDC1 and promotes DSB repair by HR
(Nagy et al. 2016).

MERIT40, a component of the BRCA1-A and BRISC
complexes was shown to bind to tankyrase 1 or tankyrase
2 through tankyrase binding sites 28-RSNPEG and
48-RSEGEG (Guettler et al. 2011). MERIT40 recruits
tankyrase 1 (overexpressed in the nucleus) to γH2AX
foci in X-ray irradiated cells, and the tankyrase-MERIT40
interaction is necessary for viability, suggesting a role for
tankyrase in regulation of the DDR (Okamoto et al. 2018).
It should be noted that in the above two examples tankyr-
ase is artificially localized to the nucleus through a nucle-
ar localization signal (NLS). This may amplify tankyrase
function in the nucleus, since normally only a small frac-
tion of endogenous tankyrase is nuclear.

Lastly, tankyrase 1 has been implicated in DNA repair
through its interaction with the telomere-binding protein
TRF1,which binds to tankyrase 1 and tankyrase 2 through
a 13-RGCADG tankyrase-binding site (Smith et al. 1998).
Tankyrase 1 can be recruited to sites of induced telomere
oxidative damage where it PARylates TRF1 and leads to
recruitment of XRCC1. Tankyrase 1 inhibition or expres-
sion of a TRF1 tankyrase-binding site mutant sensitizes
cells to induced telomere oxidative damage, suggesting a
role for tankyrase 1 in facilitating SSBR at damaged telo-
meres through PARylation (Yang et al. 2017).

PAR-induced liquid demixing in DNA repair

Liquid–liquid demixing or phase separation can dynami-
cally organize soluble intracellular components into con-
fined compartments. Phase separation can be initiated by
intrinsically disordered proteins (IDPs) that contain low-
complexity domains (LCDs): unstructured repetitive se-
quences that can phase separate into liquid droplets
(Chong and Forman-Kay 2016; Banani et al. 2017). Some
LCD-containing RNA-binding proteins can self-assemble
into structures, and in some cases assembly can be nucle-
ated by RNA itself (Chong et al. 2018). One example is
FUS, an RNA-binding protein containing an N-terminal
LCD (comprised of a prion-like domain; PLD) and multi-
ple RGG domains (Thandapani et al. 2013). Studies
showed that RNA binding could nucleate formation of
higher order FUS structures, dependent on the PLD and
RGG domains (Schwartz et al. 2013). PAR polymers
(like RNA) could serve as seeding platforms to recruit pro-

teins that multimerize through their LCDs to form cellu-
lar compartments (Leung 2014). Indeed, FUS binds
directly to PAR in vitro through its RGG domains and is
recruited to sites of DNA damage, dependent on PARP1
and PARylation activity (Mastrocola et al. 2013; Rulten
et al. 2014).

Analysis of FUS compartments in vivo reveals all the
hallmarks of liquid droplets: They undergo rapid internal
rearrangement, are spherical, and two droplets can fuse
and relax into one sphere (Patel et al. 2015). Further anal-
ysis shows that FUS, as well as two other members of the
TET family of proteins, EWS and TAF15, are recruited to
laser micro-irradiated sites of DNA damage in a PAR-de-
pendent manner with the RGG domains serving as PAR
sensors (Altmeyer et al. 2015). The N-terminal PLDs as-
semble into spherical structures in cells by liquid demix-
ing. Live-cell microscopy shows that PAR seeds the liquid
demixing at sites of DNA damage and further that the ac-
tivity is enhanced by depletion of PARG and inhibited by
PARP inhibitors (PARPi). The purified TET proteins or a
model protein comprised of a PLD and RGG form aggre-
gates in vitro that are consistently larger in the presence
of PAR, demonstrating the intrinsic ability of PAR to nu-
cleate IDP-aggregation.

Recently, this model was elaborated in vitro at the sin-
gle molecule level using atomic force microscopy to dis-
sect the steps (Singatulina et al. 2019). FUS is recruited
to PAR synthesized by PARP1 on damaged DNA, and
FUS triggers formation of large compartments in which
damaged DNA is enriched. Consistent with the in vivo
studies described above, both the PLD and RGG motifs
are required for formation of the compartments. These
compartments can reversibly dissociate by hydrolysis of
PARby PARG.Together these data indicate that PAR-me-
diated recruitment of FUS can facilitate DNA repair
through transient phase-separated compartmentalization
of DNA damage sites. Whether tankyrase-dependent PAR
can promote liquid demixing remains to be determined.

Chromosome replication

As described above, PARP1 and PARP2 are activated by
SSBs, DSBs, and stalled replication forks. PARP1 and
PARP2 bind to the damaged DNA structure, become cat-
alytically active, and PARylate themselves (and other pro-
teins) to promote DNA repair. However, what about
during a normal S phase in proliferating cells in the ab-
sence of exogenous damage? Is there a role for PARP1 dur-
ing DNA replication? Historically it has been difficult to
identify sites of PAR in unperturbed cells, although sever-
al studies hint at a role for PARP1 and PAR in DNA rep-
lication. Recent studies suggest a role for PARP1 in
normal proliferating cells during S phase in Okazaki frag-
ment processing (Hanzlikova et al. 2018) and regulation of
replication fork speed (Maya-Mendoza et al. 2018). To
date a role has not been described for tankyrase 1 and
tankyrase 2 in replication fork progression; however,
they do play a role in replication of chromosome ends
by telomerase.
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PARP1 and Okazaki fragment processing

DuringDNA replication PARP1 can bind directly to nicks
of the lagging strands. Early studies showed increased
PARP activity upon initiation of DNA replication and in
newly replicated chromatin (Lehmann et al. 1974; Anach-
kova et al. 1989). Depletion of PARG, the enzyme that
cleaves PAR, using siRNA led to slowing of replication
fork progression and to accumulation of defective replica-
tion intermediates (Ray Chaudhuri et al. 2015). PARG
interacts directly with PCNA and colocalizes to PCNA-
containing replication foci (Mosavi et al. 2004; Kaufmann
et al. 2017). Recent advances have led to new, cell-active
in vitro chemical probes, which offer potent and selective
inhibition of PARG in the cellular context (James et al.
2016). Armed with this new class of PARG inhibitor, Cal-
decott and colleagues set out to detect endogenous PAR
by treating cells briefly (15–60 min) with inhibitor (Han-
zlikova et al. 2018). PAR was detected specifically in
S phase of the cell cycle and at sites of DNA replication
(based on proximity to PCNA), dependent on PARP1 ac-
tivity. The S phase PAR was not due to DNA damage or
replication stress, rather it resulted from unligated Okaza-
ki fragments. Okazaki fragments are first processed by
FEN1, and then ligated together by LIG1. Treatment of
FEN1-inhibited or LIG1-depleted cells with PARG inhib-
itor led to a >10-fold increase in S-phase PCNA-associated
PAR. Moreover, treatment with emetine, an inhibitor of
DNA replication that prevents formation of Okazaki frag-
ments, completely blocked the appearance of S phase
PAR. The authors postulated that a subfraction of the 30
to 50million Okazaki fragments that are synthesized dur-
ing replication of the human genomemight escape canon-
ical processing by FEN1 and LIG1, and instead, through
PAR synthesis recruit the SSBRmachinery to complete li-
gation (Hanzlikova et al. 2018; Hanzlikova and Caldecott
2019). Indeed, it has been demonstrated that the SSBR
scaffold protein XRCC1 is recruited to these sites of in-
complete replication, dependent on PARP1 and PARP2
(Breslin et al. 2015). Together these data indicate the
PARP-dependent SSBRmachinery as a “backup” pathway
for processing unligated Okazaki fragments.

PARP1 and replication fork speed

Another way in which PARP1 may impact chromosome
replication is through regulation of replication fork speed.
A recent study identified a new regulatory network in-
volving PARylation and p21 as suppressors of DNA repli-
cation fork speed (Maya-Mendoza et al. 2018). Treatment
of cells with PARP inhibitors for 24 h resulted in a 60% in-
crease in fork speedmeasured byDNA fiber analysis (from
1.0 to 1.6 kb/min), in contrast to the accepted model that
PARP inhibitors induce fork stalling (Bryant et al. 2005).
The increased fork speed was accompanied by a DDR in
cells. Depletion of LIG1 and FEN1 led to accelerated
fork speed (1.2 and 1.3 kb/min, respectively), but it was
less than that induced by PARPi and did not induce a
DDR. Indeed, when PARPi was titrated down in concen-
tration or duration to induce acceleration <40%, a DDR

was not induced, suggesting that increases >40% lead to
a DDR. Knockdown of PARP1 protein led to increased
fork speed (1.2 kb/min), but it was less than the effect of
PARPi. The PARP knockdown cells did not show reduced
PAR levels at the fork, indicating that other PARPs may
be involved in fork-speed control. PARPi treatment of
PARP1 knockdown cells did not further accelerate fork
speed or a DDR, indicating a requirement for PARP1
protein.
To gain insight to control of the pathway, a connection

between replication fork speed and PARP1, PARylation,
and p53–p21 was explored. p53 activates p21 and is itself
PARylated, and PARP1 binds p21 and controls its expres-
sion (el-Deiry et al. 1993; Waga et al. 1994; Frouin et al.
2003; Madison and Lundblad 2010; Lee et al. 2012). p21
levels were found to increase in PARP1 knockdown cells,
but not in PARPi-treated cells. Depletion of p21 did not af-
fect PARylation levels, but did lead to increased fork speed
(1.7 kb/min) that was additive with PARPi (2.3 kb/min). A
fork speed regulatory network was proposed with p21 and
PARP1/PARylation as interacting arms that are con-
nected through PARylation-mediated regulation of p53
activity, as well as PARP1-mediated inhibition of p21 ex-
pression. Reduction of p21 or PARylationwould lead to an
imbalance, resulting in increased fork speed. Thus, at
steady state during normal DNA replication, the network
would limit fork speed to ensure genome stability (Maya-
Mendoza et al. 2018; Quinet and Vindigni 2018).

Tankyrase 1 and tankyrase 2 and telomere length
maintenance

Human telomeres are comprised of TTAGGG repeats and
shelterin, a six-subunit complex that includes the double-
stranded telomere DNA-binding proteins TRF1 and TRF2
(de Lange 2005). Telomeres rely on shelterin and shelterin-
binding proteins to mediate the specialized mechanisms
required for their replication (Gilson and Géli 2007; Stew-
art et al. 2012) and protection (Palm and de Lange 2008; de
Lange 2018). In normal human cells after multiple rounds
of cell division, shortened telomeres are unable to recruit
sufficient shelterin to protect chromosome ends, resulting
in a persistent DNA damage response that signals replica-
tive senescence (d’Adda di Fagagna et al. 2003; Takai et al.
2003). Shortening can be counteracted by telomerase a re-
verse transcriptase (Greider and Blackburn 1985, 1987;
Lingner et al. 1997) that is repressed in the human soma
(Wright et al. 1996), but is up-regulated in most human
cancers (Kim et al. 1994) and is required for tumor cell
growth (Hahn et al. 1999). Telomere length is regulated
by TRF1; overexpression leads to telomere shortening
and depletion to telomere lengthening by telomerase
(van Steensel and de Lange 1997).
Tankyrase 1 was initially identified as a binding partner

for TRF1 (Smith et al. 1998). Tankyrase PARylates TRF1,
and this modification releases TRF1 from DNA, much in
the way PARyation of PARP1 releases it from DNA
breaks. Tankyrase is recruited to telomeres by TRF1, de-
pendent on its tankyrase-binding site (Hsiao and Smith
2008). Overexpression of tankyrase 1 or tankyrase 2 in
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the nucleus evicts TRF1 from telomeres, resulting in its
degradation and allowing telomerase-mediated recruit-
ment and telomere lengthening (Smith and de Lange
2000; Cook et al. 2002; Chang et al. 2003). In these exper-
iments (as described above for tankyrase in DNA repair)
artificial expression of tankyrase in the nucleus may am-
plify its nuclear function. CRISPR-generated knockout
of tankyrase 1 or tankyrase 2 in human HEK293T cancer
cells has no effect on telomere length, but the double
knockout induces telomere shortening, which can be res-
cued by reintroduction of tankyrase 1 or tankyrase 2
(Bhardwaj et al. 2017). Thus, tankyrase is required to
maintain telomere length, but either tankyrase 1 or tank-
yrase 2 is sufficient.

Chromosome resolution

Resolution of sister chromatids in mitosis is essential for
proper distribution of genetic material to the daughter
cells. Sister chromatids are held together from the time
of their replication in S phase until their separation at mi-
tosis by protein complexes termed cohesins (Nasmyth
and Haering 2009; Nishiyama 2019). In human cells,
cohesins are removed in two stages: first in prophase
from chromosome arms, and second in metaphase from
centromeres (Waizenegger et al. 2000; Peters and Nish-
iyama 2012). Human repetitive chromosomal regions
(telomeres and ribosomal DNA) rely on additional
specialized tankyrase-dependentmechanisms for their re-
solution. Here we focus on the role of tankyrase in chro-
mosome resolution and genome integrity. The mitotic
functions of tankyrase and PARPs were recently reviewed
elsewhere (Slade 2019).

Telomere resolution requires tankyrase 1 and tankyrase 2

Cohesion between telomeres is normally resolved at the
same time as chromosome arms in G2/M (Ofir et al.
2002; Yalon et al. 2004). However, when cells are treated
with tankyrase siRNA chromosome arms and centro-
meres resolve, but telomeres remain cohered in mitosis
(Fig. 3; Dynek and Smith 2004). Cells undergo a prolonged
anaphase, but ultimately exit mitosis; although some cell
types (like HeLa) exhibit a prolonged mitotic arrest
(Dynek and Smith 2004; Kim and Smith 2014). Cells
also exhibit an increase in DNA damage foci and in sister
telomere fusions (Hsiao and Smith 2009). Rescue of persis-
tent cohesion requires a PARP-active tankyrase 1 (Bisht
et al. 2013b). The persistent cohesion phenotype is reca-
pitulated in CRISPR-generated HEK293T TNKS1 knock-
out cell lines (Bhardwaj et al. 2017). Surprisingly, TNKS2
knockout cells show the same phenotype as TNKS1
knockout, and the double-knockout cells show an even
greater level of persistent cohesion than the single knock-
outs. Thus, in contrast to telomere length maintenance
where either tankyrase 1 or tankyrase 2 is sufficient, res-
olution of telomere cohesion requires both tankyrase 1
and tankyrase 2 (Bhardwaj et al. 2017). CRISPR-generated
mutation of the tankyrase-binding site in TRF1 (from 13-

RGCADG to RGDADP) leads to persistent telomere co-
hesion, indicating that TRF1-mediated recruitment of
tankyrase is required for resolution (Azarm et al. 2020).

Telomere resolution requires RNF8-mediated stabiliza-
tion of tankyrase 1 Tankyrase 1 is recruited to telomeres
in late S/G2 phase, aligned with the timing of sister telo-
mere resolution (Bisht et al. 2012, 2013a). What regulates
tankyrase to act specifically at telomeres within this win-
dow? The answer lies in cell cycle-regulated ubiquitina-
tion and deubiquitination of tankyrase 1. Tankyrase is
normally turned over rapidly due to RNF146-mediated
K48-linked ubiquitination and degradation by the protea-
some (Callow et al. 2011; Zhang et al. 2011). However, in
late S/G2, the damage-responsive E3 ubiquitin ligase
RNF8 promotes K63-linked ubiquitination on tankyrase
1 (Tripathi and Smith 2017). The damage activating
RNF8 originates from the endogenousATM-mediated sig-
naling at newly replicated telomeres (Verdun et al. 2005).
The K63-linked ubiquitin promotes transient stabiliza-
tion of tankyrase 1 to permit timely resolution of cohesion
in late S/G2. RNF8 depletion (like tankyrase 1 depletion)
leads to persistent telomere cohesion and sister telomere
fusions (Hsiao and Smith 2009; Tripathi and Smith 2017).

Following resolution of cohesion, upon nuclear enve-
lope breakdown, tankyrase 1 is exposed to the cytoplas-
mic K63-deubiquitinating enzyme complex BRISC
(Cooper et al. 2010; Feng et al. 2010; Hu et al. 2011). Tank-
yrase 1 binds to a 333-RPQAVG tankyrase binding site in
the BRISC scaffold subunit ABRO1 (Tripathi and Smith
2017). ABRO1 depletion leads to increased K63-ubiquiti-
nated tankyrase 1, premature resolution of telomere cohe-
sion, and sister telomere fragility/loss, demonstrating that

Figure 3. Tankyrase is required for resolution of telomeres and
rDNA. (Top panel) In control cells, arm and telomere cohesion
is released in G2/prophase, followed by resolution of centromere
and rDNA at themetaphase to anaphase transition. (Bottom pan-
el) In the absence of tankyrase 1, arm cohesion is released in G2/
prophase, followed by release of centromere cohesion at themeta-
phase to anaphase transition. Resolution of telomeres and rDNA
is delayed until anaphase leading to anaphase delay, rDNA dam-
age, and aneuploidy.
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limiting tankyrase 1 stabilization and activity to the S/G2
window of the cell cycle is vital for telomere integrity.
These phenotypes can be rescued by introduction of
wild-type ABRO1, but not a tankyrase binding site mu-
tant (from 333-RPQAVG to RPQAVR). This study sug-
gests that K63-ubiquitination can shunt tankyrase 1 out
of the RNF146-mediated K48-ubiquitination degradation
cycle into a transiently stabilized state to function in res-
olution of telomere cohesion (Tripathi and Smith 2017).

Telomere resolution in aging cells As human cells age
and their telomeres shorten they exhibit a natural block
in resolution of telomere cohesion. In presenescent cells
aged in culture and early passage cells from aged individ-
uals telomeres are cohered inmitosis, whereas other chro-
mosomal regions are resolved (Ofir et al. 2002; Yalon et al.
2004). Introduction of telomerase into presenescent cells
rescues the persistent telomere cohesion, suggesting
that it is coordinated with telomere shortening (Yalon
et al. 2004). Tankyrase levels are not reduced in aging
cells, yet overexpression of PARP-active tankyrase 1 res-
cues the persistent telomere cohesion, hinting at a mech-
anism that prevents endogenous tankyrase from acting at
telomeres in these aged cells (Kim and Smith 2014). In-
deed, a recent study shows that shortened telomeres re-
cruit insufficient TRF1 and as a consequence inadequate
tankyrase 1 to resolve sister telomere cohesion (Azarm
et al. 2020). Overexpression of wild-type TRF1, but not a
tankyrase-binding site mutant (from 13-RGCADG to
RGDAAA), promotes recruitment of tankyrase 1 to aging
cell telomeres and forces resolution of cohesion. Surpris-
ingly, persistent cohesion is beneficial to aging cells; forc-
ing resolution results in deleterious phenotypes: excessive
interchromosomal subtelomere recombination, DNA
damage, and premature activation of checkpoint-mediat-
ed senescence (Azarm et al. 2020). The limited recruit-
ment of tankyrase at shortened telomeres promotes
persistent telomere cohesion, protecting chromosome
ends from engaging in damage-inducing subtelomere re-
combination that signals premature cell cycle arrest.
Thus, in aging cells the gradual loss of telomere repeats
and the accompanying limited recruitment of tankyrase
1 ensures an integrated and measured onset of replicative
senescence.

Telomere resolution in ALT cancer cells Persistent telo-
mere cohesion in mitosis has also been observed to occur
naturally in cancer cells that use alternative lengthening
of telomeres (ALT), a recombination-based mechanism
of telomere maintenance (Bryan et al. 1997; Ramamoor-
thy and Smith 2015; Sobinoff and Pickett 2017). As with
aging cells, tankyrase 1 levels are not reduced in ALT
cells, yet overexpression of PARP-active tankyrase 1 can
rescue the persistent telomere cohesion (Ramamoorthy
and Smith 2015). ALT cell telomeres range from excep-
tionally long to critically short (Henson et al. 2002). Could
the population of shortened telomeres with insufficient
TRF1 contribute to persistent telomere cohesion as in
aging cells? Indeed, introduction of telomerase into
ALT cells rescues the persistent cohesion, linking the

phenotype to shortened telomeres (Azarm et al. 2020).
Overexpression of wild-type TRF1, but not a tankyrase-
binding-site mutant, recruits tankyrase 1 to telomeres,
forces resolution of cohesion, and leads to similar pheno-
types in ALT as in aging cells: subtelomere recombina-
tion, DNA damage, and (in checkpoint-proficient U2OS
ALT cells) senescence (Azarm et al. 2020).

Anoncanonical role for the PAR-bindingmacroH2A1.1
In both aging normal cells and ALT cancer cells, reduced
TRF1 at shortened telomeres limits tankyrase 1 recruit-
ment (Ramamoorthy and Smith 2015; Azarm et al.
2020). There appears to be an additional mechanism (at
least in ALT cells) that acts directly through tankyrase
1. A common feature of ALT cancer cell lines is loss of
the SWI/SNF-like ATPase ATRX (Heaphy et al. 2011;
Lovejoy et al. 2012). Along with its roles in chromatin re-
modeling and histone deposition, ATRX sequesters the
soluble pool of macroH2A (Ratnakumar et al. 2012), a his-
tone variant comprised of an N-terminal H2A-like
domain and a C-terminal PAR-binding macrodomain
(Gamble and Kraus 2010; Cantariño et al. 2013). Mac-
roH2A exists as three isoforms (macroH2A1.1, mac-
roH2A1.2, and macroH2A2), but only one macroH2A1.1
(by virtue of an alternative splice) binds PAR (Kustatscher
et al. 2005; Timinszky et al. 2009). Loss of ATRX in ALT
cells frees the soluble pool ofmacroH2A1.1 to bind and se-
quester PARylated tankyrase 1 away from telomeres
(Ramamoorthy and Smith 2015). Overexpression of
ATRX (or depletion of macroH2A1.1) forces resolution
of telomere cohesion, phenocopying TRF1 or tankyrase
1 overexpression. Whether tankyrase 1 is regulated
through a similar mechanism in aging cells remains to
be determined, but the possibility is supported by studies
showing that macroH2A1.1 is highly expressed in cells
undergoing senescence (Sporn et al. 2009; Chen et al.
2015).

Ribosomal DNA resolution

To accommodate the high demand for ribosomal RNA,
the genes encoding the ribosomal RNA (rDNA) exist in
many copies (Gonzalez and Sylvester 1995). In humans
the rDNA is in repetitive clusters on the short arms
of the five acrocentric human chromosomes adjacent to
the telomeres (Henderson et al. 1972; McStay 2016).
While it was known that the bulk of the human genome
resolves by prophase, except for the centromeres, which
resolve at the metaphase-to-anaphase transition (Waize-
negger et al. 2000; Nagasaka et al. 2016), the timing of
rDNA resolution was unknown. Two recent studies
show that rDNA is not resolved until late in anaphase af-
ter the rest of the genome (Daniloski et al. 2019; Pota-
pova et al. 2019) and also that tankyrase 1 is required.
In tankyrase 1-depleted cells the rDNA loci of sister
chromatids remain connected and stretch across the seg-
regating DNA mass in anaphase (Fig. 3; Daniloski et al.
2019). The stretching results from the inaction of con-
densin II. Two condensin complexes (condensin I and
condensin II) with complementing activities exist in
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human cells (Ono et al. 2003, 2004; Hirota et al. 2004).
They each have the common SMC2 and four subunits
plus three additional related, but unique, subunits. An
in-silico search for tankyrase-binding sites across all hu-
man condensin subunits revealed them in only one,
CAP-D3 of condensin II. Depletion of CAP-D3 (but not
its condensin I counterpart, CAP-D2) led to the same
rDNA stretching as tankyrase 1 depletion. Tankyrase 1
binds to CAP-D3 through its 519-RSEPSG tankyrase-
binding site, and wild-type CAP-D3 (but not a tankyr-
ase-binding site mutant, RSEPSA) rescues the rDNA
stretching and facilitates topoisomerase IIα-mediated
segregation of rDNA.

Analysis of the fate of the rDNA in tankyrase 1-depleted
cells reveals dramatic consequences for genome integrity:
rDNA-specific damage in mitosis, rDNA-containing mi-
cronuclei, and nondisjunction of rDNA-containing acro-
centric chromosomes (Daniloski et al. 2019). How does
defective rDNA resolution lead to damage? The rDNA
clusters, like subtelomeres, are “hot spots” for recombina-
tion (Killen et al. 2009; Stults et al. 2009; Salim and Ger-
ton 2019). Defective rDNA resolution may lead to
aberrant recombination that induces damage, similar to
the subtelomere recombination-driven damage in replica-
tive senescence described above.

Telomere and rDNA resolution—a connection through
tankyrase 1

Two types of human repetitive sequences (telomeres and
the rDNA) require tankyrase 1 for their resolution in mi-
tosis. Surprisingly, despite the common role for tankyr-
ase, resolution of telomeres and rDNA occurs at
different stages inmitosis: prophase and anaphase, respec-
tively (Fig. 3). Is their resolution connected? Tankyrase 1
is recruited to telomeres through TRF1, but what directs
it to the rDNA? Considering the timing of resolution
(telomeres in G2/prophase, and rDNA in anaphase), per-
haps tankyrase is initially recruited to telomeres (includ-
ing those of acrocentric chromosomes) through TRF1,
and then relocalizes to the adjacent rDNA locus. The
studies described above show timely rDNA resolution oc-
curs in normal cells and in telomerase-positive cancer
cells. It remains to be determined whether the process is
defective (like resolution of telomere cohesion) in aging
and ALT cancer cells. Loss of ATRX in ALT cancer cells
has been connected to a reduction in rDNA copy number
(Udugama et al. 2018). As described above, loss of ATRX
in ALT cells sequesters tankyrase away from telomeres,
preventing resolution of telomere cohesion (Ramamoor-
thy and Smith 2015). Perhaps it also keeps tankyrase 1
away from rDNA, preventing rDNA resolution. The ob-
served loss of rDNA in ALT could be a consequence of de-
fective rDNA resolution.

Perspectives

In this review, we discussed the role of PARP1, PARP2,
tankyrase 1, and tankyrase 2 in chromosome repair, repli-

cation, and resolution in human cells. Though these four
proteins share the ability to PARylate themselves and
their binding partners, they differ in their contributions
to genome integrity. PARP1 and PARP2 auto-PARylation
provides a harbor at sites of DNA damage, disrupted repli-
cation forks, or unprocessed Okazaki fragments, for PAR-
binding proteins to dock and resolve these aberrations.
The harboring of proteins to preserve genome stability is
taken further through evidence of compartmentalization
through PAR-mediated liquid-liquid demixing at sites of
DNAdamage. Auto-PARylation of tankyrases, on the oth-
er hand, does not appear tomotivate function. Rather, it is
the ability to interactwith an array of diverse binding part-
ners at specific locations and times, as evidenced by the
example of tankyrase 1 localization to telomeres through
its binding partner TRF1 in G2/M to promote timely
resolution of sister telomere cohesion. Together, the com-
bined activities of these four PARPs contribute signifi-
cantly to genome maintenance and stability. Against the
backdrop of expanding strategies for PARP inhibitors in
the clinic, future research will continue to identify new
targets and provide new insights.
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