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Abstract: Over recent decades, a new antibiotic crisis has been unfolding due to a decreased research
in this domain, a low return of investment for the companies that developed the drug, a lengthy and
difficult research process, a low success rate for candidate molecules, an increased use of antibiotics in
farms and an overall inappropriate use of antibiotics. This has led to a series of pathogens developing
antibiotic resistance, which poses severe threats to public health systems while also driving up the
costs of hospitalization and treatment. Moreover, without proper action and collaboration between
academic and health institutions, a catastrophic trend might develop, with the possibility of returning
to a pre-antibiotic era. Nevertheless, new emerging AI-based technologies have started to enter the
field of antibiotic and drug development, offering a new perspective to an ever-growing problem.
Cheaper and faster research can be achieved through algorithms that identify hit compounds, thereby
further accelerating the development of new antibiotics, which represents a vital step in solving the
current antibiotic crisis. The aim of this review is to provide an extended overview of the current
artificial intelligence-based technologies that are used for antibiotic discovery, together with their
technological and economic impact on the industrial sector.

Keywords: antibiotic discovery; antibiotic development; automated antibiotic discovery; antibiotic
resistance; computer-aided drug design; artificial intelligence; machine learning; deep learning;
future of medicine

1. Introduction

The average lifespan has extended by 23 years in the last century due to a number of
factors, among which is the discovery of certain antibiotics, most notably Salvarsan in 1910
and Penicillin in 1928 [1].

After a short period of misleading triumph, scientists and physicians observed that
micro-organisms were protected against the newly developed antibiotics by complex and
numerous antibiotic resistance mechanisms. It is worth mentioning that in the 2nd, 3rd,
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4th and 5th decades of the last century, the process of launching a new drug on the market
was far less complicated than it is today, where it takes an average period of 12 years from
the point of the drug discovery until market authorization [2–4].

Although bacterial resistance mechanisms existed before the discovery of synthetic
antibiotics, the inappropriate use of antibiotics for medical, veterinary and agricultural
purposes has further complicated the undesirable antibiotic resistance. Unfortunately, a
progressive evolution of antibiotic resistance has led to the current antimicrobial crisis,
which is responsible for 700,000 deaths per year worldwide [2]. Without a major break-
through in antibiotic development, predictions show a number of 10 million deaths per
year by 2050 [2]. The current epidemiologic studies have shown that the economic burden
that is associated with antibiotic resistance is significant, and that each year in Europe and
the United States these infections lead to 11 million additional hospitalization days and
more than 20 billion dollars in additional social and healthcare costs [3–6].

If the major perspectives for the development of new antibiotics in the last two decades
included resistance gene detection, genome sequencing and rapid pathogen determina-
tion [7–9], then artificial intelligence (AI), machine learning (ML) and neural networks (NN)
have opened a new golden age of drug discovery and synthesis by processing enormous
quantities of data almost instantaneously.

Initially, AI-based technologies were designed for simple and repetitive tasks and
were considered limited in complex human-like processes, which use imagination and
creativity. Nonetheless, sustained development in the field of AI technologies has greatly
broadened and diversified their applications.

Traditional techniques of drug discovery are characterized by high costs, a prolonged
period of synthesis, testing and implementation, expensive equipment, and extended
human resources, which are probably the most difficult to obtain [2–4]. As an alternative,
automated computer-aided drug-discovery techniques are considerably cheaper and faster,
leading to a more rapid progression towards the pre-clinical and clinical testing phases.

The aim of this review is to provide an extended overview of the current artificial
intelligence-based technologies that are used for antibiotic discovery.

2. Machine Learning and Deep Learning Technologies in Drug Development

Antibiotic-resistant bacteria represent a challenging and concerning aspect of modern
medicine, with factors such as the decreased development of new antibiotics and the spread
of multi-drug-resistant determinants aggravating the problem. However, the continuous
development of artificial intelligence brings a new perspective to the field of antibiotic
discovery.

The traditional experimental methods of discovering new antibiotics or improving
existing ones are now being influenced by algorithms that were created by machine learning
and neural networks, which allow larger in silico exploration and study. The main Artificial
Intelligence technologies that are used in the analyzed studies are described in Table 1.

When it comes to machine learning, this type of technology consists of various com-
putational methods that are based on previous experience [10–12]. The computers operate
with so-called “raw data” in order to extract patterns and construct algorithms [10–12].
The efficiency and value of such an algorithm is closely correlated to the quality and
sample size of the data that is used in the process [10–12]. Thus, it can be used in order
to improve the performance of certain programs or to make predictions, while using the
advantage of computational power and the ability to rapidly process large quantities of
information [10–12].

Nevertheless, programs that are based on machine learning still require the attention
of human specialists, in contrast to deep learning machines [10–12]. A computer that uses
deep learning can understand complex phenomena by organizing hierarchies and splitting
complex concepts into simpler ones, thereby continuously learning from itself [12].
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Table 1. Main Artificial Intelligence technologies used in the included studies.

Reference Characteristics Outcomes Technology

da Cunha et al., 2021

Detecting certain metabolic
fingerprints through spectroscopy;
using ML technology to analyze

and further predict the
mechanism of action and potency

of different antibiotics

Successfully predicted the mechanism of
action; accurate estimation of the

antibiotic potency

ML + high-throughput
Fourier-transform infrared

spectroscopy

Zoffman et al., 2019
Searching, identifying, and

predicting potency of compounds
with a random forest model

Assess phenotypic changes and
antibacterial potency; predicted the

phenotypic changes in compounds with
identical and different mechanism of

action

ML-random forest model

Stokes et al., 2020

Using DL and NN to search
databases and predict potential

antimicrobial compounds, further
empirically testing them

Successfully combined AI technologies
and clinical investigation; halicin

displayed strong antibacterial properties
DL + NN

Parvaiz et al., 2021

Using ML to search for and
identify potential candidates

possessing beta-lactamase
inhibition quality

Identified 74 compounds, out of which
one showed great promise and further

used ML in order to search for compounds
structurally similar, concluding that all of
the 28 additionally returned results had

antibacterial activity

ML-random forest model

Hamid et al., 2019
Used neural networks in order to
distinguish between bacteriocin
and con-bacteriocin sequences

The algorithm can successfully predict
and classify bacteriocins based on their

sequence
RNN

Fields et al., 2020

Used ML to design and test
bacteriocin-derived compounds

and further assess their
antimicrobial activity

The study designed and empirically tested
compounds returned by the ML algorithm,

with significant results
ML

Badura et al., 2021

Used ANN to generate
computational chemistry models

and identify and classify
compounds

Transformed chemical information into
computational models used to further

search and identify antimicrobial
compounds

ANN

Feng et al., 2019

Used IDQD in order to analyze
and search for patterns in certain

sequences and predict further
patterns in antibacterial peptides

The study used this type of ML to
successfully identify antimicrobial agents

based on certain features of the
antibacterial peptides

ML-IDQD

Bhadra et al., 2018
Used ML to analyze the

distribution pattern of amino
acids in antibacterial peptides

The model grouped amino acids based on
certain properties in different groups and

further predicted and identified
antimicrobial peptides

ML-random forest model

Napgal et al., 2018
Used ML to search, analyze and

predict peptides based on certain
features

Analyzed peptides capable of inducting
response of the APCs and further used ML

to predict such peptides based on their
structure

ML

Su et al., 2019

Used NN trained on various
datasets to achieve performance
in feature selection and structure

analysis

Analyzed the features and structure of
amino acids and peptides in order to
identify novel antimicrobial peptides

NN

Fjell et al., 2007

Used Hidden Markov models to
construct an algorithm that

enables recognition of individual
classes of antimicrobial peptides

Constructed a database that functions as a
discovery tool for antimicrobial peptides NN-Hidden Markov models

Cherkasov et al., 2009
Used NN to search various

databases and identify and further
design antimicrobial peptides

Screened a large number of peptides and
selected the most potent ones for in vitro

testing, further concluding that two
compounds exhibited strong antimicrobial

effects

NN

Cruz-Monteagudo et al., 2011
Used ML to create and define

classification rules for
antimicrobial peptides

The study aimed to assess both the toxicity
and potency of antimicrobial peptides ML
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Table 1. Cont.

Reference Characteristics Outcomes Technology

Grafskaia et al., 2018

Used ML to create an algorithm
for the identification of toxin-like
that also acted as antimicrobial

agents

The combined ML and proteomic
technologies showed the potential of such
research, even though the study returned

a small number of candidate peptides

ML

Macesic et al., 2020

ML was used to assess and
quantify both bacterial resistance

and susceptibility to certain
antibiotics

Used ML to predict phenotypic polymyxin
resistance in Klebsiella pneumoniae and to

assess antimicrobial susceptibility
ML

Mansbach et al., 2020

The study used ML to construct
and design molecules capable of

penetrating the membrane of
Pseudomonas aeruginosa

The algorithm constructed and considered
every possible fragment-based design,
obtaining five compounds that were

experimentally validated and showed
good membrane penetration

ML-Hunting Fox Algorithm

Smith et al., 2020

The study used ML in
combination with genetic

algorithms to assess intrinsic
activity and efficacy of

compounds

The study aimed to optimize dosing
regimens when using antibiotic

combinations, particularly against
A. baumannii, the algorithm returning six

regimens capable of eradicating the
bacteria; even though these were not

empirically tested

ML

Hu et al., 2007

The study used ML and
conventional methods to find new

antimicrobial agents to counter
the antimicrobial resistance of

Yersinia spp.

The study combined ML and multiple
conformational high-throughput docking

in order to find YpkA inhibitors; the
algorithm returned 7 compounds that
were empirically tested and showed

antimicrobial activity

ML

ML: Machine Learning; DL: Deep Learning; NN: Neural Networks; RNN: Recurrent Neural Networks; ANN: Artificial Neural Networks;
IDQD: Increment of Diversity with Quadratic Discriminant.

Da Cunha et al. combined machine learning, spectroscopy and the antibiotic mecha-
nisms of action and potency via high-throughput Fourier-transform infrared spectroscopy.
This technique is based on the detection of certain metabolic fingerprints in order to assess
the growth inhibition that is generated by the specific antibiotic, together with its mecha-
nism of action. By analyzing specific antibiotics belonging to certain classes, it successfully
predicted the mechanisms of action of different antibiotics belonging to the same class.
Moreover, it was also capable of estimating antibiotic potency, which was measured by
the metabolic fingerprints that were detected by Fourier-transform infrared spectroscopy,
reflecting the cell alterations that were induced by the antibiotic [13].

Zoffman et al. also used machine learning by analyzing and searching through the
Roche compound library, eliminating known antibiotics and other substances from other
past antibiotic projects, prioritizing the remaining compounds based on novelty, potency,
chemical structure, and the availability of purified powder material. These were further
tested against four Gram-negative bacteria in order to assess their antibacterial activity.
Moreover, the study aimed to show certain compound-induced phenotypic changes in
relation to the lowest effective dose and the minimal inhibitory concentration, and to
determine the mechanisms of action for novel compounds. Machine learning was used to
determine and capture the specific bacterial phenotypic fingerprints in relation to certain
mechanisms of action of different compounds, showing that compounds with the same
mechanism of action induced similar phenotypic fingerprints. When it comes to novel
compounds, these bacterial phenotypic fingerprints can be used to better establish the
relationship between the structure and activity of certain antibacterial agents [14].

A deep learning approach towards novel antibiotic discovery was proposed by Stokes
et al., by searching and formulating predictions using various databases [15]. After training
and optimizing the model, it was used in order to identify potential antimicrobial molecules
from the Drug Repurposing Hub [16]. This database consists of a large number of molecules
that are being tested in various stages of research, in order to find new applications for
them [16]. Finally, 99 molecules were identified and further empirically tested for antimi-
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crobial inhibition; 51 of these compounds showed a strong inhibitory effect on a strain of
E. coli [15]. During the clinical phase of investigation, the structural similarities of molecules
from the training dataset and the predicted toxicity were also taken into consideration
using a deep neural network in order to select the compounds with low structural similarity
and the lowest toxicities [15]. The algorithm showed that halicin displayed strong growth
inhibitory activity against E. coli, even on cells that persisted after treatment with ampi-
cillin [15]. Being potent against multiple strains of antibiotic-resistant E. coli, the growth
inhibitory potential of halicin was also tested on other pathogens, such as M. tuberculosis,
carbapenem-resistant Enterobacteriaceae (CRE), A. baumannii and P. aeruginosa; it showed
promising results, possessing strong inhibitory properties against CRE and A. baumannii,
while also proving to be bactericidal against M. tuberculosis, but lacking efficiency against
P. aeruginosa [15]. Halicin presents a complex and particular mechanism of action. It has
been proven to sequester iron inside the bacteria, thereby disrupting its ability to maintain
a normal electrochemical membrane gradient, thus inhibiting metabolism and resulting in
cell death [15]. Additionally, halicin is a c-Jun N-terminal kinase (JNK) inhibitor [15].

Not only can machine learning be used in order to predict and discover novel an-
tibiotics, but also to search a large amount of data, followed by the selection of certain
compounds that meet the required criteria. Parvaiz et al. used machine learning in or-
der to conduct a large search for compounds possessing the beta-lactamase inhibition
quality. Of these 700,000 compounds, 74 were identified, after which they were subjected
to empirical validation, revealing that eleven compounds were recognized as enhancers,
while seven were inhibitors of CMY-10, which is a plasmid-encoded class C beta-lactamase.
One compound presented great promise, being regarded as both a β-lactam enhancer and
β-lactamase inhibitor. Moreover, machine learning facilitated the search for structurally
similar compounds, after which 28 more were identified, all of them exhibiting β-lactamase
inhibition potential and antibacterial activity [17].

Thus, the crossing between antimicrobial resistance and machine learning has allowed
the development and improvement of numerous models that facilitate novel antibiotic
discovery in order to make antimicrobial therapies more efficient. Moreover, new databases
have been emerging, such as AntibioticDB, in order to aid the continuous research and
development of known and new antibiotics [18]. Such kinds of databases consist of a large
number of compounds in different stages of development, i.e., drugs under pre-clinical
development, discontinued drugs or compounds in clinical trials. Thus, the ability of
Artificial Intelligence to search and select certain compounds from these large databases,
while taking into account various features, can greatly improve and speed up the process
of drug development. Even though there are certain limitations to such databases, it is
crucial that the challenges of antibiotic discovery and development be assessed through
the cooperation between various institutions and entities.

With the arrival of the current global pandemic caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection and with already more than five million
deaths as a result, deep learning-based approaches are essential in identifying novel
compounds to fight against the multiple variants of the virus and their mutations. While
the traditional route for drug discovery may be too slow and expensive to keep up with
the increasing transmissibility and the mutations of the virus, deep learning approaches
can be essential in accelerating the drug-discovery process in this actual context. Studies
have already used deep learning for drug repurposing, a technique which can assure
the rapid identification of COVID-19 treatments. Choi et al., through a hybrid of deep
learning- and molecular simulation-based screening procedures, identified azithromycin as
a drug candidate for the targeting of RNA-dependent RNA polymerase, which was further
confirmed to inhibit SARS-CoV-2 replication in vitro [19].

From another point of view, the COVID-19 pandemic comes with multiple secondary
infections, many of them caused by multi-drug-resistant bacteria. Consequently, antimi-
crobial resistance becomes a more accelerated phenomenon, with additional negative
consequences for the healthcare systems. Therefore, artificial intelligence methods, such
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as machine learning or deep learning, may help to achieve a faster delivery of promising
antibiotic candidates [20].

Neither the empirical nor the modern technologies and approaches should be used
exclusively, but rather a combination of these two, in order to assess the problem of
antibiotic discovery in a coherent, comprehensive and efficient way.

3. Neural Networks and Antimicrobial Compounds

Inspired by the architecture and structure of the human brain, new AI technologies
called neural networks have started to emerge. They consist of interconnected processing
units and are based on pattern recognition technology. Moreover, the network learns from
examples to perform certain tasks, even though it does not need a preset rule system,
functioning instead through the constant adjustment of results in order to reach a target
value [21].

Word embedding is a technique that is used in natural language processing in which
words from a vocabulary are represented as vectors by using a significant number of words
to form the pieces of the text as an input [22]. Bacteriocins are proteic or peptidic toxins
that are produced by some bacteria in order to kill other bacteria or viruses that may en-
danger them, which represents one of the most promising perspectives on novel antibiotic
discovery [23]. Among their mechanisms of action, pore-forming and permeabilization of
bacteria, nuclease activity and DNA disruption, or inhibition of peptidoglycan formation
are the most frequent [23].

Hamid et al. selected a word-embedding representation for each trigram from a
protein sequence, and then used a Recurrent Neural Network (RNN), which is a subsequent
type of artificial neural network, to distinguish between bacteriocin and non-bacteriocin
sequences. The results showed that the novel technique can predict, with a statistically
significant probability, six bacteriocins in Lactobacillus that were yet unknown, and the
authors concluded that their RNN-based algorithm is the best automated method for the
classification of bacteriocins compared to the current automated AI-based algorithms for
biological sequence classification [22].

An artificial neural network (ANN) was used by Badura et al. to predict the an-
timicrobial properties and the biological and chemical effects of quaternary ammonium
salts against E. coli. The study was based on the transformation of chemical information
into three-dimensional models of imidazole chlorides and the generation of molecular
descriptors via computational chemistry methods. The result was a high classification
accuracy (95%, regression model: learning set R = 0.87, testing set R = 0.91, validation set
R = 0.89), demonstrating that ANN-based systems can be successfully used to find efficient
antimicrobial compounds [24].

4. Antimicrobial Peptides and Artificial Intelligence

The ever-increasing resistance toward conventional antibiotics has prompted the sci-
entific community to broaden the area of research in order to find new ways to tackle
emerging drug-resistant bacteria. This has led to antibacterial peptides receiving an in-
creased amount of attention lately, and important research has been conducted in this field
of interest, which shows great promise and frames antimicrobial peptides as new forms of
anti-infectives, with some managing to kill the pathogens directly, while others intervene
in modulating the immune response [25].

Fields et al. analyzed an automated system for peptide discovery and synthesis
using ML and biophysical selection of minimal bacteriocin domains. The ML system was
trained to design and test bacteriocin-derived peptides by using a sequence-free prediction
algorithm. The protocol of the study provided 20 amino acid-peptide candidates (20-mers)
for evaluation and in the initial phase the ML system generated a total of 28,895 20-mer
peptides. In the next phase, sixteen sequences were selected for synthesis and then the
antimicrobial, cytotoxicity, and hemolytic activities were further analyzed. The results
demonstrated that bacteriocin-based peptides showed significant antimicrobial activity
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against E. coli and P. aeruginosa, and that the ML based method is an excellent approach for
the discovery and synthesis of novel bacteriocin candidates [23].

Feng et al. explored the possibility of classification of antibacterial peptides using
primary sequence information and Increment of Diversity with Quadratic Discriminant
(IDQD) analysis [26]. IDQD represents a type of machine learning that aims to sequence
pattern recognition [27]. While analyzing certain features of said sequences, it constructs
a scheme in order to recognize and further predict patterns [27]. This type of technology
has successfully been used in the analysis of the human genome [27]. The results showed
an accuracy of 86.02%, a sensitivity of 74.31% and a specificity of 92.79% for identifying
antimicrobial peptides. The authors concluded that their method is superior to all other
automated methods that are currently used for antibacterial peptide classification [26].

The latest improvements in AI technologies provide better methods and give new
perspectives to antimicrobial peptide identification, development and research. Bhadra
et al. designed AmPEP, which is a model that analyzes the distribution pattern of amino
acid properties using machine learning, i.e., a random forest algorithm [28]. One such
algorithm uses multiple decision trees in order to reach a final result [27]. The algorithm
groups amino acids into different categories based on their physicochemical properties [28].
In order to do so, the global percentage of amino acids of each class, the percentage of the
frequency of transitions between two classes, and the distribution patterns of amino acids
in each class are taken into consideration [28]. Thus, certain peptides have been considered
and identified as antimicrobial peptides, which further boosts the research in this direction.

Immuno-informatics approaches have revolutionized the development of vaccines.
In contrast to antibiotic use, vaccinations could help to prevent emerging infectious dis-
eases, which would have a colossal impact on public health and antimicrobial resistance
(AMR) [29].

Moreover, recent progress when it comes to different uses of antimicrobial peptides
has also shown them as having great potential as vaccine adjuvants [30]. With their known
role of modulating the immune response [25], the question was asked whether the peptides
that influence the antigen-presenting cells could be predicted. Thus, Napgal et al. proposed
several computer-aided prediction methods, which took into account the composition and
position of epitopes, in order to be able to predict and even design immunomodulatory
peptides [31].

Su et al. used a multi-scale convolutional network in order to identify and analyze
antimicrobial peptides by training their model on four datasets and comparing it to other
works, with significant results [32]. One such neural network can be used in order to achieve
better performance when it comes to feature selection and potential fault identification [33].
This neural network model has two layers that encode each amino acid from the peptide
sequence, then further analyzes and selects its features, outperforming most current state-of-
the-art models when it comes to performance, while still needing improvements regarding
the overall execution time [32].

Using hidden Markov models (HMMs), i.e., generative models that describe certain
observational events that depend on intrinsic features, Fjell et al. managed to construct
AMPer, which is a database that also functions as an automated discovery tool for an-
timicrobial peptides [34,35]. The algorithm enables the recognition of individual classes
of antimicrobial peptides with remarkable accuracy [34]. Public sources were used, in
addition to the Swiss-Prot database, in order to select the 1,045 mature peptides and 253
pro-peptides that make up the AMPer database [34]. These antimicrobial peptides consist
of the major classes of antimicrobial peptides, such as defensins, cecropins, granulins and
cathelicidins [34].

Cherkasov et al. used the predictive ability of an artificial neural net together with
chemical descriptors in order to predict and design potent antimicrobial peptides based
on the large databases of peptides. The study also aimed at proving that certain specific
amino acid compositions and primary structures were needed for the peptide to possess
antimicrobial activity. Using quantitative structure-activity relationship (QSAR), the team
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trained a model on two peptide databases, obtaining 100,000 peptides which were then
sorted by hypothetical antimicrobial potential and grouped into four quartiles. The first
two quartiles, consisting of the most promising candidates in terms of hypothetical antimi-
crobial activity, were further tested in vitro on a wide range of pathogens. Thus, 98% of the
peptides belonging to the first quartile and 88% of the peptides from the second quartile
were effective against P. aeruginosa. Moreover, two lead peptides were selected, due to
their strong in vitro inhibitory effects, for in vitro testing against multiple highly resistant
pathogens such as strains of multi-drug-resistant P. aeruginosa, methicillin-resistant Staphy-
lococcus aureus, extended spectrum β-lactamase producing Escherichia coli and Klebsiella
pneumoniae, and vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. The
two peptides demonstrated superior activity compared to other important antibiotics such
as tobramycin, ciprofloxacin, ceftazidime and imipenem, which represent the most potent,
highly utilized variants of their respective pharmacological classes. The study concluded
that the two candidates HHC-10 and HHC-36, if appropriately formulated, could be highly
effective against systemic infections, such as infections with S. aureus [36].

However, one downside of antimicrobial peptides is represented by their toxicity,
with their hemolytic activity being the most notable one [37]. The two lead peptides that
were identified in Cherkasov’s study have also shown minimal hemolytic activity at all
concentrations, thus proving their pathogen-specific characteristics [36].

The development of machine learning has also made it possible for Cruz-Monteagudo
et al. to develop a model capable of assessing both the potency and the toxicity of antimi-
crobial peptides. The combined use of machine learning and desirability theory allowed
them to develop a multicriteria classification rule that managed to obtain a prediction
accuracy of 80% [38].

Not only can antimicrobial peptides be discovered by using machine learning algo-
rithms to analyze large quantities of data from various libraries, but recent studies have
shown the potential of analyzing the toxins of various predators’ venom in order to reveal
and test new antimicrobial peptides [39–42].

Grafskaia et al. performed a transcriptomic study of the sea anemone Cnidopus
japonicus in order to extract, analyze and assess its peptides and their antimicrobial activity.
Moreover, they developed an in silico machine learning search algorithm in order to
discover toxin-like proteins, which further contained antimicrobial peptides, by taking
into account the structural characteristics of amino acid sequences. With this technique,
combined with transcriptomic data and proteomic profiling, ten peptides were selected
and synthesized, out of which three (peptides A1, A3 and B1) exercised antimicrobial
activity in the following manner: one was active on both Gram-positive and Gram-negative
bacteria, while the other two only inhibited the growth of Gram-positive bacteria. The
chemical structure of the peptide A1 consisted of an amino acid strand and alpha-helix
that was similar to those of a toxin that can be found in another sea anemone Stichodactyla
helianthus and is a potassium-channel inhibitor. The predicted structure of peptide A3
suggested more similarity to another peptide (A2) that exhibited anticancer properties.
The assumed structure of peptide B3 suggested a similarity with GsMTx2, a toxin which
inhibits mechanosensitive ion channels and is produced by the tarantula Grammostola
spatulate. Even though the study did not manage to come up with many promising
peptides that were capable of antimicrobial activity, it did show the great potential that
these technologies have to discover, study, assess and test the antimicrobial activity of
peptides that are found in the venom of various predators [39]. Antimicrobial peptides
show great potential in targeting various strains of multi-drug-resistant bacteria, and the
emergence and development of machine learning and other AI technologies can further
boost research in this domain.

5. Specific Antibiotics for Specific Bacteria

Machine learning models are also useful in predicting more complex forms of antibi-
otic resistance in bacteria for which resistance has become a public health problem and
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for which the last-resort treatments have already been widely used. Macesic et al. used
machine learning in order to predict phenotypic polymyxin resistance (PR) in Klebsiella
pneumoniae clonal group 258. Their method used a reference-based approach that relied
on variant calling and insertion sequence detection, and a reference-free approach that used
the detection of k-mers. The reason for using ML models and this approach was based, on
one hand, on the difficulties of applying other methods due to the incomplete identification
of contributing PR mutations and the possible polygenic nature of PR. On the other hand,
the increasing availability of bacterial whole-genome sequencing data permitted their
exploration into the genotype-phenotype prediction of antimicrobial susceptibility testing.
The best performance was obtained through the use of the reference-based approach and
a curated input data set. The method can further be improved by conducting bacterial
genome-wide association study (GWAS) filtering and by incorporating clinical data on
antimicrobial exposure [43].

The outer membrane (OM) of the Pseudomonas aeruginosa bacterium is one of the most
impenetrable barriers to antibiotics and still represents a challenge for drug permeability
and drug discovery [44]. Mansbach et al. applied the machine learning algorithm “Hunting
FOX” (“Hunting Fragments of X”), which is suitable for searching for fragments that match
certain features, in order to construct a hybrid fragment-based design of molecules that are
capable of permeating Pseudomonas aeruginosa [45,46]. The algorithm relied on traditional
machine learning approaches, which are associated with natural language processing
applications using n-grams and fragment-based drug design (FBDD) [45]. The algorithm
considered all possible and relevant unique fragments within a set of compounds, in
contrast to the other conventional FBDD which included only pre-defined small fragments
from specific fragment libraries. The authors identified and validated a chemical vocabulary
specific for Gram-negative bacterium Pseudomonas aeruginosa permeation, with a set of
fragments that were expected to be responsible for the ability of antibiotics to permeate the
OM of Pseudomonas aeruginosa, and obtained nine compounds that were expected to show
good OM permeation, five of which were experimentally validated. Furthermore, they
identified the permeation mechanism for the two molecules containing the most reported
sub-molecular fragments, using molecular dynamics simulations [45].

Machine learning techniques were used by Smith et al. to optimize dosing regimens
when using antibiotic combinations. This refers to the meropenem and polymyxin B
association for the treatment of carbapenem-resistant Acinetobacter baumannii, which is
another instance of critical priority antimicrobial resistance for which polymyxins remain,
at present, the last line of treatment. Besides performing a genetic algorithm (GA) that was
capable of defining the optimal dosing regimen for the antibiotic combination, authors
also supplemented the pharmacodynamics data on the meropenem and polymyxin B
association against A. baumannii and developed mechanism-based models in order to better
describe the intrinsic activity of the compounds and their efficacy, either when separate or
taken together. The approach was unidirectional, with polymyxin B affecting meropenem,
based on the literature models data. The study generated six optimized drug regimens of
the antibiotic combinations, which were capable of improving the probability of achieving
bacterial eradication in 50 to 90% of the simulated patients. However, in order to provide
this level of efficacy, the study underlined that the combination would require the use of
doses above the ones that had been approved and/or recommended by the guidelines. Of
great importance is also the use of aggressive monitoring strategies with regard to patients’
serum concentrations in order to maintain the usefulness of this combination in some
patients [47].

Even though fewer cases and only occasional outbreaks have been reported lately,
Yersinia spp. still poses a great threat to humanity, as it has been in the past, due to its large
reservoir and ability to spread among many types of mammals [48]. Moreover, recent re-
search has shown that Yersinia spp. is also capable of antimicrobial resistance, and concerns
over a new outbreak have started to rise [49]. Hu et al. proposed a combined approach
to target the antimicrobial resistance of Yersinia spp., more specifically targeting the viru-
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lence factors through machine learning and multiple conformational virtual screening, in
order to find inhibitors of Yersinia protein kinase A(YpkA). Protein kinase inhibitor design
represents a challenge because of the high similarity and plasticity of the catalytic site.
By combining a machine learning method and multiple conformational high-throughput
docking, the authors were able to discover YpkA inhibitors. YpkA is an essential virulence
determinant that is involved in host actin cytoskeletal rearrangements and in the inhibition
of phagocytosis. After training the machine learning model, achieving an accuracy of
70% and combining the algorithm with virtual screening, a total of 45 compounds were
selected to be empirically tested for inhibitory properties on Yersinia spp., out of which
seven managed to completely inhibit the growth of Yersinia spp., thus proving the potential
of machine learning for discovering new compounds with antimicrobial activity [49].

6. Economic Impact

Although the scientific community has made significant progress in recent years in
order to address the threat of multi-drug-resistant bacteria, not enough has been done for
us to assume that the danger of new emerging strains has passed.

One of the factors that led to the so-called “antibiotics crisis” is represented by the
ever-increasing cost of developing a new drug. DiMasi et al. analyzed the research
and development costs of 106 randomly selected new drugs, which were obtained from
10 pharmaceutical companies [50]. The study revealed that the average cost for an approved
new compound was $2870 million dollars in 2013, including the research, development,
and post-approval costs [50]. Moreover, the average probability rate of a new drug to enter
the market was 11.83% [50]. Making matters worse, around 4,000 immuno-oncology agents
are currently in development, in contrast to the development of antibacterial compounds,
of which only about 30-40 are in the clinical trial phases, and most of those are derivatives
of already-existing antimicrobial agents [51]. This is due to a number of factors, such as the
low price of antibiotics compared to other more expensive treatments, their short-term use
compared with chronic treatments, and the limitations on the use of antibiotics in order to
prevent their abuse, which would, in turn, deepen the problem.

The continuous use of conventional antibiotics has made it possible for multiple-drug-
resistant strains to emerge, further aggravating the problem and prompting the scientific
community to take action. The Centers for Disease Control and Prevention (CDC) estimated
that, in the US alone, approximately 2 million people were infected with bacteria that were
resistant to antibiotics in 2013, causing at least 23,000 deaths per year as a result [52]. In
2019, the number soared to 2.9 million antibiotic-resistant bacterial infections in the US,
with as many as 35,000 deaths per year [52]. Moreover, in 2017 alone, 223,900 cases of
Clostridioides difficile infections were reported in the USA, resulting in the deaths of
12,800 people [52]. A study conducted by Nelson et al. analyzed the healthcare costs of
antibiotic-resistant bacterial infections and estimated the cost of treating community and
hospital-onset infections at more than $4.6 billion in 2017 [53].

A Strength, Weaknesses, Opportunities and Threats (SWOT) analysis by Miethke et al.
offers an in-depth perspective on the development of novel antibiotic drugs, mentioning
the emerging artificial intelligence technologies as opportunities and future solutions for
their ability to make hit discovery more efficient and reliable [20]. The extensive use of
antibiotics in animals and the development of multi-drug-resistant bacteria render the
process of antibiotic development useless, while fueling a never-ending race for finding
novel antibiotics as current antibiotics become obsolete. It is a threat to antibiotics efficacy
and is the basis of the need for the development of novel antibiotics that are more quickly
introduced into medical practice and that are more precise in terms of their mechanisms of
action.

The latest improvements in AI technologies are seen as an opportunity to discover
novel antibiotics, develop and further improve existing ones, and better handle the current
antibiotic crisis, due to their increased efficiency during the “hit discovery” phase of drug
development [20]. Current algorithms and machine learning programs make it possible
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for large databases to be scanned and analyzed in order to select the best suitable “hit
compounds” that possess antimicrobial activity.

Artificial intelligence could have a great impact on drug development, especially
during the first phases. It could significantly reduce both the duration needed to select
the candidate molecules as well as the cost per molecule. The costs of the early stages
of candidate discovery (screening and hit generation, hit-to-lead and lead optimization)
are estimated to be around 5–10 million euros, even without taking into consideration the
so-called “attrition-molecules” that are abandoned later in the development process [20].
Additionally, this would mean a faster, more feasible process of drug development that
would limit the existing threats, such as the rising death toll per year due to antimicrobial
resistance, and the high socio-economic cost over future decades due to the increased
hospitalization and treatment of multi-drug-resistant bacteria [20,54]. The World Health
Organization (WHO) underlined the importance of innovative antibiotics in the latest
report on the antimicrobial pipeline, emphasizing the impact that antimicrobial resistance
has on certain vulnerable groups, such as children [55,56]. Moreover, none of the drugs that
assess bacterial infections that are currently in development are able to sufficiently address
the most dangerous and resistant pathogens, as evidenced by 30% of the neonates with
sepsis losing their lives due to antimicrobial resistance to the first line of antibiotics [56].

7. Conclusions

Continuous improvement of AI technologies has opened the way to new perspectives
of drug development, providing the necessary tools to efficiently treat drug-resistant
bacteria. Insufficient antimicrobial agents and increased drug resistance have led to the
unfolding “antibiotic crisis.” Increased cooperation between academic institutions and
drug developing industries is needed in order to overcome the challenges that are currently
being faced by patients and healthcare workers alike. Innovative strategies that accelerate
the process and lower the cost of drug development represent an achievable way in which
AI technologies can positively impact the pharmacological and healthcare industries.
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