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ABSTRACT Objective: 3D reconstruction of the shape and texture of hollow organs captured by endoscopy
is important for the diagnosis and surveillance of early and recurrent cancers. Better evaluation of 3D
reconstruction pipelines developed for such applications requires easy access to extensive datasets and
associated ground truths, cost-efficient and scalable simulations of a range of possible clinical scenarios,
and more reliable and insightful metrics to assess performance. Methods: We present a computer-aided
simulation platform for cost-effective synthesis of monocular endoscope videos and corresponding ground
truths that mimic a range of potential settings and situations one might encounter during acquisition of
clinical endoscopy videos. Using cystoscopy of the bladder as model case, we generated an extensive dataset
comprising several synthesized videos of a bladder phantom. We then introduce a novel evaluation procedure
to reliably assess an individual 3D reconstruction pipeline or to compare different pipelines. Results: To
illustrate the use of the proposed platform and evaluation procedure, we use the aforementioned dataset
and ground truths to evaluate a proprietary 3D reconstruction pipeline (CYSTO3D) for bladder cystoscopy
videos and compared it with a general-purpose 3D reconstruction pipeline (COLMAP). The evaluation results
provide insight into the suggested clinical acquisition protocol and several potential areas for refinement of
the pipeline to improve future performance. Conclusion: Our work proposes an endoscope video synthesis
and reconstruction evaluation toolset and presents experimental results that illustrate usage of the toolset
to efficiently assess performance and reveal possible problems of any given 3D reconstruction pipeline,
to compare different pipelines, and to provide technically or clinically actionable insights.

INDEX TERMS Virtual 3D endoscopy, 3D surface reconstruction, computer evaluation, medical simulation,
video synthesis.

Clinical and Translational Impact Statement This pre-clinical research work proposes a standardized and
comprehensive approach to efficiently assess or compare different 3D reconstruction pipelines, which can
accelerate the clinical translation of virtual 3D endoscopy.

I. INTRODUCTION
Recent improvements in endoscopy have played a critical role
in the early detection, monitoring and treatment of visceral
cancers [1], [2]. Among them, virtual three-dimensional (3D)
endoscopy has emerged as a promising technology for train-
ing and surgery [3]–[6], postoperative review and naviga-
tional mapping during robotic surgery [7], [8]. Conventional
endoscopy suffers from the loss of spatial perception due to
the projection of 3D structure into two-dimensional video

frames. In contrast, 3D reconstruction pipelines for virtual
endoscopy can produce 3D models of the shape and texture
(visual pattern) of hollow organ cavities from monocular
endoscope video frames that preserve spatial perception and
are also easier to review, compare and annotate [9]–[12].

A. PROBLEM STATEMENT
Determination of the clinical readiness of a given recon-
struction pipeline requires objective evaluation tools that
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can assess its reliability and potential to work in a par-
ticular clinical scenario or to perform well under a vari-
ety of potential clinical scenarios. While 3D reconstruction
pipelines have been developed for several clinical applica-
tions [10], [13]–[27], a robust set of evaluation tools has not
been established. The lack of such tools makes it difficult to
identify which aspects of a newly developed pipeline should
be changed to improve its performance, or to compare differ-
ent pipelines to determine which is better for a certain clinical
application scenario.

B. STATE OF THE ART
Evaluation of 3D reconstruction pipelines requires (1) a
monocular endoscope video as input, (2) the 3D ground
truth shape and texture of the organ to be reconstructed
and (3) objective metrics to compare the reconstructed model
and the ground truth. Importantly, the community should
strive to use the same input datasets, ground truths andmetrics
for all pipelines to facilitate accurate and objective compar-
isons of newly developed pipelines.

While benchmarking datasets from the general-purpose 3D
reconstruction community exist and can be used as video
inputs for virtual endoscopy algorithms [28]–[32], their fea-
tures do not resemble biological tissue nor do the movements
and optical properties of commercial cameras mimic those of
an endoscope. Hence, evaluations using these datasets do not
generalize well to the clinical domain [32]. As a result, most
virtual endoscopy developers perform evaluations using pro-
prietary datasets [10], [13]–[27]. Not only are these datasets
not broadly available, but they also represent only a limited
range of clinical scenarios, which masks pipeline generaliz-
ability to different scenarios.

To obtain ground truth of organ shape, textures and camera
poses, some prior works have used preoperational computed
tomography (CT) scans of the organ or laser scans of phys-
ical phantoms and camera poses measured by commercial
trackers [20], [22]–[25], [33]. However, these ground truths
do not consider possible tissue deformation, the complexity
of which is a major obstacle in the development of a robust
3D reconstruction pipeline for clinical use [27]. Moreover,
scaling the size and variance of these datasets to permit
evaluation over a range of clinical conditions (e.g., differ-
ent settings for imaging speed, surface proximity, trajectory
type, organ vascularity) is logistically challenging and costly.
Computer simulation provides a solution for cost-effective
generation of videos and ground truths having versatile prop-
erties [23], [34], [35]. However, most simulation systems
for hollow organs like the colon, bronchus and abdominal
cavity [36]–[39] were designed for virtual display during
medical training and thus do not support data synthesis and
evaluation for 3D reconstructions.

Finally, the metrics often used to evaluate reconstruc-
tion pipelines provide only a limited view of the pipeline’s
performance [12], [20], [22]–[25], [33], making it hard to
assess whether new pipelines are superior or inferior to
existing options. For example, most works report subjective

assessment of the 3D model’s visual appearance and/or the
quantitative residual distance obtained after aligning the
reconstructed 3Dmodel with the ground truthmodel. The for-
mer practice is insufficient because it is qualitative and, there-
fore, unreliable. The latter practice only assesses accuracy of
the reconstructed shape and can easily fail to correctly reflect
the quality of the reconstructed model. For example, a recon-
structed 3Dmodel may be accurate (i.e., have a small residual
distance) but incomplete, or the model may be accurate in
shape while the reconstructed camera poses may be inaccu-
rate, leading to inaccuracy of the final texture. Furthermore,
neither practice reveals which are the problematic steps that
restrict pipeline performance.

C. CONTRIBUTIONS
In this paper, we propose a new computer simulation tool
(Section IIA) designed as a plug-in to Blender, a free and
open-source 3D computer graphics software [40], for cost-
efficient generation of synthetic benchmarking endoscope
videos and associated ground truths mimicking a variety
of clinical scenarios. Compared with similar Blender-based
tools recently developed for generating simulated endoscopy
videos [23], [40], our work demonstrates greater scalability
to simulate a wider range of clinical scenarios, including
tissue deformation.Moreover, the datasets generated with our
tool allow for more robust evaluation of 3D reconstruction
pipelines. To this end, we also propose a comprehensive
set of metrics (Section IIC) that we suggest are neces-
sary to reliably and correctly reflect the quality of recon-
structed 3D models, reveal problematic steps in a given
3D reconstruction pipeline, and establish the working range
of variables one might encounter in clinical use scenar-
ios. The tools are publicly available in https://github.com/
BBOL-team/bladderslam_EVS3D.git.

To demonstrate representative use cases for our tool,
we use the simulation tool to generate an extensive bench-
marking dataset (Section IIB) that is then used to evaluate
CYSTO3D (Section IIIA-D), a proprietary 3D reconstruction
pipeline described in a prior work for cystoscopy, which is
endoscopy of the bladder. We show that the metrics we pro-
pose go beyond the traditional evaluation results to provide
new insights that can help to guide future improvement of the
pipeline or clinical protocol with which it will be used. The
further step of comparing the performance of CYSTO3D and
a general-purpose 3D reconstruction pipeline (COLMAP)
(Section IIIE) reveals how our proposed tool and evaluation
framework can guide selection of which pipeline is better
suited for clinical translation.While the current paper focuses
on bladder reconstruction from cystoscopy videos, our pro-
posed tools are easily generalizable for other organs such as
stomach.

There is currently no 3D reconstruction pipeline with tech-
nical readiness validated by preclinical or clinical studies,
even though research in this field has been ongoing for over
a decade [27]. We expect that the proposed tools can help
standardize assessment of 3D reconstruction pipelines, thus
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FIGURE 1. An inexhaustive list of key variables and image-level factors
that influence the performance of 3D reconstruction pipelines.

accelerating their path to clinical translation to deploy virtual
3D endoscopy.

II. METHODS
A. ENDOSCOPE VIDEO SYNTHESIS PLATFORM: EVS-3D
We developed an endoscope video synthesis (EVS-3D) plat-
form as a plugin within Blender 2.83 [40] using its python
scripting application programming interface (API). EVS-3D
simulates a virtual environment that comprises a virtual
model for a hollow organ (phantom), a virtual camera to
mimic the camera on the tip of the endoscope and a scan
trajectory by which the camera captures images of the inner
surface of the phantom. To create a synthesized video, the
virtual cameramoves along the trajectory, and images are ren-
dered from the camera views as endoscope video frames. The
synthesized video, the ground truth model associated with the
virtual phantom used and the prescribed camera trajectory
can be exported and used for evaluation of a reconstruction
generated from the synthesized video.

EVS-3D enables the simulation of various clinical
endoscopy scenarios in cost-effective manner. In particu-
lar, users can use the platform to generate multiple syn-
thetic endoscopy videos by varying any of a number of
user-adjustable key variables. These key variables represent
differences in the clinical protocol that one might use to
collect an endoscopy video; each variable has the potential
to influence the quality of the acquired video and its sub-
sequent reconstruction. Fig. 1 shows an inexhaustive list of
key variables (blue list in Fig. 1) – many of which can be
adjusted in EVS-3D – that often intertwine to influence video
quality, which is quantified by image-level factors (gray list
in Fig. 1). For instance, field of view (FOV), frame rate, and
endoscope trajectory (scan pattern) may influence the over-
lap across frames as well as the distribution of features per
frame, both of which are crucial factors to determine whether
the acquired video will be adequate for a reasonable recon-
struction. Similarly, tissue deformation, which may arise
from luminal wall expansion and muscle movements due
to breathing, heartbeats and intervention during examination

FIGURE 2. EVS-3D platform user interface. On the left is the Blender
built-in 3D viewport showing a virtual phantom model and an endoscope
movement trajectory (the cyan curves in the center of the model). The
green frame indicates the endoscope camera FOV as a view frustum.
On the right is a snapshot of the user panel for adjustment of (A) settings
for the 3D viewport and some key variables during video synthesis,
including (B) phantom model shape, (C) deformation, (D) endoscope
movement related variables like trajectory type, (E) endoscope optics
related variables like lens distortion, and (F) settings for file generation
and exporting. Note that the user panel only shows the adjustment
interface of a subset of the supported key variables. Other key variables
are adjusted through Blender’s built-in interface.

(e.g., urologists may push the belly to view larger regions in
bladder), can change the stationarity of features on the object,
making it difficult to perform accurate reconstruction with
pipelines that are based on algorithms that assume rigidity of
objects. While image-level factors directly indicate whether
the video quality is sufficient for reconstruction, these factors
are usually determined by key variables related to the clinical
protocol. Thus, directly studying how key variables influence
the final reconstruction is useful for providing actionable
insights for clinicians and researchers developing reconstruc-
tion pipelines.

Among all the listed variables, there are, however, some
variables that we choose not to simulate (italicized key vari-
ables in Fig. 1). For example, water-filling of the bladder
is often conducted to obtain more working space during
cystoscopy examination and would cause changes in the
shape and texture when filled with different amounts of
water. In such circumstances, evaluation of the reconstruction
results becomes ill-defined, because the ground truth values
of the shape and texture are changing. To enable a well-
defined evaluation, we simplify the scenario and focus on
whether a pipeline can reconstruct a 3D digital phantom
(whose shape and texture are nearly fixed, having only small
disturbances due to tissue deformation) from endoscope
videos. In the clinical setting, we can satisfy the assumptions
that the shape and texture of the organ do not change severely
by making sure of the following: (1) the same amount of
water is used to fill the bladder during different sessions;
(2) frames acquired during water filling are discarded prior
to the reconstruction.

Fig. 2 shows the user interface of the EVS-3D plat-
form, which displays the virtual objects in Blender’s built-
in 3D viewport and packages adjustable key variables into
the plug-in user panel. Following the taxonomy used in
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FIGURE 3. (a) Spiral trajectories with two different trajectory spacings.
(b) Sine trajectories with two different trajectory spacings. (c) Preset
phantom shapes: sphere, bladder. (d) Examples of cropped areas of
synthesized bladder texture with varied contrast and feature density.
Deformation cycle of (e) bladder-shaped and (f) sphere-shaped
phantoms, both with synthesized bladder texture.

Fig. 1, we describe the key variables supported in EVS-3D
platform.

With respect to optics in the virtual endoscope camera,
EVS-3D supports adjustment of the depth of focus (DOF),
FOV, lens distortion, illumination intensity and orientation.
With respect to electronics in the virtual endoscope camera,
EVS-3D supports adjustment of the pixel number, frame
rate, sensor signal-to-noise ratio and motion blur. Users can
set the above variables in Blender’s built-in object property
interface.

With respect tomovement of the virtual endoscope camera,
EVS-3D supports adjustment of the trajectory type, trajectory
spacing (i.e., spacing between neighboring curves), imaging
distance (i.e., distance between camera center to the inner
surface of the virtual phantom model), camera velocity as
well as customized trajectories. Fig. 3 (a, b) shows examples
of preset trajectory types (spiral, sine) and trajectory spac-
ings. The user can create a customized trajectory by creating
a curve-based object in Blender or by manually moving the
mouse in the 3D view port to draw a trajectory curve. Jitter
noise, simulating the imperfection of human movements, can
also be added by manually moving the control points of any
trajectory curve. With respect to the virtual phantom model,
EVS-3D supports various phantom shapes, which allows
users to evaluate the generality of a reconstruction pipeline on
different organs. Fig. 3 (c) shows two of the preset phantom
shapes (sphere, bladder) currently available in EVS-3D. The
preset organ shapes were extracted from CT scans of human
participants; users can also add other shapes to represent other
organs. The user can select preset phantom model from the
user panel shown in Fig. 2 or create new phantom model by
importing new 3D shape assets into Blender.

To set the texture of the virtual phantom model, the user
can import high-resolution and high-contrast textures from
wide-FOV endoscopic images and map the texture onto the
3D shape model in Blender’s UV Editing interface (Blender’s
built-in interface for editing texture mapping on 3D model).
If a high-quality texture is not available, EVS-3D also sup-
ports adjustment of the tissue surface texture through the
synthesis of ‘‘vascularized’’ texture source images created by
programmatically drawing vascular-like patterns on an either
preset or user-defined low-resolution texture. Adjustable
parameters include the maximum width and length of each
vessel, the percentage of the texture containing vasculature
and the color of the vasculature. Fig. 3 (d) shows examples of
synthesized bladder textures with different parameters. There
are two gains of using texture with programmatically drawing
vascular-like patterns. (1) For users that do not have access to
high-quality real endoscopic textures, this feature provides an
alternative to generate a customized bladder texture. (2) With
programmatic drawing, one can generate different textures
with various parameters (e.g., density of vascular patterns)
and evaluate the influence of these parameters on 3D recon-
struction performance. As real endoscopic textures usually
have limited diversity, this evaluation would otherwise be
hard to perform cost-effectively.

EVS-3D also supports the simulation of tissue deformation
(e.g., to mimic heartbeats or intentional compression of the
tissue during observation). One first creates a deformation
profile by selecting a set of vertices on the phantom (indicated
by red arrows in Fig. 3 (e, f)) and by defining the maximum
displacement (indicated by blue circles in Fig. 3 (e, f)) and
frequency of displacement (i.e., the number of deformation
cycles in one second). Fig. 3 (e, f) show snapshots of a
complete deformation cycle, where the vertices (within the
area marked by blue circles) move from an original location
to a maximum displacement and then revert to their original
locations. Users can choose from preset deformation profiles
in the plug-in user panel or design their own as described pre-
viously. Once a deformation profile is selected, the user can
set the displacement magnitude and displacement frequency
by adjusting the ‘‘deform magnitude’’ and ‘‘deform cycle’’
parameters in the plug-in user panel.

B. GENERATION OF AN EXTENSIVE DATASET
One possible use of EVS-3D is to modulate the aforemen-
tioned key variables over a range of values to generate an
extensive dataset that can be used to assess a pipeline’s
robustness/sensitivity over each variable. As the influences
of different key variables on pipeline performance are usually
entangled, the advantage of EVS-3D is that we can stringently
control the key variables and isolate the one of interest with-
out any extra cost.

We provide a representative extensive dataset synthesized
using EVS-3D. For each synthesis, we first set the values
of all aforementioned key variables. The virtual endoscope
camera was then moved along the set trajectory to scan
the complete inner surface of the virtual phantom model.
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FIGURE 4. Each synthesis generates the following stored files: the main
video file, the auxiliary video file and ground truth files (i.e., the phantom
model file, the auxiliary model file and the text file containing the ground
truth camera poses of all frames in the video).

TABLE 1. The key variable settings used for our extensive dataset.

All frames during the scan were exported and stored as the
‘‘main video.’’ Next, the same scan was repeated on a virtual
auxiliary model that had the same shape as the phantom
model but used a different texture (i.e., a multi-precision grid
pattern with white coordinates on a blue background for best
visual clarity). All frames during this scan were exported and
stored as an ‘‘auxiliary video’’ (see Section IIC). The virtual
phantom model, auxiliary model and the camera poses of all
frames during the scan were exported to two model files and
one text file as ground truths. Thus, each synthesis generates
one main video file, one auxiliary video file and three ground
truth files, as shown in Fig.4.

For the experiments described in this manuscript, we gen-
erated four groups (A-D) of several synthetic videos each by
modulating over a subset of the key variables, as shown in
Table 1. All synthesized videos in this dataset use a virtual
phantom model with a spherical shape (diameter of 10 cm
to mimic the distended bladder) and a synthesized bladder
texture. We set key variables related to the virtual endo-
scope based on the specifications of a Karl Storz cystoscope
(11272 VH/VHU), with simplifications: no lens distortion,
sensor noise or motion blur.

Group A contains two syntheses using different trajectory
types. In this paper, we focus on two idealized trajectory
types (i.e., no jitter) that are feasible in cystoscopy: (1) In
the spiral trajectory (Fig. 3 (a)), one continuously rotates the
cystoscope shaft while simultaneously increasing the amount

of shaft insertion, changing the bend of the tip when needed
to scan the bladder in a spiral path. (2) In the sine trajectory
(Fig. 3 (b)), one continuously bends the cystoscope tip to
scan vertically from the bladder dome to the bladder neck
(entrance), rotates the cystoscope shaft by a small angle
followed by another vertical scan, and then repeats the pro-
cess until all 360-degrees have been covered. Note that the
trajectory looks like a sine wave when flattened, hence the
name.

Group B contains four syntheses with trajectory spacings
of 0.2 cm, 0.3 cm, 0.4 cm and 0.7 cm. Fig. 3 (b) shows a
sine trajectory with a spacing of 0.7 cm on the left and one
with a spacing of 0.2 cm on the right. Group C contains four
syntheses with imaging distances of 2.0 cm, 2.5 cm, 3.5 cm
and 4.0 cm.

Group D contains four syntheses with different levels of
tissue deformation. We used the preset deformation profiles
shown in Fig. 3 (f) with a displacement frequency of 0.2 Hz
(i.e., one deformation cycle takes five seconds).We define the
deformation level to be the ratio of the actual maximum dis-
placement during synthesis and the maximum displacement
of the preset deformation profile. The deformation level can
range from 0 (no deformation) to 100% (maximum displace-
ment in the preset deformation profile).

C. EVALUATION PROCEDURE
Our proposed evaluation procedure is designed in accordance
with the general workflow of 3D reconstruction pipelines for
human organs from monocular endoscope video, as shown
in Fig. 5. Such 3D reconstruction pipelines are typically
composed of the following steps: (Step 0) Video frames
are preprocessed to generate calibrated, feature-enhanced
and texture-enhanced images. (Step 1) The camera pose at
each frame and a 3D point cloud are reconstructed from
feature images using algorithms like Structure from Motion
(SfM) [41]. (Step 2) The reconstructed point cloud is post-
processed (e.g. filtering, smoothing) for noise reduction.
(Step 3) A 3D mesh model is reconstructed from the post-
processed point cloud using algorithms like Poisson sur-
face reconstruction [42]. (Step 4) A 3D textured model of
the organ is generated by mapping texture images to the
mesh model according to reconstructed camera poses of
the mapped frames. Hence, a complete 3D reconstruction
pipeline generates several intermediate outcomes (e.g., the
reconstructed camera poses, point cloud, postprocessed point
cloud, meshmodel), and the final outcome is a texturedmodel
that captures both the shape and texture of the organ’s inner
surface.

Since we consider emerging applications of virtual
endoscopy such as training (i.e., identification of missing
regions) and robotic guidance, we note the importance of
evaluating the quality of both the shape and texture recon-
struction produced by a given pipeline. However, most exist-
ing works perform either a qualitative evaluation or only
report the accuracy of the reconstructed point cloud or mesh
model, which only captures shape. These metrics fail to

VOLUME 9, 2021 1800711



Y. Zhou et al.: Cost-Efficient Video Synthesis and Evaluation for Development of Virtual 3D Endoscopy

FIGURE 5. (Top) General workflow of a 3D reconstruction pipeline for a human organ from monocular
endoscope video. (Bottom) Our proposed evaluation procedure and associated intermediate metrics to
evaluate shape and texture.

correctly reflect the quality of the shape and texture of the
final product of the reconstruction; moreover, they do not
assess intermediate steps of the pipeline and thus cannot
reveal problematic steps responsible for poor final perfor-
mance. For example, the quality of texture relies not only on
the performance of step 4 but also the accuracy of camera
poses recovered by step 1 and the quality of the mesh model
reconstructed by step 3. The quality of themeshmodel further
depends on the performance of the steps 1 and 2. Steps 1-3 are
designed to improve the quality of the reconstructed shape.
Yet when these intermediate steps don’t perform well, the
quality of shapemay be degraded. Thus, it is also important to
assess quality of the aforementioned intermediate outcomes.

To this end, we propose the following evaluation procedure
associated with the steps described in Fig. 5:

(a) To evaluate outcomes of step 1, first assess the qual-
ity of the reconstructed camera poses via the absolute pose
error (APE) and relative pose error (RPE). Then assess the
quality (accuracy and completeness) of the reconstructed
shape of the point cloud (pcl) via the shape reconstruc-
tion error (SREpcl) and the shape reconstruction coverage
(SRCpcl) metrics.

(b) To evaluate the outcome of step 2, assess the quality
of the shape reconstruction on the postprocessed point cloud
(pp-pcl) via SREpp-pcl and SRCpp-pcl.
(c) To evaluate the outcome of step 3, assess the quality of

the reconstructed shape of the mesh model with the SREmesh
and SRCmesh metrics.

(d) To evaluate the final outcome of step 4, first repeat step
4 using auxiliary video frames as texture images to generate
an auxiliary textured model. Then assess the quality of the
textured model by visually inspecting it with respect to the
ground truth auxiliarymodel. Note that step 4 does not change
the reconstructed shape, so we do not need to assess the
quality of the shape of the textured model.

Our proposed evaluation procedure uses three groups of
metrics to assess the quality of reconstructed camera pose,

shape and texture separately. These metrics are described
below in more detail.

1) QUALITY OF THE RECONSTRUCTED CAMERA POSES
Two metrics (APE and RPE) may be used together to quan-
tify quality of the camera poses (i.e., how accurately the
camera poses are reconstructed). First convert the recovered
camera poses and ground truth camera poses to transla-
tion and rotation matrices in world coordinates. Then use
scaling, translating and rotating transformations to align the
two sets of poses. Finally, calculate the APE and RPE,
defined in Eqns. (1, 2) [43], where Preci and Pgti are, respec-
tively, the reconstructed (rec) and ground truth (gt) camera
pose of frame i. Note that matrix P can be a transla-
tion matrix, rotation matrix or a combination of both (the
full camera pose). In this manuscript, APE and RPE are
always calculated on the full camera pose, unless otherwise
specified.

APE i =
∥∥∥(Preci )−1(Pgti )− I4×4

∥∥∥
F

,

APE =

√
1
N

∑N

i=1
APE2

i (1)

RPreci,j = (Preci )−1(Precj ), RPgti,j = (Pgti )
−1

(Pgtj )

RPE i,j =
∥∥∥(RPreci,j )−1(RPgti,j)− I4×4∥∥∥F ,

RPE =

√
1
N

∑N

i,j
RPE2

i,j (2)

Lower values of APE and RPE indicate higher accuracy of
camera poses. APE focuses on the accuracy of the absolute
pose while RPE focuses on the accuracy of relative poses
(i.e., the relative pose between frame i and frame j) and thus
should be less subject to accumulative drift. For example,
a large APE and small RPE could indicate that a large error
has occurred in the camera pose recovery for a particular
frame that affects the APE of subsequent frames.
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2) QUALITY OF THE RECONSTRUCTED SHAPE
The quality of the reconstructed shape is related to both its
accuracy and completeness. In particular, it is possible for a
reconstruction to only cover a small portion of the intended
shape, but with good accuracy (i.e., the model is incomplete),
suggesting that accuracy alone is insufficient to evaluate the
quality of the reconstructed shape. We use the SRE to quan-
tify accuracy and the SRC to quantify completeness of the
shape of a reconstructed model after Steps 1, 2 and 3.

First, normalize the size of the model bounding box over
its longest edge and center the reconstructed model in Mesh-
Lab. Then use CloudCompare [44] to align the reconstructed
model with the ground truth phantom model and perform
iterative closest point (ICP) registration. Next, if the recon-
structed or ground truth model is in mesh format, use Monte
Carlo sampling in Meshlab to generate a set of randomly
sampled vertices and export them as a new model in point
cloud format. This is necessary since the SRE and SRC can
only be calculated from models in point cloud format.

SRE is defined as the root mean squared (RMS) distance
between all points in the reconstructed model and the ground
truth, as shown in Eqn. (3), where (x irec, y

i
rec, z

i
rec) is the coor-

dinate of vertex virec in the reconstructed model, (x igt , y
i
gt , z

i
gt )

is the coordinate of the ground truth vertex nearest to virec,
and Nrec is the total number of reconstructed vertices. Note
that the range of this RMS distance is from 0 to 1.732 (the
maximum length of diagonal in the normalized bounding
box) and a lower value indicates higher accuracy of shape.

SRE =

√∑Nrec
i (x irec − x

i
gt )

2
+ (yirec−y

i
gt )

2
+ (zirec − z

i
gt )

2

Nrec
(3)

To calculate SRC, one can use the open source code
from [32] to discretize the space into a grid of voxels whose
edge length is defined by the user (we empirically chose 0.04
to provide a reasonable value for the SRC). All points of the
model in point cloud format will then be binned into voxels
in order to avoid the influence of point density on the metric.
Defining an occupied voxel as ‘‘observed’’ when the distance
to its closest ground truth voxel is below a specified threshold
(we chose 0.01), the SRC can be calculated as shown in
Eqn. (4): the ratio of the number of observed voxels over
the total number of ground truth voxels. Note that the range
of completeness is 0% - 100%, where 100% is the best case
(i.e., all the surface area is fully covered by the reconstructed
model).

SRC =
number of observed voxels

number of total voxels in ground truth
(4)

We appreciate that the shape of an organ for a given
endoscopy session may not be the same across all sessions.
For example, how the bladder shape would change with
intentionally applied force or different fluid filling conditions
has not been well studied and thus is still an open question.
In the scope of this paper, wemake the following assumptions

FIGURE 6. (Top row) The ground truth phantom model and textured
models reconstructed from two synthesized videos in group B of our
extensive dataset with trajectory spacings of 0.4 cm and 0.2 cm. (Bottom
row) The ground truth auxiliary model and its reconstructed textured
models from auxiliary videos, for evaluation of quality of reconstructed
texture.

about the clinical context in which our proposed evaluation
metrics are applied: the surgeons can control the amount
of fluid filling and bladder distension to be about the same
between different examinations so that the shape of blad-
der only exhibits differences in scale; and the video frames
acquired during large, intentional application of force causing
significant shape changes will be marked and discarded.

3) QUALITY OF THE RECONSTRUCTED TEXTURE
As the quality of reconstructed texture is hard to quan-
titatively evaluate, we propose to visually compare the
ground truth model and the reconstructed textured model.
In Fig. 6, we show the ground truth model on the
left and two reconstructed textured models on the right.
Reconstructions 1 and 2 are generated from two videos in
group B of our extensive dataset with trajectory spacings of
0.4 cm and 0.2 cm, respectively. You can see that comparing
the reconstructed textured models shown in Fig. 6 (a1, a2)
with the ground truth phantom model can be challenging due
to the complexity of the texture.

Thus, we propose use of a multi-precision grid pattern with
recognizable shapes (i.e., letters, numbers in white and grid
lines in black) on a blue background. We wrapped the grid
pattern onto the virtual phantom model and call the resulting
model the ‘‘auxiliary model.’’ Then we used EVS-3D to
render the auxiliary video during the video synthesis and used
these views during the texture mapping step to generate the
auxiliary textured model. If desired, one could potentially
define multiple qualitative or quantitative levels using the
multi-precision grid lines as reference.

III. RESULTS AND DISCUSSIONS
To illustrate use of the proposed EVS-3D platform, exten-
sive dataset and evaluation procedure to evaluate a given 3D
reconstruction pipeline, we performed reconstructions from
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FIGURE 7. Evaluation results of reconstructions from group A videos in
our extensive dataset. pcl: point cloud; pp-pcl: postprocessed point cloud;
mesh: mesh model.

videos in the extensive dataset (described in Section IIB)
with two existing pipelines: CYSTO3D, a proprietary blad-
der 3D reconstruction pipeline [22] built upon several open-
source backbone algorithms [42], [45]–[48], and COLMAP,
a general-purpose 3D reconstruction pipeline [41], [49], [50].
In what follows we use the proposed evaluation proce-
dure (described in Section IIC) to evaluate the quality of
shape and texture reconstructions, to reveal problematic
steps in CYSTO3D, assess its robustness over key variables
(in Section IIIA- Section IIID) and to compare CYSTO3D
and COLMAP (in Section IIIE). Clinically, the information
gleaned from these types of evaluations can be used to guide
the selection of key variables to be used during data acqui-
sition. Technically, this information can identify target steps
for algorithm refinement and guide selection of the optimal
pipeline for a given clinical scenario.

A. INFLUENCE OF TRAJECTORY TYPE FOR CYSTO3D
In a conventional cystoscopy session where clinicians man-
ually operate the cystoscope, or in a tele-cystoscopy session
where a robotic system moves the cystoscope with mechani-
cal control, it is helpful to determine the planned trajectory
for endoscope movement to ensure efficient and effective
examination of the inner surface of the bladder. Our proposed
EVS-3D platform and evaluation procedure can be used to
quickly test out different trajectories. Here we use group A
of our extensive dataset to evaluate CYSTO3D for the spiral
and sine trajectories. The quantitative metrics calculated for
the two scenarios are summarized in Fig.7.
In general, the spiral trajectory slightly outperforms the

sine trajectory on almost all metrics. This indicates that a
spiral trajectory is preferred for optimal robustness of the
reconstruction pipeline. An interesting result is captured by
Fig.7 (d), which reveals that although the sine trajectory
leads to lower SRC after step 1 of the pipeline, the SRC is
comparable to that of the spiral trajectory after step 2 and
step 3. This shows that when using the sine trajectory, the
final reconstruction performance (especially completeness)
will depend more on the performance of step 2 and step 3.
Hence, if using the sine trajectory, the overall performance of
the pipeline may be restricted by the performance of step 1

FIGURE 8. Evaluation results of reconstructions from group B videos
synthesized with different trajectory spacings.

if steps 2 and 3 are inadequate to improve the quality of the
reconstructed shape.

B. INFLUENCE OF TRAJECTORY SPACING ON CYSTO3D
The distance between neighboring curves of a trajectory
(i.e., trajectory spacing) influences the overlap ratio between
neighboring frames.We used group B in our extensive dataset
to evaluate CYSTO3D over different trajectory spacings.

In Fig. 8 (d), all SRC values monotonically decrease as the
trajectory spacing increases from 0.2 cm to 0.7 cm. This may
be because a narrower spacing likely leads to larger overlap
between frames, which results in more feature points being
detected, matched and reconstructed. InFig. 8 (c, d), SREmesh
and SRCmesh, which indicate the accuracy and completeness
of the final shape reconstruction, are comparable among
all five spacings. Note that the quality of the reconstructed
mesh model is better than that of the reconstructed point
cloud model for all spacings as well. This suggests that
steps 2 and 3 of the pipeline improve the quality of the shape
from point cloud to mesh, as desired.

Fig. 8 (a) reveals that the APEs of the full camera pose
reconstruction for 0.2 cm, 0.3 cm and 0.7 cm are very large.
For this experiment, we also calculated the APEs of the
translation matrix and rotation matrices, as decomposed from
the full camera pose. Interestingly, the APE of the rotation
matrix is large while the APE of the translation matrix is
nearly 0. These results clarify that the large camera pose
error derives largely from an error from the rotation matrix,
indicating a potential source of failure in the camera pose
recovery part of step 1.Fig. 6 (a2, b2) shows the reconstructed
textured model from video acquired with a trajectory spac-
ing of 0.2 cm. Fig. 6 (a2, b2) reveals clear problems with
the texture reconstruction, the deadly result of an inaccurate
rotation matrix. This is a great example of using our proposed
evaluation procedure to identify a problematic step (in this
example, it is the recovery of rotation matrix of camera pose)
within the reconstruction pipeline.

C. INFLUENCE OF IMAGING DISTANCE FOR CYSTO3D
The distance between the endoscope camera and the bladder
surface being viewed (i.e., the imaging distance) strongly
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FIGURE 9. Evaluation results of reconstructions from group C videos
synthesized with different imaging distances.

affects the quality of the acquired video. We empirically
observed that, for a given frame rate and camera velocity,
a larger imaging distance causes the vascular patterns to
appear unfocused and blurred, decreasing the number of
salient feature points, while too close of an imaging distance
leads to reduced overlap between frames. Both extremes
increase the difficulty of the feature-based matching process
in the reconstruction pipeline, which is the key step to recon-
struct the camera poses and the point cloud. The resolution
of the vascular patterns and the degree of frame overlap are
determined not only by the imaging distance but also by other
key variables, including the camera FOV, frame rate, velocity,
etc. Thus, an ideal imaging distance can only be selected once
other factors are fixed, which is easy to test with the EVS-3D
platform.

Here we used group C of our extensive dataset to evaluate
CYSTO3D over different imaging distances. Fig. 9 summa-
rizes the evaluationmetrics obtained. As the imaging distance
increases from 2.0 cm to 2.5 cm, APE, RPE and SREmesh
decrease (see Fig. 9 (a-c)) while SRCmesh increases (see
Fig. 9 (d)), indicating improved quality of both the recon-
structed camera poses and shape. This shows that an imaging
distance greater than or equal to 2.5cm may be preferred over
a smaller distance for the pipeline to achieve a higher quality
reconstruction.

We can further identify problematic steps within the
pipeline by analyzing the metrics of each reconstruction.
Taking the scenario with an imaging distance of 2.0cm as
an example, we can see from Fig. 9 (c), that SREpcl and
SREpp-pcl are reasonably good (i.e., small) compared to other
distances tested, whereas SREmesh is large. This indicates
the non-ideal performance of step 3, which negatively affects
shape accuracy. Similarly, we can also see from Fig. 9 (d) that
step 1 already results in a moderate level of completeness
of the point cloud model (SRCpcl = 81%), which further
degrades after steps 2 and step 3 (SRCmesh = 60%). This
indicates the non-ideal performance of steps 2 and step 3
on the completeness of the reconstructed shape. Thus, to
improve the reconstruction performance, one either has to
fine-tune the algorithm (especially step 2 and step 3) or

change the imaging distance during clinical acquisition of
endoscope videos.

As the imaging distance further increases from 2.5 cm to
4.0 cm, we can see from Fig.9 (a, b) that APE increases while
the RPE decreases. This may suggest that when the imaging
distance gets too large, the reconstructed camera poses may
incur a large error at some frame, which then accumulates in
subsequent frames.

In Fig. 9 (c, d), when the imaging distance increases from
2.5 cm to 3.5 cm, SREpcl increases and SRCpcl decreases,
indicating that accuracy and completeness worsen. Nonethe-
less, beyond 3.5 cm, SREpp-pcl, SREmesh < SREpcl and
SRCpp-pcl, SRCmesh > SRCpcl, which indicate that shape
quality (accuracy and completeness) is improved after step 2
and step 3. This may indicate that the negative effect of a
slightly large imaging distance like 3.5 cm on step 1 can be
mitigated by steps 2 and 3 if these steps are well-tuned at
this particular setting. Actually, we can see that at an imaging
distance of 2.0 cm, steps 2 and 3 worsen the shape quality
(since SREpcl < SREmesh and SRCpcl > SRCmesh), indicating
that steps 2 and 3 are not well-tuned at this particular imaging
distance. This shows that the performance of step 2 and step 3
is quite sensitive to the imaging distance. Thus, one would
need to either pick an imaging distance where the pipeline
works well, or improve the robustness of step 2 and step 3 if
a larger range of imaging distance is required during clinical
video acquisition.

D. INFLUENCE OF TISSUE DEFORMATION ON CYSTO3D
Handling tissue deformation is a common challenge in 3D
reconstruction of human organs. Since existing 3D recon-
struction algorithms assume rigidity of the object, clinicians
need to collect endoscope video frames with as minimal tis-
sue deformation as possible during the endoscope procedure.
Yet acquiring the perfect video without any deformation of
shape and texture can be impractical. Even in the case of cys-
toscopy, where distending of the bladder during examination
helps reduce deformation, there is still deformation caused
by breathing, heart beats and occasional contact between
the scope shaft and bladder wall. Thus, it would be helpful
for clinicians to know the tolerance range on deformation
that allows reasonable reconstruction performance so they
can collect acceptable videos with reasonable effort. This
information would also enable researchers tune the algorithm
to handle the level of deformation expected with breathing,
heartbeat artifacts or scope-organ contact.

In Fig. 10, all the quantitative metrics monotonically
degrade (i.e., APE, RPE and SRE increase, and SRC
decreases) as the deformation level increases from 0% to
100%. This agrees with the expected trend: larger deforma-
tion in the video leads to worse quality of reconstruction. The
evaluation statistics allow us to determine the upper bound
of deformation that allows for reconstruction with a tolerable
performance. For example, to achieve a completeness (SRC)
of 90%, Fig. 10 (d) shows that 20% of the preset deformation
level is the maximum tolerable deformation able to guarantee
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FIGURE 10. Evaluation results of reconstructions from group D videos
synthesized with different deformation levels.

FIGURE 11. Visualization of reconstructed the textured model from
(a) CYSTO3D and (b) COLMAP.

the desired performance. Hence, if the deformation is large
during the cystoscopy, clinicians may consider collecting
more frames to ensure sufficient frames are collected with
low deformation.

E. COMPARISON OF CYSTO3D AND COLMAP PIPELINES
To compare two reconstruction pipelines, we used the synthe-
sized data with spiral trajectory from group A of the extensive
dataset. Fig. 11 shows the final textured models reconstructed
from CYSTO3D and COLMAP pipelines. The COLMAP
pipeline performs poorly, largely due to the fact that it has not
been fine-tuned to work well on bladder images. The recon-
struction only captures areas containing vascular features and
its evaluation metrics (APE = 0.00876, RPE = 0.00253,
SREpcl = 0.0205 and SRCpcl= 9.8%) are significantlyworse
compared to those of CYSTO3D (APE = 0.00584, RPE =
0.00134, SREpcl = 0.0029 and SRCpcl = 100%). While the
accuracy of those areas reconstructed by COLMAP is good,
the completeness is very low. This specific result indicates
that feature extraction in the point cloud recovery step of the
COLMAP pipeline needs to be fine-tuned to reconstruct the
shape with higher completeness.

IV. CONCLUSION
In this paper, we proposed EVS-3D: a computer simulation
platform for generating synthesized endoscope videos of the
inner surface of human organs. EVS-3D can generate exten-
sive datasets with corresponding ground truth information
that can be used to evaluate and compare 3D reconstruc-
tion pipelines. We generated one such extensive dataset and
also proposed an evaluation procedure to assess reconstruc-
tion pipelines. The evaluation procedure extends the types

and range of metrics beyond those used in existing works.
As such, it is able to comprehensively evaluate all inter-
mediate and final outputs from the pipeline. Our evaluation
strategy can better quantify the quality of the reconstruction
of both shape and texture as well as assess pipeline robustness
over a certain range of key variables during data collection,
allowing it to reveal the source of problematic steps within a
pipeline.

In this paper, we demonstrated the utility of these tools in
the context of bladder cystoscopy and reported results on the
evaluation of the bladder reconstruction pipeline CYSTO3D.
We also used the extensive dataset and evaluation procedure
to compare CYSTO3Dwith COLMAP, a general-purpose 3D
reconstruction pipeline that has been used in stained stomach
3D reconstruction [25]. The primary goal of these experi-
ments, results and discussion is to illustrate how researchers
can utilize our tools to expedite algorithmic development and
technology translation.

Potential directions for future work include developing
better representations of trajectory curves to simulate more
natural trajectories (e.g., the region-driven trajectory used by
many clinicians), adding simulation of the mechanics of the
endoscope shaft to better match the constraints of endoscope
movement and improving the simulation of body fluids in the
virtual phantom to better simulate artifacts from air bubbles
and water flow.
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