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ABSTRACT: We have developed an automated parameter
optimization software framework (ParOpt) that implements
the Nelder−Mead simplex algorithm and applied it to a coarse-
grained polarizable water model. The model employs a
tabulated, modified Morse potential with decoupled short-
and long-range interactions incorporating four water molecules
per interaction site. Polarizability is introduced by the addition
of a harmonic angle term defined among three charged points
within each bead. The target function for parameter
optimization was based on the experimental density, surface
tension, electric field permittivity, and diffusion coefficient. The model was validated by comparison of statistical quantities with
experimental observation. We found very good performance of the optimization procedure and good agreement of the model
with experiment.

1. INTRODUCTION

Water plays a fundamental role in a wide range of fields of
study, including geology, atmospheric sciences, chemistry,
biology, and physics.1 Because of its relevance and ubiquity,
water is the most common solvent in experimental and
computational studies of biological systems.2 The hydrophobic
effect, the segregation of molecules based on relative
interactions with water, governs membrane self-assembly,
protein folding, and many other biological processes.3 Despite
its seemingly simple structure, the water molecule forms
intricate and dynamic networks of hydrogen bonds that give it
unique bulk and interfacial properties.4,5 The wealth of
anomalous characteristics that water exhibits relative to most
other liquids underscore its uniqueness. In part because of its
enigmatic character, it has been the subject of many theoretical
and modeling efforts in the past few decades.6 Reproducing
these anomalous characteristics poses a serious challenge for
any effort to attain a detailed understanding of water dynamics
and structure.
Quantum mechanical models of water based on first

principles (ab initio) precipitate the evolution of the electronic
structure along with nuclear coordinates over time. The
resolution of these methods is at the level of molecular
orbitals. These ab initio models produce radial distribution
functions (RDFs) and rotational/vibrational spectra that
strongly agree with experimental data.7,8 The computational
complexity of quantum models restricts systems to a range too
limited to determine most statistical bulk quantities. These
properties, such as the diffusion coefficient and thermodynamic
variables, are more accurately modeled by semiempirical

approaches. Water models with atomic-level detail are the
most common for simulation of biomolecules and their
aggregates. To reproduce a wide range of complex water
behavior, several models that consist of four (Bernal−Fowler,9
TIP4P,10 and TIPS211) and five (TIP5P12) interaction sites
have been developed. In the interest of reducing computational
cost, most simulations use models (SPC,13 SPC/E,14 and
TIP3P15) that are composed of three partially charged atoms
connected with rigid bonds and a Lennard-Jones (6-12)
intermolecular potential between oxygen atoms. Each model
is reasonably accurate within its domain of applicability, but
none reproduce a large portion of the anomalous properties of
water. Various models16 include flexible bonds that allow the
water dipole moment to change with the surrounding
environment.
Coarse-grained (CG) models are able to achieve longer time

scales by averaging over rapid inter- and intramolecular
motions, thus permitting a larger time step. CG models are
able to effectively represent a larger number of molecules by
reducing the number of interaction sites considered. Because of
the unusual properties of water, the development of a CG
model that reliably describes the bulk and medium-range
properties is a challenging project. The development of models
of molecular assemblies with lower complexity that reproduce
important qualities of water17,18 is ongoing. For an extensive
review, see Coarse-Graining of Condensed Phase and Biomolecular
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Systems.19 Johnson et al.20 have identified limitations of CG
models by demonstrating the lack of transferability of a CG pair
potential across different states. The work also shows that the
pair potential cannot simultaneously resolve all the properties
of the reference system for a given state. Despite these
limitations, there is extensive development of various CG
models for water.21−32 One common CG protocol is to group a
number of water molecules into a single bead with its center as
the interaction site.21−24,26,27,32 This class of CG models carries
no charge. Electrostatic interactions are implicitly incorporated
into the effective pairwise interaction potential which is either a
Lennard-Jones (LJ)21−24 or Morse-like function.27 The free
parameters in pair potentials are trained against thermodynamic
properties such as density, surface tension, and solvation free
energy. Molinero and Moore32 built a coarse-grained water
model around the tetrahedral properties shared by water,
silicon, and carbon by adapting the Stillinger−Webber potential
originally developed for silicon. The model maps one water
molecule onto one interacting bead and describes important
properties of water across a wide range of temperatures. Using a
clustering algorithm, Hadley and McCabe derive the effective
potential through fitting to structural data.17 The models of
Shelley et al.21 and Chiu et al.27 have large isothermal
compressibility. Using a LJ 12-4 potential, Shinoda et al.24

have designed a CG water that has density and surface tension
comparable to those of water. Electrostatic interactions can be
introduced into CG water models with multiple charged sites
per bead.25,28−31 These models can describe the dielectric
properties of water. Despite the incorporation of electrostatic
interactions, both the BMW and polarizable MARTINI models
predict density different from experimental measurements.28,29

The CG representation of Darre ́ et al.30 associates approx-
imately 11 water molecules with four tetrahedrally intercon-
nected beads (WT4). The model explicitly accounts for long-
range electrostatics. The parameter set of the WT4 model is
tuned to match the experimental density. On the other hand,
the isothermal compressibility and surface tension are modeled
less accurately.30 The recent GROMOS CG31 is a 5-to-1
mapped water model with two electrostatic interaction sites. It
delivers good results for density, surface tension, and dielectric
constant as compared to those of real water but yields a
coefficient of thermal expansion 1 order of magnitude higher
than the experimental value. Adaptive multiscale models allow
transfer between simulation domains with differing granularity,
from the quantum level up to CG.33−35 Adaptive methods face
unique challenges because of the variability in the degrees of
freedom over the span of a simulation. In continuation of our
previous CG development based on the Morse potential,27 we
upgrade our previous CG water model (termed CSJ) with
polarizability and a Morse-like potential with more flexibility in
the landscape of pairwise interaction parameters. We will refer
to the new model as modified Morse coarse-grain (MMCG).

2. MODEL
A CG mapping of four water molecules to one CG water bead
was used for the current model. For interactions between water
beads, we have further refined our previous model,27 which
used the standard Morse potential, to meet two goals: (1) to
improve compressibility without sacrificing other features of the
potential and (2) to build into the interaction potential a
smoothing function that permits fairly accurate simulations
using a shorter cutoff. The choice of pairwise potential gives
flexibility in the functional form without introducing any extra

simulation costs. The coarse-grained potential must model the
average of several different interatomic and intermolecular
forces. Therefore, the functional form is solely based on a
phenomenological understanding of the system rather than a
first-principle derivation, such as the r−6 behavior of the
dispersion force included in the Lennard-Jones potential. A
modified Morse potential (eq 1) was used to describe
interactions between water bead centers.

=
− ≤

− >

α α

β β

− −

− −

⎧
⎨⎪
⎩⎪

V r
D r R

D r R
( )

[e 2e ] if (1a)

[e 2e ] if (1b)

r r
R r r

R

r r
R r r

R
mm

e
( )(1 ) ( )/2(1 )

e
( )(1 ) ( )/2(1 )

where

α α α α= + − −⎜ ⎟
⎛
⎝

⎞
⎠r

R r
R

( ) ( )L 0 L

β β β β= + − −
−

⎛
⎝⎜

⎞
⎠⎟r

r R
r R

( ) ( )R c R
c

where R and De are the potential well location and depth,
respectively. Compared to the Morse potential, the MMCG
potential replaces α, the scaling parameter in the exponent, with
two separate distance-dependent variables, α(r) and β(r). This
form decouples the repulsive (eq 1a) and attractive (eq 1b)
parts of the potential. The shape of the repulsive term as r tends
to 0 is determined by α0. The exponential factor tends toward
αL as r approaches R. Parameters βR and βc provide similar
behavior for the attractive part of the potential. Beyond the
cutoff distance rc, the potential is taken to be 0. At this writing,
we have not conducted an exhaustive search for the value for rc
that optimally combines accuracy and efficiency, but the
conventional value of 1.6 nm gives good results with reasonable
efficiency. Comparing systems representing equal numbers of
water molecules, the MMCG model achieves a >1 order of
magnitude improvement in performance over an atomistic
system. The polarizability of CG water beads is modeled like
that of the polarizable MARTINI water model,28 through the
addition of a harmonic angle potential term, with spring
constant K0 and equilibrium angle θ0, among three charged
points. This model of polarizability allows for not only dipole
but also higher moments of the electrostatic energy. Figure 1
provides an illustration of the MMCG model. The central
point, which acts as the interaction site for the modified Morse
potential, carries negative charge Q, while the two outer points
each carry charge −Q/2. A mass equal to that of four water
molecules is distributed evenly among the three points. The
distance between the outer points and the central point is a
tunable parameter I. The change in the angle (θ) between the
points represents the polarizable nature of the bead. The set of
potential parameters {De,R,α0,αL,βR,βc,θ0,K0,Q,I} determines
the space on which optimization will be performed.

3. METHODS AND RESULTS
3.1. Parameter Optimization. Parameter optimization is

exploration of a parameter space to determine extreme values of
a target function. In the case of molecular dynamics force field
optimization, the set of potential parameters defines the space
and comparison of model predictions with either ab initio data
or experimental measurements defines the target function to be
minimized. We have developed a new software package,
Parameter Optimizer (ParOpt), for general optimization
problems (ParOpt is available for download under the GNU
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public license at https://csmlabfs1.cas.usf.edu/Sites). The
software provides various optimization algorithms, including
an orthogonal steepest descent and the Nelder−Mead simplex-
based method. See Figure 2 for a schematic representation of
ParOpt. Target functions defined for molecular dynamics force
field optimization present a challenging problem. Sources of

difficulty include high dimensionality, discontinuities, possible
stochasticity due to random numerical error and finite sample
size effects, and difficulty in defining a derivative. Thus, in the
context of molecular dynamics parameter optimization
methods such as simplex-based, approaches with the least
demanding conditions on the target function are the most
suitable. Nelder−Mead, a commonly used simplex-based
optimization algorithm, iteratively evolves M + 1 points on
the M-dimensional space using four basic moves.36

Reflect. Replace the highest point with a point reflected
about the centroid of the remaining points.

α α= + ̅ −P P P(1 )r h (2)

Expand. If the reflected point is lower in value than all points
in the centroid, consider a point further from the centroid.

γ γ= + − ̅P P P(1 )e r (3)

Contract. If the reflected point would remain the highest,
consider a point nearer to the simplex.

β β= + − ̅P P P(1 )c h (4)

Shrink. Move all points nearer to the lowest point.

δ δ= + − ≠P P P P i l(1 ) for all withi i il (5)

The M + 1 individual points in the M-dimensional space are
denoted by Pi, while subscripts h and l denote the lowest and
highest points, respectively. The centroid is defined by
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Values used for optimization of water parameters are those
suggested by Nelder−Mead:23 α = 1.0, γ = 2.0, β = 0.5, and δ =
0.5. Figure 3 graphically illustrates the Nelder−Mead simplex
transformations.
The Nelder−Mead algorithm replaces the highest point in

the simplex with one with a lower target function value by
applying these moves. A Nelder−Mead step begins with

Figure 1. Illustration of the MMCG model. Four water molecules map
onto one CG bead. Each CG bead has three charge sites. The central
site with charge Q provides the interaction site for the modified Morse
potential. Outer charge sites (with charge −Q/2) are connected to the
central site by a fixed bond of length I. The central angle is a
determined by a harmonic potential with equilibrium angle θ0.

Figure 2. Schematic representation of the ParOpt optimization
framework. ParOpt provides an environment in which different
optimization methods can be accessed by defining the generation of
the target function.

Figure 3. Schematic illustration of Nelder−Mead steps. Arrows denote
points that will be replaced and the new point to be considered: (a)
the reflection of the highest point about the centroid of the remaining
points, (b) the further expansion of the reflection move, (c) the
contraction along the line joining the centroid and the highest point,
and (d) the shrinking of the simplex by shifting all points nearer to the
lowest point.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp409545x | J. Phys. Chem. B 2014, 118, 1603−16111605

https://csmlabfs1.cas.usf.edu/Sites


calculation of a reflect move. If the target function value for this
new reflected point is lower than all points in the simplex, an
expansion move is attempted. If this expanded point is lower
than all points in the simplex, it is accepted. If the reflected
point is not higher than the highest point in the new simplex, it
is accepted and replaces the highest point in the simplex. If the
newly accepted reflected point is still the highest point in the
simplex, a contraction step is attempted. If the contracted point
is higher than the highest point in the simplex, then a shrink
move is applied, replacing all points except the lowest. If the
contracted point is lower than at least one point, it is accepted
into the simplex. This process is repeated until the stopping
criterion is met. The stopping criterion for the Nelder−Mead
method is a cutoff on the root-mean-square target function
value over the entire simplex. The number of occurrences of
each move in an optimization depends on the characteristics of
both the simplex and the target function and is therefore
problem specific. The parameter space for the MMCG water
model is a 10-dimensional bounded space. Minimal and
maximal values (see Table 1) for each parameter were chosen

heuristically to restrict target function evaluations to reasonable
combinations of parameters. The original description of the
Nelder−Mead algorithm has no set method for boundary
conditions on the parameter space, though suggestions are
made for modification of functional forms or assignment of
large “penalty” numbers for points outside of the boundary. We
chose to replace points outside the boundary with the nearest
point within the allowable space.
For optimization of the MMCG water model, the target

function was defined by the weighted percent error in
comparison of CG simulation results with four experimental
quantities: density, dielectric constant, diffusion coefficient, and
surface tension. To ensure that all comparison data contribute
to the target function and thus the evolution of the simplex,
percent errors are assigned scalar weights to yield similar orders
of magnitude among all quantities. With this goal in mind,
density was weighted 100 times higher than surface tension,
while permittivity and diffusion coefficient were weighted 10
times higher. Experimental values used in training are listed in
Table 2.
Density. Density was computed by taking the ratio of the

mass of the system and the ensemble average volume.
Diffusion Coefficient. The standard practice in comparing

diffusion coefficients between CG models and experiment is to

assume that diffusion for N-sized clusters scales as 1/N; i.e., DN
= D1/N, where DN is the diffusion coefficient for an N-sized
cluster. This assumption neglects any interatomic correlation.
The GROMOS CG work31 compares the CG bead diffusion
coefficient with the diffusion coefficient for the center of mass
of clusters in the SPC water model. In that work, static clusters
in the atomistic representation were produced by adding
distance restraints between oxygen atoms, which produces
diffusion coefficient scaling close to the inverse behavior usually
assumed. In the work presented here, clusters are constructed
similarly, though unrestrained. To calculate diffusion coefficient
scaling, clusters were constructed from each molecule and its
nearest N − 1 neighbors. The MSD for such clusters was
calculated using a window averaging method with eq 7. Though
the method presented here may not be generalizable to all
types of clusters, it provides an improvement over current
assumptions for homogeneous systems. Figure 4 shows the

diffusion coefficient scaling for SPC/E water. The plot for
atomistic water shows significant deviation from the scaling
behavior of uncorrelated clusters, especially at larger values of
N. Therefore, approximations leading to 1/N scaling are more
appropriate at smaller cluster sizes. At a bead size of four water
molecules, the difference is significant. On the basis of this
analysis, we use a scale factor (s) of 3.16 to compare the CG
diffusion coefficient with experiment, instead of the usual factor
of 4.
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Table 1. Optimal Parameters for a Set of Final Parameters
from Nelder−Mead Optimization Compared with Results
from the Previous Model (CSJ)

parameter
CSJ

value27
optimized value (this

work)
minimal
value

maximal
value

De
(kJ mol−1)

3.4 3.742 2.0 5.0

R (nm) 0.629 0.560 0.55 0.61
α0 7 15.545 7.0 20.0
αL 7 13.323 7.0 20.0
βR 7 10.976 7.0 20.0
βc 7 3.198 1.0 7.0
θ0 − 131.406 105.0 145.0
K0
(kJ mol−1)

− 93.918 20.0 180.0

Q (e) − −1.126 −1.6 −1.06
I (nm) − 0.141 0.1 0.25

Table 2. Training Data Showing Results for the Optimized
Point Compared with Experimental Target Data

property experiment training result

ρ (g cm−3) 0.99639 0.993
D (×10−9 m s−2) 2.59740 2.61
ε 76.841 76.24
γ (mN m−1) 71.242 78.43

Figure 4. MSD scaling for SPC/E water. The line shows the usual
practice of taking the diffusion of an N cluster beginning N times
slower than the single molecule. SPC/E was determined by simulation
of SPC/E at 303 K. Clusters were chosen by the N − 1 nearest
neighbors for each water molecule, and the center of mass diffusion
was calculated.
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where x(t) is the position of the central bead at time t and the
broken brackets denote an ensemble average.
Relative Permittivity. The relative permittivity (ε) was

calculated using a Clausius−Mossotti-like equation with a
reaction field with an infinite dielectric constant (conducting
boundary conditions).37

ε
ε

= + ⟨ ⟩ − ⟨ ⟩
⟨ ⟩

M M
V T

1
3

2 2

0 (8)

where M is the total system dipole, ε0 is the permittivity of free
space, ⟨V⟩ is the ensemble average system volume, T is the
target temperature for the thermostat, and ε0 is the permittivity
of the vacuum.
Surface Tension. The surface tension was taken from the

GROMACS internal calculation:
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where the z-axis is normal to the interface, Pnn terms are the
pressure tensor diagonal elements, Ns is the number of
interfaces, and Lz is the size of the system along the z-axis.
The optimization procedure involves many target function

evaluations. These evaluations, at a point in parameter space,
involve the execution of two MD simulations. This places
practical limits on the size and length of simulations used for
optimization. Therefore, systems used for determination of the
diffusion coefficient, density, and electric field permittivity
contained 512 CG beads, corresponding to 2048 water
molecules. This system is denoted as S1. Because of large
fluctuations, the calculation of surface tension requires a larger
system: 4096 CG beads, implying 16384 water molecules
(system S2). System S2 was constructed, at every evaluation of
the target function, with a slab near the average density
computed from S1 in contact with a vacuum.38 System S2 was
simulated under the constant number, volume, and temperature
(NVT) ensemble. More details on simulation methods are
found in Appendix A.
The first step in optimization is the construction of an initial

simplex. In this work, optimization started with a simplex
consisting of random points within the domain of parameter
space that satisfied constraints. This simplex was optimized
until convergence. To further improve the accuracy of the final
point, the optimization was restarted with an initial simplex
consisting of the converged point and random points around it.
This procedure was then iterated two more times, with the final
optimization resulting in the point presented in Table 1.
Figure 5 shows the mean and root-mean-square (rms) target

function value versus the Nelder−Mead step for the final
optimization iteration. Because of the roughness of the
hypersurface generated by the target function, the simplex
may occasionally include a vertex with an abnormally high
value, as observed in the mean and rms of the second shrink
step of Figure 5. Figure 6 shows the evolution of parameter
values over the final run, while Figure 7 shows the change in
computed physical properties. The figures demonstrate the
convergence of both the data and parameter values. Further,
Figure 6 demonstrates that although parameters did encounter
the boundaries over the course of the optimization, the final
simplex converged away from the boundary. Thus, the
parameter value boundaries chosen were not unreasonable.

The final set of parameters was chosen as the point in the
final converged simplex with the lowest target function value
(see Table 1). The decoupling of repulsive and attractive
parameters, the added distance dependence of the exponential
factors, and the added electrostatic interaction have allowed for
a decrease in the equilibrium distance, while maintaining the
experimental density. The large differences between exponen-
tial parameters in the new and original models hint that the
extensions have added important flexibility. The simulation

Figure 5. Optimization results. The mean error, rms error, and rms
cutoff as a function of Nelder−Mead step are shown. Reflection (□),
contraction (○), and shrink (■) steps are labeled at the corresponding
mean error point.

Figure 6. Optimization results. Parameter trajectory. Variation in
parameters as a function of Nelder−Mead step. Dashed lines indicate
minimal and maximal values.
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results corresponding to the final set of parameters are listed in
Table 2.
3.2. Validation. When validating the results of an

optimization procedure, one cannot consider the training data
alone. The suitability of the force field will depend on matching
data that the model was not explicitly trained to reproduce.
Therefore, validation simulations were performed to verify the
reliability of the optimized parameters. Because validation is not
performed iteratively, it is not subject to the same size
constraints as optimization. All systems for validation consisted
of 110592 CG beads, which corresponds to 442368 water
molecules. See Appendix A for more details on simulation
methods.
The density, diffusion coefficient, relative permittivity, and

surface tension were determined from the larger validation
systems using the same methods that were used during
optimization [see section 3.1; in addition, bulk thermodynamic
quantities were also calculated (see Table 3)].
Coefficient of Thermal Expansion. The coefficient of

thermal expansion, α, was calculated using the finite-difference
method.43

α = ∂
∂
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Two constant number, pressure, and temperature (NPT)
ensemble simulations at temperatures of 303.15 K (T1) and
308.0 K (T2) were performed. The ensemble averages of the
resulting densities were used for ρ1 and ρ2, respectively.

Isothermal Compressibility. Isothermal compressibility κT
was calculated using two methods:44 (i) a finite difference
method for NVT simulations at different densities (ρi)

κ
ρ
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and (ii) volume fluctuations in an NPT ensemble simulation

κ = Δ
⟨ ⟩

V
V k TT

2

B (12)

where Pi is the pressure on system i and ΔV2 is the variance of
the volume. For eq 11, the following densities were used: ρ1 =
0.993 g cm−3, and ρ2 = 0.963 g cm−3.

Enthalpy of Vaporization. The enthalpy of vaporization was
calculated from the interaction energy between CG beads
(VInter) and the intermolecular interactions that occur within
the bead VS of 128.5 kJ mol−1 determined from quantum
mechanical calculations of the water tetramer binding
energy.27,45

Δ = −
+

+H
V V

RT
4vap

Inter S

(13)

where the factor of 4 is due to the level of CG.
The average dipole moment of an individual bead was

calculated for the MMCG water model. Because a CG bead
represents four water molecules, the total dipole moment for an
atomistically detailed SPC/E water molecule along with its
three nearest neighbors was computed for comparison. The
MMCG model yields an average dipole moment of 4.1 ± 0.25
D, whereas the four-water cluster dipole moment from the
SPC/E water model was 5.3 ± 1.0 D; density function theory
(DFT) calculations for an isolated cluster produce no dipole
moment.46 The effective polarizability (α0) for a CG bead was
calculated using eq 14.47 The MMCG model yields a value of
63 au compared with a value of 39.33 au given by DFT for an
isolated four-water cluster.48 The disparity in these values is
most likely a result of differences between clusters in the bulk
and in isolation.

Figure 7. Optimization results. Training data [density (ρ), electric
field permittivity (ε), diffusion coefficient (D), and surface tension
(γ)] () as a function of Nelder−Mead step compared with target
values (---).

Table 3. Validation Data Comparing Experimental Data, an Existing CG Model (polarizable MARTINI), an Atomistic Model
(SPC/E), and the Previous Model (CSJ) to This Work (MMCG)a

property experiment polarizable MARTINI28 SPC/E CSJ27 MMCG (this work)

ρ (g cm−3) 0.99639 1.043 0.99814 0.998 0.993 ± 0.0005
D (×10−9 m s−2) 2.59740 2.5 2.514 4.3 3.07 ± 0.03
ε 76.841 75.6 70.7 (at 298 K)49 74.17 ± 0.06
γ (mN m−1) 71.242 30.5 71.0 78.73 ± 0.2
α (×104 K−1) 3.2150 6.89 ± 1.3
κT (×10−6 bar−1) (NPT) 44.7551 34.0744 170.0 68.95 ± 10
κT (×10−6 bar−1) (NVT) 44.7551 41.4144 57.16 ± 0.5
Hvap (kJ mol

−1) 44.052 38.4 48.52

aQuantities computed are density ρ, diffusion coefficient D, dielectric permittivity ε, surface tension γ, coefficient of thermal expansion α, isothermal
compressibility κT, and enthalpy of vaporization Hvap. Values computed both during optimization and for validation differ because of the size
differences between simulated systems.
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4. CONCLUSION
To automate force field optimization, we have developed a
general optimization framework ParOpt. The software utilizes
various methods to locate minima of the defined target function
on parameter space. Parameters are systematically varied to
determine the most accurate set of parameters. We have applied
this general framework to optimize the parameters of a
polarizable CG water model with nonbonded interactions
given by a modified Morse potential via the Nelder−Mead
algorithm. The model has more flexibility in the functional form
than most CG models, allowing it to match a wide range of
experimental properties (see Table 3).
Any model in a classical molecular dynamics framework is a

simplification of a physical system and therefore involves a
reduction in the degrees of freedom in the description of the
interactions. Any such modeling attempt would be nonunique.
Though the set of parameters that govern the model are
mathematically independent, their effects on observable data
and therefore the target function are not necessarily
uncorrelated. Therefore, because of this interdependence of
the parameters, the optimization is not necessarily under-
determined despite an apparent abundance of free parameters
to match the target data. The question of uniqueness is
nontrivial to answer and is in fact a matter of ongoing research
(e.g., in the context of economic models53). For complex
systems in general, there is no straightforward, computationally
tractable, and general solution to this problem; rather, heuristic
approaches must be developed for the particular system being
studied. In light of these factors, it may be the case that our
parameter set presented in this paper is one of many equally
good sets. The point we have chosen was a suitable point that
matched the training data well. Additionally, it can be seen from
the good agreement with the validation data, which is
independent of the training data, that the resulting force field
parameters are well-tuned.
There are fundamental limitations to the explanatory power

of CG water models. RDFs are notoriously difficult for to
match. An artifact common to most CG models is the long-
range correlation between CG water beads not seen in
experiment or atomistic models. Figure 8 shows that the
current model suffers from that same limitation. Likely as a
result of the high degree of interbead correlation at long
distances, the model has the propensity to spontaneously
solidify at room temperature, a weakness found in other CG
water models.23 This phenomenon would not be expected in a
heterogeneous system, because long-range correlations would
be broken by the presence of other interactions. Additionally,
spontaneous freezing can be avoided by periodically assigning
random velocities chosen from a Maxwell distribution, a
method similar to one suggested by Harvey et al. to prevent the
overpopulation of low-frequency modes of a molecular
dynamics system.54 Because dynamic and structural properties
of water clusters vary with temperature, the internal states of
CG beads would, as well. Thus, CG models cannot necessarily
be assumed to transfer to different temperatures. We believe
that the interaction parameters for CG models would be more
accurately treated as being temperature-dependent. The set of
potential parameters has been tuned for one temperature and is
not expected to accurately simulate behavior far from the target

temperature or in thermodynamic ensembles without constant
temperature control.
The predictions of the model agree well with experiment for

structural, dynamic, and bulk properties. The diffusion constant
shows that the model has accurate dynamics. The dielectric
constant indicates the validity of the parameters that determine
electrostatics and polarizability. Density ensures the correct
spatial scale of the CG beads. Accurate surface tension indicates
an accurate representation of the strength of the interaction
between beads. The thermodynamic quantities predicted by the
model are in good agreement with those of experiment,
validating the fitness of the parameters.

■ APPENDIX A

Simulation Details
GROMACS 4.0 modeling software55 was used for all MD
simulations performed in this work. User-custom look-up tables
for the Morse potentials (1) were prepared as described in a
previous work.27 We find that replacing the standard Lennard-
Jones interaction form with a table look-up does not add
significantly to computational time. The neighbor search cutoff
(rlist) was set to 1.6 nm. When an energy look-up table is used,
GROMACS 4.0 uses rlist as the real cutoff for the interaction
potential. A time step (Δt) of 20 fs was used in all simulations.
The pair list was updated, and the center of mass motion was
removed every five steps. All simulations were performed at
303.15 K and at 1 atm of pressure unless otherwise explicitly
specified. Electrostatic interactions were computed using the
particle mesh Ewald (PME) method.56,57 The Nose−́Hoover
temperature coupling method58 and Parrinello−Rahman
pressure coupling algorithm59 were used for setting temper-
ature and pressure boundary conditions, respectively. Temper-
ature and pressure coupling constants of 2.1 and 2.5 ps,
respectively, were used for all simulations.

■ APPENDIX B

Continuity and Differentiability of V(r)
The modified Morse potential (eq 1) is continuous and
differentiable over the range r ∈ [0, rc).

α α=
→ −

rlim ( )
r R

L (15)

Figure 8. RDF. Comparison between g(r) for the atomistic SPC/E
water model () and the MMCG water model (---). The CG model
has greater long-range coordination than the atomistic model.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp409545x | J. Phys. Chem. B 2014, 118, 1603−16111609



= − =α α

→ →

− −
− −

V r D Dlim ( ) lim [e 2e ]
r R r R

r
R

r
Rmm e

(1 ) /2(1 )
e

L L

β β=
→ +

rlim ( )
r R R (16)

= − =β β

→ →

− −
+ +

V r D Dlim ( ) lim [e 2e ]
r R r R

r
R

r
Rmm e

(1 ) /2(1 )
e

R R

Therefore, the limit exists at R, and Vmm(r) is a continuous
function. The function is also differentiable at r = R:
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where

α

β
=

≤

≤

⎪

⎪

⎧
⎨
⎩

h r
r r R

r r R
( )

( ) if

( ) if

In the limit of r approaching R, the final term in eq 17 is
vanishing. Because the first and second terms approach
constant values, ∂Vmm(r)/∂r also vanishes, and the derivative
of Vmm(r) is continuous.
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