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Simple Summary: The earth’s rotation produces a daily 24 h cycle of day and night. Many biological
functions, such as sleep–wake cycle, feeding/fasting cycle, blood hormone levels and body tempera-
ture rhythms occur over a 24 h period. These daily fluctuations are controlled by an internal system
known as the circadian clock (Latin circa—“around”—and diem—“day”). This clock coordinates the
periodic changes in diverse physiological and behavioral activities and helps adapt to the periodic
environment for the benefit of survival and reproduction of organisms. Nearly all organisms, from
single-cell to mammals, including humans, possess a self-sustained circadian clock. Disturbances in
the functioning of this internal circadian clock can alter the balance in biological functions and com-
promise organism fitness. In humans, clock disruption is associated with diseases such as diabetes,
cardiovascular diseases and cancer. Thus, studying the interplay between the circadian clock and
physiology is important in the prevention and management of fatal diseases such as cancer.

Abstract: To synchronize various biological processes with the day and night cycle, most organisms
have developed circadian clocks. This evolutionarily conserved system is important in the temporal
regulation of behavior, physiology and metabolism. Multiple pathological changes associated with
circadian disruption support the importance of the clocks in mammals. Emerging links have revealed
interplay between circadian clocks and signaling networks in cancer. Understanding the cross-talk
between the circadian clock and tumorigenesis is imperative for its prevention, management and
development of effective treatment options. In this review, we summarize the role of the circadian
clock in regulation of one important metabolic pathway, insulin/IGF1/PI3K/mTOR signaling, and
how dysregulation of this metabolic pathway could lead to uncontrolled cancer cell proliferation and
growth. Targeting the circadian clock and rhythms either with recently discovered pharmaceutical
agents or through environmental cues is a new direction in cancer chronotherapy. Combining
the circadian approach with traditional methods, such as radiation, chemotherapy or the recently
developed, immunotherapy, may improve tumor response, while simultaneously minimizing the
adverse effects commonly associated with cancer therapies.

Keywords: circadian clock; core clock genes; cancer; metabolism; chemotherapy; immunotherapy;
radiation

1. Introduction

The circadian clock is a time-keeping mechanism that controls daily rhythms in biolog-
ical processes [1–3]. The environmental light/dark cycle entrains the master clock in the
suprachiasmatic nucleus (SCN) [4,5]. The central clock, in turn, sends neural and humoral
signals to synchronize the peripheral clocks in different organs such as liver, kidney, skin,
intestine, lung, pancreas, ovary, and heart to maintain the energy balance and homeostasis in
our body. The feeding/fasting cycle can also serve as a clue for peripheral clocks [6]. At the
molecular level, circadian clocks consist of an intricate network of transcription–translation
feedback loops formed by dozens of genes and their products, of which expressions and
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activities fluctuate rhythmically across the day [7,8]. Transcription factors circadian lo-
comotor output cycles kaput (CLOCK) and ARNTL (aryl hydrocarbon receptor nuclear
translocator-like protein 1), also known as BMAL1, induce the transcription of core clock
genes, Periods (Pers) and Cryptochromes (Crys) [4,9]. The complex formed by PER and CRY
proteins represses CLOCK and BMAL1 transcriptional activity and, in turn, represses their
own expression [10]. The CLOCK/BMAL1 complex also controls the expression of genes
that form additional regulatory loops. Nuclear receptor transcription factors from the RAR-
related orphan receptor (ROR) family and REV-ERBα/β (REV-ERBα: NR1D1; REV-ERBβ:
NR1D2) activate and suppress Bmal1 expression [9,11,12] (Figure 1). In addition to the
transcription and translation, the molecular clock is further regulated by post-translational
modifications, including phosphorylation, ubiquitination and sumoylation, which control
protein stability and the nuclear translocation of the core clock proteins [7].
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Figure 1. Molecular Circadian Oscillator is formed as a transcriptional translational feedback loop. Transcription factors,
BMAL1 and CLOCK, drive the transcription of clock genes: Pers, Crys, Rev-Erbs, Rors. PER and CRY proteins, in turn,
heterodimerize and inhibit CLOCK/BMAL1 complex activity and their own transcription, which form one loop. Rev-Erbs
and RORs form a second loop and act by either repressing or activating Bmal1 transcription.

Disruptions in circadian rhythms are implicated in pathologies such as diabetes,
cardiometabolic disorders and cancer [13]. Clinical and preclinical evidence links the
circadian clock and tumorigenesis [14]. Circadian disruption by shift-work, jet lag, late
night light exposure and late night food binging has been long linked to increased cancer
risk [15–18]. Furthermore, loss of circadian rhythmicity in patients has been associated
with poor response to anti-cancer therapies and increased early mortality rates amongst
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cancer patients [19,20]. Animal models of genetic disruption of clock genes have been
strongly associated with different types of cancers such as prostate, breast, colon, liver,
pancreas, ovary, and lung cancers [21–27], supporting the epidemiological evidence. Night
shift work involving circadian disruption has been designated as a Group 2A carcinogen
by the International Agency for Research on Cancer (IARC), generating interest in the
molecular mechanism of circadian dysregulation and tumor development [28].

Mounting evidence supports molecular interconnections between the circadian clock
and cancer. Many of the recognized cancer hallmarks such as copious metabolic demands,
a favorable inflammatory microenvironment and immune suppression, and resistance to
cell death [29] have a circadian component to them. It is thus hypothesized that oncogenic
transformation may lead to malfunctioning of the circadian clock, in turn creating a home-
ostatic imbalance, which facilitates cancer growth and expansion. In this mini review, we
discuss a symbiotic relationship between the clocks and cancer as well as its relation with
cancer-related metabolic pathways such as IGF-1R/mTOR/Akt signaling that could drive
tumorigenesis. We further discuss the perspective of targeting the circadian clock and its
rhythms in combination with available anti-cancer therapeutics.

2. Method

This mini review is a compilation of recent discoveries in circadian clock, cancer and
metabolism. PubMed was searched for the following keywords such as ‘Circadian clock
and cancer’, ‘circadian clock and metabolism’, and ‘chronotherapy and cancer’. “Review”
filter was applied and the PubMed search showed anywhere between 37–500 search articles,
depending on the keywords. We have mainly included recent review articles from 2015
to 2020 that closely match our review topic. Only relevant data that were consistent
among different review articles were extracted from these articles. Clinical trials and
meta-analyses were excluded from our search since most relevant and important clinical
data were extracted from the review articles listed below.

Some of the recent reviews relevant to our review subject that were mainly considered
and have been referred to in the Results and Discussion are “Interplay between Circadian
Clock and Cancer: New Frontiers for Cancer Treatment” by Sulli et al., “Circadian Clocks
and Cancer: Timekeeping Governs Cellular Metabolism” by Verlande et al., “Crosstalk
between Metabolism and Circadian Clocks” by Reinke et al., “Metabolic Rivalry: Circadian
Homeostasis and Tumorigenesis” by Kinouchi et al., “Cancer and the Circadian Clock”
Shafi et al., and “The Cancer Clock Is (Not) Ticking: Links between Circadian Rhythms
and Cancer” by Morgan et al. While there are several important pathways involved in
tumorigenesis that are discussed in these reviews, this mini review focuses on a brief
overview of clock connection with metabolism in cancer risk.

3. Results and Discussion
3.1. Circadian Disruption in Cancer

Modern lifestyle impacts the clock. Shift work, time-zone traveling and abnormal
feeding patterns are major factors that cause circadian resynchronization. Epidemiological
studies support the contribution of clock disruption to tumorigenesis. Women working
in rotating or night shifts for several years are at ~10–60% increased risk of developing
endometrial and breast cancer [30–33] in a plasma melatonin rhythms dependent [34,35]
and independent manner [36,37]. Another study in male subjects has shown high inci-
dences of prostate cancer in night-shift workers with the cancer grade being proportional
to the duration of the shift work [17,38]. Flight attendants that have irregular schedules
are at increased risk of melanoma, prostate, and breast cancer due to disturbed circadian
rhythms [39–41].

Animal studies help understand rhythmic disruptions in carcinogenesis. Rewiring of
clock rhythms through chronic jetlag or SCN ablation [42,43] are some of the approaches
that have been useful to understand the impact of disruption on cancer risk. Wild-type
(WT) animals on a chronic jet lag (CJL) paradigm, i.e., repeated 8 h phase advances in
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the light/dark cycle every 2 days, for several weeks, have demonstrated an increased
risk of Glasgow osteosarcoma [43], lymphoma and hepatocellular carcinoma [3,23] inci-
dences. Several other clock mutant mice models such as mutation of Per2m/m; Per2−/−,
or Per1−/− [23,44] and double-null Cry1/2-/ model demonstrated enhanced incidence of
lymphoma, hepatocellular carcinoma (HCC), kidney, ovarian, intestinal and pancreatic
tumors in chronically jetlagged animals [23]. These studies suggest tumor development
in both genotypes with lower incidence in WT animals compared to the mutant mouse
models. This argues for a tumor-promoting role of clock gene disruption.

Evidence on clock rewiring in cancer is growing. Although the Cancer Genome Atlas
(TCGA) database shows a low mutation frequency of clock genes, single nucleotide poly-
morphisms (SNPs) in clock genes are associated with increased incidences of prostate, lung,
colorectal, breast, HCC as well as other tumor types [45–47]. Analyses of survival data from
cancer patients such as breast cancer, suggests that patients harboring clock gene mutations
have an overall lower survival rate compared to patients with no mutations. Furthermore,
TCGA and other database analyses show differential expression patterns of core clock genes
in tumors compared to the non-tumor controls [48,49]. Importantly, these data need to be
interpreted with caution due to oscillation of clock gene expression. For example, clock
gene oscillation is impaired in HCC and metastatic melanoma compared to the normal
tissues [50,51]. The diurnal oscillation in clock gene expression should be taken into consider-
ation before drawing a conclusion on clock gene expression in the clinical database [52,53].

Alterations in the expression of clock genes have been observed in animal cancer models
(Table 1): Clock, Rev-erbα, Per2, RORγ in the nearby liver tissue of breast-cancer-bearing
mice [54], Per1, Per2, and Bmal1 in metastatic melanoma [55], Rev erb, Per2 and Bmal1 in
Glasgow osteosarcoma, and pancreatic adenocarcinoma [56,57], and Rev-Erbα, Per1, Per2,
and Bmal1 in colorectal liver metastases with phase-shift effect observed in nearby healthy
kidneys [58]. This suggests that disrupted rhythms are not only observed in the tumor, but
also in the nearby distal organs such as liver and kidneys (Figure 2). Further, a study by Masri
et al. shows how lung cancer affects rhythmicity in nearby healthy liver at the transcript and
metabolites level, demonstrating the impact of cancer on circadian metabolome and clock-
controlled genes (CCGs) regulating the downstream signaling pathways [59]. The circadian
clock regulates rhythms in the expression of downstream genes known as clock-controlled
genes (CCG) [60,61]. It is estimated that about 10–20% of genes in every tissue are CCGs.
CCGs regulate multiple signaling pathways such as DNA damage repair, oxidative stress,
cell proliferation, and apoptosis. The disruptions of rhythms in tumors impact all of these
aforementioned pathways in nearby distal organs. Thus, it is imperative to understand the
cross-talk of the core clock genes with key hallmark pathways controlling cancer growth
and development. Many studies are addressing the cancer effects on clock in tumors and
tumor-free distal organs; however, whether clock disruption in these distal organs also has a
role in tumor progression needs to be investigated.

Table 1. Clock gene expression in animal models of different cancer types.

Clock Genes Animal Cancer
Model Outcome References

Rev Erbα, Rorγ and
Per2 4T1 Breast Cancer Downregulation [54]

Per1, Per2 and Bmal1 B16F10 Melanoma Downregulation [55]

Rev Erbα, Per2 and
Bmal1

Glasgow
osteosarcoma Downregulation [56]

Rev Erbα, Per2 and
Bmal1

P03 Pancreatic
adenocarcinoma Downregulation [57]

Rev-Erbα, Per1, Per2,
and Bmal1

C26 Colorectal liver
metastases Downregulation [58]
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factor β (TGFβ), and fibroblast growth factor (FGF); inflammatory factors, chemokines and cytokines; metabolic waste
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Data on the role of individual circadian clock proteins in tumorigenesis suggests
tumor-suppressive as well as -promoting functions of clock proteins. For example, in
response to irradiation, Per2 deficient mice have an increased rate of spontaneous tumor
development [44]. Contrastingly, Clock/Clock mutants do not develop spontaneous tumors
in response to γ-irradiation but do demonstrate overall reduced survival compared to
their wild-type counterparts [62]. Further, contrasting results also exist with respect
to tumor development in Cry1−/−;Cry2−/− mice with one study reporting γ irradiation
induced lymphomas while another study reported no tumor formation in response to γ

induced irradiation [23,63]. Additionally, Cry2 deficiency causes accelerated lymphoma
development in a c-Myc-dependent manner [64]. Bmal1−/+ heterozygous mice are prone to
lymphoma, HCC and ovarian cancers, with irradiation further increasing the incidence
of these and several other cancer types [23]. Clock disruption by jet lag or by genetic
ablation (Per2m/m and Bmal1−/−) in genetically modified mouse models (GEMMs) such
as K-rasLSL-G12D/+;p53flox/flox or K-rasLSL-G12D/+ accelerated lung tumorigenesis [21].
However, contrasting results also exist: Clock and Bmal1 expression is elevated in colorectal
cancer and acute myeloid leukemia (AML) and promotes tumor growth in AML [65]. Cry1
and Cry2 deletions suppress tumor development in the p53 null background [66]. Thus,
the impact of clock deficiency is cancer-type- and clock-gene-specific. Future studies are
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required to unravel this complex interplay between cancer, circadian rhythms and clock
gene mutations.

3.2. Clock and Cancer Metabolism

Various hallmarks of cancer such as DNA damage repair pathways, immune sup-
pression, cell death, cell cycle, tumor-promoting inflammation and cellular metabolism
have been proposed to promote tumor growth, and their dissemination has been discussed
in detail in a review by Hanahan et al. [29]. The circadian clock control of these cancer
hallmarks has been recently covered by Sulli et al. [67]. The circadian clock is a master
regulator of metabolism [14,68–71] and there is evidence of metabolism rewiring in onco-
genic transformations [14,72]. The reviews by Brian Altman and Verlande et al. provide
details on the complex interplay between cancer-induced disturbed metabolic pathways
and peripheral circadian clocks [73,74]. The insulin/IGF1/PI3K/mTOR signaling cascade
plays an important role in cancer and metabolism [75,76]. Recently, several groups, includ-
ing ours, reported on crosstalk between the circadian clock and mTOR pathway. We will
discuss how this connection helps to understand metabolic rewiring in cancer.

The mechanistic target of rapamycin (mTOR) is an important nutrient sensor and
orchestrates various downstream anabolic and catabolic processes. Our group has demon-
strated that mTOR activity may be under the control of the circadian clock [77,78] (Figure 3A).
Indeed, rhythmic oscillations in mTORC1 activities, as indicated by ribosomal protein S6
kinase 1 (S6K1) and 4E-BP1 phosphorylation, is observed in different regions of mouse brain,
namely the SCN, arcuate nucleus, hippocampus and frontal cortex, which regulate critical
activities, such as, feeding, memory, and learning [79,80]. Rhythmicity in mTORC1 activity
has also been shown in different peripheral organs, i.e., retinal photoreceptors, adipocytes,
liver, cardiac and skeletal muscles [79]. Interestingly, mTOR and the circadian clock are
regulated by common cues, such as food and feeding regimens including calorie restric-
tion (CR) and time-restricted feeding (tRF) [52,81–83]. Mechanistically, the circadian clock
might regulate mTORC1 signaling through several interconnected pathways (Figure 3B).
Insulin/IGF signaling is the main extracellular signal to mTORC1 [84,85], and the circadian
clock regulates plasma IGF1 and insulin levels [81,86,87]. Circadian transcriptional factor
BMAL1 inhibits mTORC1 activity [77], most likely, through its transcription by PER2, also a
clock protein, which directly interacts with mTORC1 during fasting [88]. In turn, mTORC1
regulates the circadian clock. mTORC1 downstream kinase S6K1 phosphorylates BMAL1,
which is associated with regulation of translation and protein synthesis [89–91]. mTORC1
synchronizes the SCN clock in vivo and affects rhythmicity in peripheral clocks such as
liver, and adipocytes [80,92–94]. mTOR/4-EBP1-dependent control of vasoactive intestinal
polypeptide rhythmicity contributes to the robust oscillation of clock gene expression in
SCN [80,92]. Constitutive activation of mTOR in Tsc2-/- fibroblasts leads to increased levels
of BMAL1, CLOCK and CRY1 [94].

An epistatic relationship exists between clock and mTORC1 not only in healthy cells
but in cancer cells also. Rhythms in mTORC1 activity have been demonstrated in mouse
renal cell carcinomas, human breast cancer cells and osteosarcoma [95,96]. Knockdown
of Bmal1 in different colorectal cancer cell lines leads to activation of the Akt/mTOR
pathway, albeit to a different extent, and thus, increased proliferation of cancer cells [97].
Period2 (Per2) overexpression in a cisplatin-treated human lung adenocarcinoma cell
line increases apoptosis and reduces cell proliferation by suppressing phosphoinositide
3-kinase (PI3K)/AKT/mTOR [98]. Overexpression of PER1 as well as PER2 in an oral
squamous cell carcinoma cell line suppresses tumor growth by increasing autophagy in
an PI3K/Akt/mTOR-dependent manner [99,100]. Dysregulation in the tumor suppressor
PTEN and increased oxidative stress leads to activation of BMAL1 in an mTOR-dependent
manner in cancer cells [101].
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Figure 3. Clock and mTOR pathway interconnection. (A) Environmental cues such as light synchronizes the master
clock in suprachiasmatic nucleus (SCN) while feeding regimen entrains the peripheral and metabolic clock. Further,
peripheral and SCN clocks directly cross-talk with the metabolic clock, i.e., PI3K/Akt/mTOR. (B) mTORC1, through 4-EBP1
phosphorylation, regulates the SCN clock. In the periphery, a feedback loop is formed in which mTORC1 regulates BMAL1
activity through S6K1 mediated phosphorylation, while BMAL1 accumulation, in turn, inhibits mTOR activity. Constitutive
mTORC1 activation for example, by Tsc2 inhibition, disturbs this feedback loop that could, in turn, drive uncontrolled
protein synthesis, cellular growth and proliferation, thus, contributing to cancer development.

3.3. Circadian Strategies for Cancer Treatment

Chronotherapy is an experimental approach in cancer treatment. It was proposed that
selecting the most appropriate circadian time for the treatment might improve the outcome.
Traditional anticancer approaches such as radiation or chemotherapy are associated with
severe side effects, which include inflammation, leukopenia, and skin rashes due to damage
to the healthy organs caused by off-target effects of the treatment [102,103]. Daily rhythms
in cellular pathways such as xenobiotic detoxification or DNA repair may contribute to
tumor and healthy tissue response in a time-of-day-dependent manner; therefore, it is
possible to use the chronotherapy approach to achieve maximum efficacy [104] (Figure
4). Limited clinical studies are in agreement with the benefits of a chronotherapeutic
approach. Radiation chronotherapy suggests improved symptoms with mixed response
to overall survival rate in different types of cancers [105]. Chemotherapy dose timing
studies have shown lowered adverse events such as inflammation, and leukopenia, i.e.,
decrease in white blood cell (WBC) count in breast [106], endometrial [107], renal, prostate,
cervical, ovarian [108] and colorectal cancer [109–111]. For instance, timed dosing of
5-fluorouracil (FU) to colorectal patients reduced mucosal inflammation, while another
study demonstrated the effectiveness of a timed infusion of 5-FU in combination with a
chemotherapy drug [110,112]. However, due to tumor heterogeneity, variable treatment
responses and technical challenges, chronotherapy application in clinical studies is scarce.
Several animal studies in circadian clock mutant mice have also demonstrated improved
tolerability and efficacy of drugs by optimization of the dose timing [113–115]. For example,
studies in mice show reduced tumor growth when given cyclin-dependent kinase 4/6
(CDK4/6) drug in a time-dependent manner with high efficacy observed in a morning
dosing regimen compared to the night time dosing [56,116]. Another metabolic target,
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mTOR inhibitor, Everolimus, when administered orally in mice at ZT13 was found to
have less severe immunological, biochemical and hematological toxicities compared to
dosing at ZT1, further corroborating the need of investigating a chronotherapy approach in
large clinical studies [117]. Newer therapeutic options such as immunotherapies targeting
immune checkpoint receptors or ligands, CTLA-4, PD-1 and PDL-1 are currently being
widely tested in clinical trials for multiple cancer types. However, these are known to
show a significant inflammatory response as well as immune response related adverse
events [118]. Because immune cell trafficking and the inflammatory pathway are under
clock control, applying a chronotherapy approach could help mitigate the associated
toxicity issues [119–121].
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chemotherapy or irradiation, is time-of-day dependent. Toxic side effects are also influenced by the rhythms. Knowledge on
both rhythms will help to identify a time window for the most efficient treatment. (B) Targeting circadian clock proteins
directly, RORs or REV-ERBs, or indirectly, CK2, with small molecules impacts the tumor either through the circadian clock
and rhythms or through clock-independent tumor suppressor functions of clock proteins. (C) Restoring the circadian
rhythms using environmental cues, such as time restricted feeding or light exposure, could be beneficial for prevention and
treatment of cancer.

Targeting the clock and its rhythms is a novel direction in chronotherapy of cancer.
Modulating the clock with environmental cues such as meal timing and light exposure dur-
ing night-time is a non-pharmacological approach that is growing in popularity (Figure 4).
For instance, overnight fasting of 13 h has been shown to lower breast cancer incidences in
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women [122]. Further, a study by Marinac et al. presents data from the 2009–2010 National
Health and Nutrition Examination Survey (NHANES) on the effect of eating frequency
and timing behaviors on breast cancer risk in women. Based on their findings, reducing
the food intake in the evening, fasting for long hours at night and consuming frequent
meals may help to lower the risk of breast cancer [123]. Feeding time has considerable
impact on cancer progression in animal models. For instance, mice with restricted access to
food for 6 h during the light phase had reduced cancer growth compared to those freely
fed (ad libitum (AL)). This coincides with the rhythmic expression of genes involved in
stress response, and cell cycle observed only in restricted feeding mice and not in AL fed
animals [57]. Similarly, restricted feeding for 4 or 6 h during the light phase prolonged the
overall survival of Glasgow osteosarcoma mouse model possibly due to desynchronized
tumor clocks [124]. Timed feeding delayed tumor growth in chronically jetlagged Glasgow
osteosarcoma and pancreatic adenocarcinoma models [125]. Circadian disruption by artifi-
cial light at night (ALAN) is another emerging risk factor linked to higher risk of breast
cancer in women. Mixed data have been reported by several ecological and cohort-based
studies worldwide [126–130], suggesting the need for more cohort based studies in larger
population. A review article by Richard Stevens gives an excellent overview of studies
conducted using different light at night conditions [131]. Studies in animal models such
as one conducted in rats exposed to ALAN induced the growth of MCF-7 breast cancer
compared to the animals kept under a normal light–dark cycle [132,133]. Another study
showed ALAN exposure from lights of different spectral compositions markedly accel-
erated tumor growth rates in mice with 4T1 breast cancer tumors compared to normal
light–dark cycle controls [134–136]. Further mechanistic studies are needed to investigate
the effect of ALAN exposure on the tumor clock. Light entrains the central clock, in turn,
synchronizing the peripheral clock, while food and feeding time directly synchronize
peripheral circadian clocks residing in multiple organs. Hence, targeting peripheral clocks
along with a non-pharmacological approach such as timed feeding may prove to be an
attractive combination due to the following: (1). It will allow for the use of a lower effective
dose of pharmacological drug due to an additive effect from timed feeding; (2). targeting
the clock in multiple organs will, in turn, target multiple downstream pathways; (3). this
would thus aid in reducing the adverse events caused due to either the use of higher effec-
tive doses or multiple chemotherapeutic combinations. Thus, restoration of clock rhythms
indirectly via environmental factors could aid in lowering the risk of cancer development.

Finally, some of the clock proteins or the clock itself can be targets for pharmacolog-
ical intervention (Figure 4). Chronomodulating drugs such as dexamethasone, forskalin
and melatonin help restore the dampened circadian rhythms in the diseased state. These
chronomodulators have been shown to reduce proliferation of a variety of cancer cells by
restoration of circadian rhythms [55,137]. Melatonin, a hormone produced in a circadian
manner in the pineal gland and retina, is decreased in untreated as well as chemotherapy-
treated patients with non-small cell lung cancer (NSCLC). A review by Savvidis et al.
discusses in detail the effect of melatonin on cancer [138]. This and a review by Grubisic
et al. highlight important articles on how different lighting conditions can impact melatonin
levels and how it may aid in lowering cancer risk in shift-workers [138,139]. Melatonin ad-
ministration at night time reduces lung metastases in a breast cancer mouse model [140,141].
Additionally, a melatonin supplement given at night time significantly lowered the artificial
light at night (ALAN)-accelerated breast cancer growth in mice [134,136]. Dose timing
is thus critical since melatonin administration at the wrong time of the day can lead to
increased tumor growth [142]. For casein kinases, regulators of circadian rhythms, the inhi-
bition of casein kinase 2 (CK2) activity can suppress the human renal cell carcinoma (RCC)
cancer cell growth, likely through lengthening of circadian period, highlighting the need
for an in depth investigation [143]. Inhibition of Fbxw7, an F-box protein that controls REV
ERBα degradation, has been shown to impair pancreatic cancer tumor growth in vivo [144]
and treatment with REV ERB agonists suppresses glioblastoma tumors in mice [145]. Ac-
tivation of RORγ has tumor-suppressive effects on multiple cancer types [146]. Indeed,
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RORγ agonist, Lyc-55716, is currently in Phase I clinical trials as monotherapy as well as
in combination with pembrolizumab (anti PD-1) in patients with advanced solid tumors.
Recently, a small molecule, nobiletin, has been shown to have anti-oncogenic effects through
restoration of circadian rhythmicity in a cell-type-dependent manner [147,148].

4. Conclusions

In several cancer types, down-regulation of the core clock and its downstream clock-
controlled proteins have been reported. Here, we highlight the interconnection of the
circadian clock with key metabolic pathways in cancer. Disturbances in rhythmicity
and connection could lead to tumor initiation and progression. Clinical and preclinical
studies demonstrate the potential and further need for investigating the importance of a
chronotherapy approach for improving response and dealing with toxicity associated with
existing cancer treatment. Overall, chronobiology in cancer research is a vital connection
linking tumor metabolism and other oncogenic signaling pathways that warrants further
in-depth investigation through large studies to better allow for interpretation of the benefits
of chronotherapy.

Shift-work, exposure to light at night, and variable eating habits can have a detrimental
effect on health due to misaligned circadian rhythms. A study in mice further suggests
exposure to UVR during the morning hours may lower the risk of skin cancer development
in humans [149]. It is thus intriguing to speculate that lifestyle modifications such as limited
and timely exposure to UVR; physical activity; time-restricted feeding; reducing light at
night exposure by installing room-darkening shades or avoiding looking into cell phones
before sleeping; and creating favorable lighting conditions for night shift workers may
aid in lowering cancer incidences. However, other factors such as genetic and epigenetic
alterations of clock genes further add layers of complexity to understanding its impact
on tumorigenesis.

Assessing the timing of treatment that coincides with restoration of the circadian
rhythmicity of different cellular pathways is challenging [150]. However, advances in
newer approaches such as genomics technology, non-invasive real-time circadian moni-
toring and biomarker testing would open up new avenues for chronotherapy-based ap-
proaches [151,152]. For example, disrupted circadian rhythms in daily activity as measured
with wrist-actigraphy 3 days before and during the chemotherapy treatment correlates
with poor survival in metastatic colorectal cancer patients [153–155]. Overall, integration
of these different circadian-based strategies is important for cancer prevention and the
expansion of novel anti-cancer treatment options targeting clock components.
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