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Abstract

Background: Non-negative linear combinations of elementary flux modes (EMs) describe all feasible reaction flux
distributions for a given metabolic network under the quasi steady state assumption. However, only a small subset
of EMs contribute to the physiological state of a given cell.

Results: In this paper, a method is proposed that identifies the subset of EMs that best explain the physiological
state captured in reaction flux data, referred to as principal EMs (PEMs), given a pre-specified universe of EM
candidates. The method avoids the evaluation of all possible combinations of EMs by using a branch and bound
approach which is computationally very efficient. The performance of the method is assessed using simulated and
experimental data of Pichia pastoris and experimental fluxome data of Saccharomyces cerevisiae. The proposed
method is benchmarked against principal component analysis (PCA), commonly used to study the structure of
metabolic flux data sets.

Conclusions: The overall results show that the proposed method is computationally very effective in identifying
the subset of PEMs within a large set of EM candidates (cases with ~100 and ~1000 EMs were studied). In contrast
to the principal components in PCA, the identified PEMs have a biological meaning enabling identification of the
key active pathways in a cell as well as the conditions under which the pathways are activated. This method clearly
outperforms PCA in the interpretability of flux data providing additional insights into the underlying regulatory
mechanisms.

Keywords: Flux data analysis, Fluxome data analysis, Principal component analysis, Elementary flux modes, Principle
elementary modes

Background
An elementary flux mode (EM) represents a unique and
non-decomposable sub network of metabolic reactions
that works coherently in steady state [1]. Elementary flux
mode analysis has proven to be a powerful method to
understand the structural properties of metabolic net-
works [1–5]. For example, this approach can be
employed to assess which reactions and educts are in-
volved in producing a certain compound, to determine
optimal yields or to analyze the consequences of certain
reactions taking a zero value as invoked by metabolic
engineering or changes in the cellular environment [6].

The material balances of a metabolic network in steady
state take the form of a system of linear algebraic
equations:

0 ¼ S⋅v ð1Þ
with S the metabolic network stoichiometric matrix
(dim(S) = nc × nv) and v a vector of reaction fluxes
(dim(v) = nv). A set of i = 1,…, nd flux distributions V =
{vi}(dim(V) = nv × nd) obeying to eq. (1) can be further
expressed as a non-negative linear combination of EMs:

V ¼ E⋅P ¼
Xm

i¼1
ei⋅pi ð2Þ

with E a matrix of m EMs and P a matrix of weighting
factors that quantify the contributions of the EMs to the
observed fluxes V [1]. Nonzero values in pi indicate how
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the ei contribute to flux-phenotype [7, 8]. Investigating
which of the p’s have nonzero contributions for a given
phenotype is useful for two reasons [8]: 1) The biological
interpretability of EM-based pathway analysis is improved,
which can help to focus on studying physiologically active
processes; and 2) Changes in the physiological state of the
cell can be quantified, enabling the causes of change to be
elucidated.
Different methods have been proposed to analyze those

p’s which have nonzero contributions. Ferreira et al. [7] out-
lined that different principles, such as network connectivity
and stoichiometry [9, 10], thermodynamics [11, 12], or en-
zyme kinetics [8], can be used to identify EMs that cannot
be active. Though these approaches are good to reduce the
number of EMs beforehand, they do not provide specific
values for p’s, the contributions from the remaining EMs.
Several methods have been proposed that combine

nonlinear programming and experimental data [13–16].
Palsson and co-authors [15, 16] suggested a method for
maximizing and minimizing the contributions of ex-
treme pathways (the systemically independent subset of
EMs) for a given steady-state flux distribution using lin-
ear optimization. This yields ranges of possible non-
negative contribution values associated with the extreme
pathways, the so called alpha spectrum. The alpha
spectrum typically indicates that many extreme pathways
could be active simultaneously. However, several studies
suggest that the regulation problem is of low dimension-
ality [17–21], wherefore only a reduced set of extreme
pathways or EMs can be expected to be active. Wang
et al. [14] proposed to randomly sample u EMs several
times, each time minimizing a least square functional
consisting of the flux data and a flux distribution simu-
lated with u EMs, in order to identify which set of u ac-
tive EMs explains the flux data best. Different values of
u have to be tested to identify how many EMs are ac-
tive. Since the number of theoretically possible combi-
nations of EMs grows with increasing the number of
EMs and almost exponentially with increasing values of
u (ncomb ¼ m!

u!⋅ m−uð Þ!≈
mu

u! ), the number of times the ran-

dom sampling has to be executed also grows with in-
creases in both m and u. Nookaew et al. [13] suggested
to use mixed integer linear programming to determine
the active EMs and their contributions from yield data.
However, also for this algorithm the number of EM
combinations that have to be evaluated increases with
the number of EMs and active EMs.
Ferreira et al. [7] proposed a method that maximizes the

variance between data of the extracellular environment
and data of the reaction fluxes. While this approach allows
inferring which EMs are active under certain environmen-
tal conditions, the identification of the nonzero p contri-
butions is dependent on the appearance of evidence in the

environmental data that indicates changes in the p contri-
butions. Barret et al. [17] performed a basis rotation on
the loadings obtained from principal component analysis
of flux data to find the “eigenfluxes” – sets of
independently-operable reactions, which allow for a bio-
logical interpretation of the principal components. How-
ever, different basis rotation approaches can yield different
eigenfluxes for the same loadings [17].
In this study, the aim is to infer the nonzero p contri-

butions directly from reaction flux data. The decompos-
ition of the flux distributions into EMs is not
straightforward [8]. It is for instance not possible to re-
gress the flux matrix with all EMs, since the number of
EMs is typically much greater than the number of exper-
iments in which fluxes were measured, such that the sys-
tem of linear equations, eq. (2), is underdetermined. In
addition, the EMs are typically not orthogonal to one
another so that the summation of contributions obtained
when regressing two EMs, one at a time, yields a differ-
ent result than when regressing both simultaneously (see
Additional file 1). In what follows, a methodology is pro-
posed, which identifies the combination of EMs that best
captures the patterns observed in reaction flux data, i.e.
the principal EMs (PEMs), given a specific number of
PEMs.

Methods
The difficulty in interpretation of Principal Component
Analysis (PCA) [22] data was the main motivation for
the development of the Principal Elementary Mode Ana-
lysis (PEMA) method proposed here. In PCA a matrix of
data, X, is decomposed into matrices of loadings W and
scores T such that a maximum amount of variance of
the data is captured in an underlying latent space for a
specified number of latent variables, nlv:

X ¼ W ⋅T ¼
X

nlv
wnlv ⋅tnlv : ð3Þ

The scores describe the patterns in the data in the
underlying (orthogonal) latent space and the loadings
describe the relationship between the latent space and
the patterns in the data. The PCA loadings are deter-
mined in an iterative procedure from the data, X, such
that for each latent variable a maximum of variance in
the data can be captured [22].
The structural resemblance between the EM equation

(2) and the PCA equation (3) is obvious. However, in
PCA the principal components (the loadings) are loose
structures determined by measured flux data in the
sense of variance maximization. In contrast, PEMA is
constrained by all possible loading combinations, i.e. the
complete (large) set of EMs, which are fixed a priori and
determined by the metabolic network structure. Thus
the challenge in PEMA is to identify the minimal subset
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of “active” EMs, i.e. the principal EMs (PEMs), that
maximize the explained variance of flux data,Vmes.

The Principal Elementary Mode Analysis (PEMA) method
The PEMA algorithm consists of three steps. At first the
available EMs are analyzed by comparing with one an-
other and with respect to the available flux data, which
allows reducing the number of feasible EM combina-
tions. In the second step, a greedy approach is used to
determine a best first combination, which serves as a
lower bound in the following, step 3, the branch and
bound EM selection method.

Step 1: Pre-selection and analysis of the EMs
Each ei has size dim(ei) = nv fluxes. However, the number
of measured fluxes (nv,mes) is typically much lower than
nv, comprising only a subset of fluxes. This has direct
consequences for the identification of the active EMs,
since it will not be possible to distinguish between EMs
that have zero or equal contributions in the EM entries
of the measured fluxes, termed hereafter ambiguous
EMs. Thus, at this stage, the EMs are filtered with re-
spect to this ambiguity (only one of the ambiguous EMs
is kept in the set), but the information about which EMs
are ambiguous is saved for analysis of the selected EMs,
in case that an ambiguous EM is selected by the algo-
rithm. (Note, which and how many of the EMs are am-
biguous depends on the specified measured fluxes Vmes

and the metabolic network. The ambiguity of the EMs is
directly related to the question whether the system Vest

= − Sest
# ⋅ Smes ⋅Vmes is 1) determined (no ambiguous

EMs) or 2) underdetermined (ambiguous EMs) for the
specified measured fluxes, with the set of flux distribu-

tions V ¼ Vmes

V est

� �
and Vest the matrix of unmeasured

fluxes).
In the next pre-selection step the directions of the EM

contributions are analyzed. Due to the non-cancelation
principle [6, 23], i.e. a reaction can only be active in one
direction at one time, the flux contributions of the EMs
that can be chosen must obey the direction imposed by
the measured flux data Vmes. Thus, possible errors in the
direction of the measured flux data must be addressed
before filtering the EMs.

Step 2: A “best first” EM combination by means of a greedy
approach
A “best first” combination is obtained employing a
greedy approach that iteratively decomposes the flux
patterns of Vmes identifying which EM contributes the
most until the given number of EMs that should be
combined (nFac) is reached. In the beginning each EM i
of all m EMs is divided by its 2-norm value, i.e.:

ei;n ¼ ei
eik k2

∀ i ¼ 1 ::m ð4Þ

where ei,n is the norm-scaled ith EM and m the number
of EMs. This scaling makes the following manipulations
easier and it does not change the ratio between the ele-
ments of each EM vector, but it only scales the weights
of the ith EM by its norm: pi,n = pi ⋅ ‖ei‖2. In each iter-
ation, the vectors of scaled weights, pi, are determined
by regressing the flux matrix Viter with the respective
EM, which for the ith EM gives:

pi;n ¼ ei;n
T ⋅V iter ; ð5Þ

because ei,n
T ⋅ ei,n = 1. Some of the values in the vectors of

weights, or even all, might be negative, which is in con-
flict with the definition that the weights need to be
greater or equal than zero [1]. In order to account for
this constraint the negative values in the vectors of
weights are replaced by zeros. The consequence of re-
placing negative weight values with zeros, is that the
variance related to the negative values is not extracted
from Viter. In the next step pi,n is used to calculate the
contribution of the ith EM to the fluxes,Vest,i:

Vest;i ¼ ei;n⋅pi;n: ð6Þ

The flux contributions for each of the EMs are then
compared to the measured flux values using the ex-
plained variance criteria:

ϑi ¼ 1−

X
k

X
j
Vmes;j;k−Vest;i;j;k
� �2

X
k

X
j
Vmes;j;k

2
; ð7Þ

Where k sums over the number of data points, j sums
over the number of fluxes and Vmes,j is the measured
flux j. It is shown in the Additional file 1 that this equa-
tion can be simplified to:

ϑi ¼
X

k

Xi

l¼1
pl;n

2X
k

X
j
Vmes;j;k

2
: ð8Þ

According to the calculated explained variance values
the EMs can be ranked. The EM, which yields the great-
est variance value, is selected in each iteration. Then the
captured patterns are subtracted from the flux matrix,
such that only the unexplained patterns remain:

V iterþ1 ¼ V iter−Vest;selected; ð9Þ
where Vest,selected is the flux contribution of the selected
EM. Thereupon a new iteration is started. In the first it-
eration Viter = 1 = Vmes. The iterative procedure is stopped
if either the number of measured fluxes or the user de-
fined number of EMs that should be combined for
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explaining the variance in the flux data (referred to as
factors, nFacs) is reached.

Step 3: A branch and bound procedure for the identification
of the PEMs
In contrast to PCA, the EMs selected by the greedy ap-
proach are not necessarily orthogonal to one another,
wherefore in contrast to PCA, the EMs selected by the
greedy approach cannot be guaranteed to capture the
most variance for a given number of factors, i.e.: another
combination of EMs with the same number of factors
might explain more variance. Therefore, it becomes ne-
cessary in principle to exploit all possible combinations
of EMs for all factors, which means that a number of
combinations ncomb ¼ m!

nFac!⋅ m−nFacð Þ! need to be evaluated.

Thus, the EM selection procedure will have to deal with
a combinatorial explosion in the evaluation of possible
combinations for an increasing number of factors and
EMs. Here, a branch and bound technique is used to re-
duce the number of evaluations of EM combinations.
The steps of the algorithm are visualized in Fig. 1. The
procedure starts with calculating the captured variance
for each EM i, using equations 5, 6 and 8, with Viter = 1 =
Vmes. For the second factor all possible combinations of
EM i with each EM j of the remaining EMs need to be
evaluated. For the following factor all possible combina-
tions of EMs i, j with the remaining EMs need to be
evaluated and so forth until nFac is reached. It can be
seen that the algorithm performs the combinatorial
search by calling itself for each increase in factor and
possible elementary mode combinations. However, if the

Fig. 1 Schematic representation of the branch and bound PEM selection algorithm
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sum of the variances captured at any level for a combin-
ation of nFac EMs does not reach the lower bound, then
this combination is not evaluated, since it cannot cap-
ture more variance than had been captured before. The
sum of variances calculated for (nFac − iFac) EM combi-
nations at any factor iFac is such an upper bound. The
upper bound is reached if the (nFac − iFac) EMs are inde-
pendent, but since this is typically not the case the ac-
tual variance is lower. The lower bound is raised every
time a combination is encountered that can capture
more variance.
A Matlab implementation of the algorithm can be

found in the Additional file 2.

Results and discussion
The proposed method was applied to three case studies,
one study with simulation data and two others with ex-
perimental data. In the simulation study the flux data
were generated using EMs of the metabolic network of
Pichia pastoris, such that the active EMs are known. Dif-
ferent numbers of EMs are involved in the experimental
studies on Pichia pastoris and Saccharomyces cerevisiae,
98 and 1182 EMs respectively. In all studies the results
obtained with the proposed method were compared to
results obtained with PCA, which is the standard tool to
analyze the latent structure of flux data.

Pichia pastoris simulation case study
This case is based on the metabolic network of Pichia
pastoris, which originates from Tortajada et al. [23]. It
describes the central carbon metabolism of P. pastoris
during growth on glucose, glycerol and methanol, com-
prising the Embden-Meyerhoff-Parnas pathway, citric
acid cycle, pentose phosphate and fermentative path-
ways. It contains 45 compounds (36 of which are in-
ternal metabolites, which can be balanced for growth)
and 44 reactions, yielding a total number of 98 EMs
[23]. Flux data were generated simulating the growth of
Pichia pastoris for twelve different cultivation conditions
by choosing appropriate sets of active EMs (the flux data
can be found in the Additional file 3). The active EMs
were assumed to contribute randomly to the flux pat-
tern. For more details see the Additional file 1. This al-
lows comparing the set of EMs identified with PEMA to
the active EMs that were used for data generation, here-
upon termed “active EMs”. This case study also enables
the study of the impact of noise on the EMs identifica-
tion and performance. Only the uptake and secretion
flux data were used thus mimicking the experimental
study. For each flux the data values, as well as their re-
spective entry in the EMs, were scaled by the mean
value of this flux in order to reduce the impact of differ-
ences in magnitudes between values of different fluxes.

Analysis of the performance without noise
The results obtained with PEMA and PCA are shown in
Table 1 in case of no noise added to the data. It can be
seen that the number of the selected EMs varies when
increasing the number of nFacs from one to six. For fur-
ther increases in number of nFacs, it can be observed
that systematically the same (1 to nFac-1) EMs are se-
lected. From six up to nine nFacs the EMs selected with
PEMA all belong to the set of active EMs. However, the
10th identified EM does not belong to the set of active
EMs. It can also be observed that from the 9th EM on
the increase of explained variance is negligible (changes
are observed only three digits after the decimal point).
While more than 97 % of the variance can be explained
with the identified first nine EMs, the seven EMs that
remain to be identified, generate in total less than 3 % of
variance in the 12 simulated experiments. Since there is
only little evidence for the activity of these EMs in the
data, it will be extremely difficult to identify them, par-
ticularly when noise is present in the data. The identified
set of EMs therefore is not exclusive.
When comparing the PEMA final results to the best-

first solution (which is used as an initial approximate
and lower bound in the first part of the PEMA algo-
rithm), shown in the last rows of Table 1, it is obvious
that up to the fifth EM the performance of the best-first
solution in terms of captured variance is comparable to
the final result, though the first, third and ninth identi-
fied EMs do not belong to the set of “active EMs”. The
misidentified EMs pose an inductive bias onto the iden-
tification of the following active EMs, wherefore the per-
formance for greater number of nFacs becomes inferior.
This was expected as outlined in the method section
and the reason why the here proposed PEMA method
was developed.
From the results obtained with PCA, also shown in

Table 1, it can be concluded that the simulated data can
be described on a latent variable space of lower dimen-
sion, at maximum nine latent variables are required.
While the performance of PCA in terms of explained
variance is superior to PEMA, its loadings W have no
biological meaning, which makes the biological inter-
pretation of the results more difficult.

Analysis of the PCA loadings and PEMs
The contributions of the active normalized EMs (seg-
mented into identified (PEMA) and unidentified EMs)
to each flux are shown in Fig. 2 together with the contri-
bution of the PCA loadings and basis rotated PCA load-
ings. The basis rotation of the loadings allows for a more
biological interpretation of the principal components
[17]. Different orthogonal basis rotation methods were
used, namely varimax, orthomax, quartimax, equamax
and parsimax. These methods rotate the loadings
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according to different objectives, for more details see
[24, 25]. In case of the identified EMs it can be seen that
the EMs contribute to all fluxes. It appears that, in case
of PCA, none of the loadings contributes to the ethanol
and pyruvate fluxes, but in fact their respective values
are only very small. However, the contributions of the
PCA loadings to the fluxes are very difficult to interpret.
For instance, the negative contributions of w3 to the
methanol flux paired with positive contributions of this
loading to the glycerol and the oxygen flux does not
make sense from a biological point of view, since this
would either mean that i) glycerol and oxygen are pro-
duced using other compounds, such as methanol, how-
ever the glycerol and oxygen uptake reactions are
irreversible in the simulation model; or ii) that methanol
is produced from glycerol and oxygen, but the utilization
of methanol in fact consumes oxygen. In contrast, the
EMs enable a rational interpretation of the flux data
structure [6]. For instance, it can be deduced from the
first principal EM, e7, that methanol is, under the

consumption of oxygen and the release of carbon diox-
ide, mainly transformed to ethanol (a scenario that was
simulated in the simulation case but is rather not ob-
served in Pichia cultivations). The results obtained by
the different method for the rotation of the PCA load-
ings w2, w3 and w5 are equal, suggesting their association
to glycerol uptake, methanol uptake and CO2 release, re-
spectively. Different results are given by the different
methods for the rotations of the loadings w1 and w4. For
w1 the results of the methods agree in so far as that glu-
cose uptake is predicted in each case. The results of vari-
max, orthomax and quartimax in addition suggest that
citrate release is also associated to this loading, where-
fore this loading seems to be similar to the active e13.
The results for loading w4 suggest a biomass growth as-
sociation in case of varimax and orthomax, an oxygen
uptake association by quartimax and parsimax and an
association to ethanol secretion in case of equamax.
Thus, despite the fact that the rotated loadings are easier
to interpret than the original loadings, it is not clear in

Table 1 Selected EMs and the respective captured variance (ϑ) values for one to 10 number of nFacs obtained for the simulated
data without noise

nFac EM/ϑ 1 2 3 4 5 6 7 8 9 10

1 EM 70

1 ϑ 29.45

2 EMs 70 7

2 ϑ 29.45 53.82

3 EMs 70 7 40

3 ϑ 29.45 53.82 71.16

4 EMs 7 69 13 40

4 ϑ 24.49 46.86 65.83 83.55

5 EMs 7 71 13 33 37

5 ϑ 24.49 45.99 64.42 82.48 93.96

6 EMs 7 33 13 3 37 23

6 ϑ 24.49 44.02 62.29 78.93 91.37 97.08

7 EMs 7 33 13 3 37 23 12

7 ϑ 24.49 44.02 62.29 78.93 91.37 97.08 97.23

8 EMs 7 33 13 3 37 23 12 19

8 ϑ 24.49 44.02 62.29 78.93 91.37 97.08 97.23 97.26

9 EMs 7 33 13 3 37 23 12 19 16

9 ϑ 24.49 44.02 62.29 78.93 91.37 97.08 97.23 97.26 97.28

10 EMs 7 33 13 3 37 23 12 19 16 17

10 ϑ 24.49 44.02 62.29 78.93 91.37 97.08 97.23 97.26 97.28 97.28

PCA nlv** 1 2 3 4 5 6 7 8 9

PCA ϑ 50.16 82.19 91.85 97.00 99.27 99.96 100.00 100.00 100.00

BF* EMs 70 7 40 13 37 23 14 12 8 16

BF* ϑ 29.45 53.82 71.16 82.44 90.54 91.84 92.04 92.12 92.17 92.20

The set of truly active EMs for data generation was EMs = [1, 3, 7, 12, 13, 14, 16, 19, 20, 22, 23, 24, 28, 32, 33, 37]. BF* best-first identification by the greedy
approach. nlv** number of latent variables for PCA
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some cases to which reaction the loading is really associ-
ated, i.e. the methods yield different results. In compari-
son to the selected EMs, the rotated loadings do not, in
general, seem to reproduce the correlation between sub-
strate uptake and product secretion, hence they do not
provide the same level of insight as the identified EMs.

Analysis of the impact of noise on the performance
The impact of noise on the EM selection was studied by
adding 2 % or 10 % Gaussian noise to the simulated
data. The respective performances of PEMA and PCA
are shown in Table 2 of Additional file 1 and Table 2. In
the case of 10 % Gaussian noise, the EMs identified with
PEMA are identical to the case of no noise and also the
explained variance values are very similar, differing by
less than 1 %. Comparing the results obtained with PCA
it can be seen that they are also very similar. The obser-
vation that the performance in terms of explained vari-
ance did not significantly deteriorate for both PEMA
and PCA when adding noise to the data is partially due
to the cancelation of noise when compressing the data
via the loadings or EMs into a latent space.
The selection of the number of latent variables to be

included into the PCA model can be nontrivial, because
once all data underlying “true” patterns have been ex-
tracted, the PCA will start to model noise patterns. Typ-
ically, one analyzes the changes in captured variance to
decide upon what number of latent variables to use. The
choice of the number of factors in the case of PEMA

seems to be easier. It can be seen that PEMA reaches a
plateau at a value of 97.2 % of explained variance in both
the cases no noise (Table 1) and 10 % noise (Table 2).
Once PEMA extracted all main features in the data, the
method will “choose” between the various EMs such that
the patterns remaining in the data are explained.
Though the method then starts to capture noise patterns
as well, the changes in explained variance values are very
low, less than those observed for PCA for the same
amount of captured variance. The reason is that, unlike
PCA, the entries of the EMs vectors are fixed a priori
and not adapted to the data as in the case of the PCA
loadings. However, in the case of 10 % noise, Table 2,
the explained variance value increases by 0.01 % from
nine to ten nFacs, erroneously suggesting that the 10th

EM would also belong to the set of active EMs. Thus
care must also be taken when choosing the number of
PEMs. In the present study either a number of nine
PEMs seems to be appropriate to describe the data and
a number of four or five latent variables in the case of
PCA. The estimations obtained with one to eight PEMs
(PEMA) and five latent variables (PCA) are shown in
Fig. 3 for the case of 10 % noise. The estimations of the
fluxes improve for an increasing number of PEMs and
also the differences in the contributions of the PEMs to
the flux estimations can be noted. For all eight PEMs a
good agreement between the data and estimations can
be found. It suggests however that the zero values of the
glucose, glycerol, citrate and methanol fluxes are not so

Fig. 2 Plot of the active EMs-normalized (on the upper left the identified EMs (PEMs), on the upper right the unidentified EMs) and the first five
PCA loadings, as well as the basis rotated loadings (lower plots). The corresponding reactions are shown on the right, where => signifies
irreversible reactions, whereas <=> reversible reactions

von Stosch et al. BMC Bioinformatics  (2016) 17:200 Page 7 of 19



0.5 1 1.5

0.5

1

1.5

Dat v
O

2

E
st

 v
O

2

0 2 4
0

1

2

3

4

Dat v
Glc

E
st

 v
G

lc

0.5 1 1.5

0.5

1

1.5

Dat v
CO

2

E
st

 v
C

O
2

0 2 4 6
0

2

4

6

Dat v
Eth

E
st

 v
E

th

0 1 2 3
0

1

2

3

Dat v
Gly

E
st

 v
G

ly

0 2 4

0

1

2

3

4

5

Dat v
Cit

E
st

 v
C

it

0 2 4
0

1

2

3

4

5

Dat v
Pyr

E
st

 v
P

yr

0 2 4
0

1

2

3

4

Dat v
Met

E
st

 v
M

et

0 0.5 1 1.5
0

0.5

1

1.5

Dat µ

E
st

µ

e7−Var: 0.24604
e33−Var: 0.44171
e13−Var: 0.62354
e3−Var: 0.79046
e37−Var: 0.91473
e23−Var: 0.97093
e12−Var: 0.97264
e19−Var: 0.97299
PCA

Lv = 5
−Var: 0.99387

Fig. 3 Normalized flux estimations over normalized flux data for PCA with five latent variables and each of the 11 identified EMs by PEMA in the
case of 10 % Gaussian noise

Table 2 Selected EMs and the respective variance (ϑ) values for one to 10 number of nFacs obtained for the simulated data with
10 % Gaussian noise

nFac EM/ϑ 1 2 3 4 5 6 7 8 9 10

1 EM 70

1 ϑ 29.61

2 EMs 70 7

2 ϑ 29.61 54.09

3 EMs 70 7 40

3 ϑ 29.61 54.09 71.50

4 EMs 7 69 13 40

4 ϑ 24.60 47.20 65.78 83.55

5 EMs 7 71 33 13 37

5 ϑ 24.60 46.34 64.74 82.59 94.05

6 EMs 7 33 13 3 37 23

6 ϑ 24.60 44.17 62.35 79.05 91.47 97.09

7 EMs 7 33 13 3 37 23 12

7 ϑ 24.60 44.17 62.35 79.05 91.47 97.09 97.26

8 EMs 7 33 13 3 37 23 12 19

8 ϑ 24.60 44.17 62.35 79.05 91.47 97.09 97.26 97.30

9 EMs 7 33 13 3 37 23 12 19 16

9 ϑ 24.60 44.17 62.35 79.05 91.47 97.09 97.26 97.30 97.31

10 EMs 7 33 13 3 37 23 12 19 16 17

10 ϑ 24.60 44.17 62.35 79.05 91.47 97.09 97.26 97.30 97.31 97.32

PCA nlv** 1 2 3 4 5 6 7 8 9

PCA ϑ 50.04 82.08 91.83 97.05 99.39 99.96 100.00 100.00 100.00

The set of truly active EMs for data generation was EMs = [1, 3, 7, 12, 13, 14, 16, 19, 20, 22, 23, 24, 28, 32, 33, 37]. nlv** number of latent variables for PCA
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well approximated. This might be due to the fact that
these values do not have a big impact on the estimation
performance. In the case of citrate it can also be ob-
served that its uptake is not considered by the selected
PEMs, as the negative flux data values are estimated to
be zero. Again the reason for this might be the magni-
tude of these values and their low contribution to the
estimation performance. In the case of PCA, the estima-
tions match the data very well for all fluxes.

Analysis of the number of evaluated EMs combinations and
computation time
The greater the number of nFacs (and the greater the
number of EMs) the greater the number of possible EM
combinations that have theoretically to be evaluated, as
shown in Fig. 4a. However, in the case of the proposed
branch and bound method fewer combinations are

evaluated for an increasing number of nFacs, ranging
from 5 % of evaluated to possible combinations for two
factors to about 0.0005 % for 10 factors. The number of
evaluated combinations varies slightly for different levels
of noise, but the number of evaluations, for all levels, re-
mains far below the theoretically feasible number of
combinations, i.e.: at most 5 % of the theoretically pos-
sible combinations were evaluated. The computation
time increases fairly linearly with the number of EMs
combinations that were evaluated. On average it takes
1.57 × 10−6 s to evaluate how much variance is explained
by one EM, Fig. 4b.

Pichia pastoris experimental case study
This case uses the same metabolic network of Pichia
pastoris as the simulated case, containing a set of 98
EMs [23]. The aim in this case study is to evaluate the
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performance of the PEMA under real experimental con-
ditions, potentially revealing which metabolic pathways
are active. The flux data used in this study stem from
Tortajada et al’s collection of flux data from the litera-
ture [23]. The set of EMs also originated from Tortajada
et al’s study [23], where they were analyzed with respect
to possible substrate conversion to biomass and com-
pared to experimental yield data. In Table 3 the EMs se-
lected with the proposed approach and their respective
explained variance values for different numbers of fac-
tors are shown. It can be seen that from four factors on,
the same one to nFac-1 EMs are chosen, which, in ac-
cordance with the findings in the simulated case study,
indicating that a set of truly active EMs is identified. For
the fourth factor two EMs are given, because e4 and e22
are indistinguishable given only the measured flux values
(e22 was eliminated by the EM pre-selection). For more
than six factors the explained variance value does not
further significantly increase, which suggests that the
EMs identified for greater number of factors might not
be biologically significant, i.e. they are used to explain

the noise patterns. The clear plateau in the variance
values, which can be observed in all studied cases for
PEMA, helps in the choice of the number of factors, as
the results indicate that the appropriate number of EMs
is the one, which explains the most variance before
reaching the plateau. Thus, a set of six PEMs is identi-
fied, which can explain about 99 % of the variance ob-
served in the data. The choice of the number of latent
variables in the case of PCA seems to be harder than the
choice of the number of PEMs in PEMA. While typically
a number of latent variables that explains about 90 % of
the variance would be chosen in the case of PCA (since
the remaining variance is considered to be noise only),
the variance values are still increasing significantly for
an increasing number of latent variables (Table 3). Thus,
two or three latent variables could be appropriate to ex-
plain the variation in the data with PCA.
The estimations obtained with one to six EMs (PEMA)

and the three latent variables (PCA) for the flux data are
shown in Fig. 5. The contributions of the selected PEMs
to each of the flux estimations can be clearly observed

Table 3 Selected EMs and the respective captured variance (ϑ) values for one to ten number of nFacs obtained for experimental
data given in Tortajada et al. [23] and the best first solution of the greedy approach (BF**)

nFac EM/ϑ 1 2 3 4 5 6 7 8 9 10

1 EM 90

1 ϑ 42.32

2 EMs 76 14

2 ϑ 38.88 76.83

3 EMs 76 14 40

3 ϑ 38.88 76.83 92.45

4 EMs 32 14 33 4/22

4 ϑ 38.71 76.66 90.41 98.87

5 EMs 32 14 33 4/22 37

5 ϑ 38.71 76.66 90.41 98.87 98.95

6 EMs 32 14 33 4/22 37 12

6 ϑ 38.71 76.66 90.41 98.87 98.95 99.00

7 EMs 32 14 33 4/22 37 12 1

7 ϑ 38.71 76.66 90.41 98.87 98.95 99.00 99.01

8 EMs 32 14 33 4/22 37 12 1 5

8 ϑ 38.71 76.66 90.41 98.87 98.95 99.00 99.01 99.01

9 EMs 32 14 33 4/22 37 12 1 5 19

9 ϑ 38.71 76.66 90.41 98.87 98.95 99.00 99.01 99.01 99.01

10 EMs 32 14 33 4/22 37 12 1 5 19 20

10 ϑ 38.71 76.66 90.41 98.87 98.95 99.00 99.01 99.01 99.01 99.01

PCA nlv* 1 2 3 4/22 5 6 7 8 9

PCA ϑ 92.03 97.16 99.84 99.98 100.00 100.00 100.00 100.00 100.00

BF** EMs 89 75 39 4 12 20 1 5 10 7

BF** ϑ 42.32 76.72 92.33 97.95 98.10 98.20 98.27 98.27 98.27 98.27

nlv* number of latent variables for PCA
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and the flux estimations with six PEMs are close to the
experimental flux data. In case of the carbon dioxide
and oxygen fluxes some of the estimations do not ap-
proximate the data well, which is most probably due to
the overall magnitude of the carbon dioxide and oxygen
flux values (which are rather low compared to the other
fluxes) and consequently their low impact on perform-
ance. Also slight mismatches can be observed in the case
of low glycerol flux values, most probably due to the
same reason. The PCA estimations match the data very
well for all fluxes. The number of evaluated EM combi-
nations is, as in the simulated case, much lower than the
theoretically possible number of combinations ranging
from 36 % (evaluated/theoretically possible) with two
factors to 3.36 × 10−6 % with ten factors, see Fig. 6.

Biological interpretation of the PEMs
The advantage of PEMA is that the predominantly active
pathways can be identified by looking at the selected
PEMs. The metabolic network, which was adopted from
Tortajada et al. [23] and used in this study, is shown in
Fig. 7, together with the predominantly active pathways
as indicated by the PEMs which are represented in dif-
ferent colors. It can be seen that e32, e33 and e37 describe
biomass growth using either glucose, glycerol or metha-
nol, respectively. These three EMs have the shortest
paths for growth of biomass on the respective substrate
while also adhering to the secretion rate constraints, i.e.
the shortest distance between biomass and the respective
substrate, where the length of a path/EM is the number
of reactions that it comprises. Shorter distances between
two compounds are favored from an evolutionary point
of view [26, 27] and the selected EMs such seem to
make sense. Also shorter EMs can carry higher fluxes

[9], which in case of the three selected EMs might allow
higher growth rates.
The e14 describes the uptake of glycerol and release of

citrate and is involved in the reduction of NAD+ to
NADH. It is the shortest EM for production of citrate
from glucose, which again might mean that this path is
evolutionary favored [26, 27]. As can be taken from
Fig. 8, this EM is inactive for most experiments. In the
ambiguous case of e4/e22 (Fig. 7) methanol is consumed
using oxygen thereby releasing carbon dioxide. Both
EMs seem to be involved in the generation of reducing
equivalents, reducing NAD+ to NADH via reactions 33
or 14, either in the cytosol (e4) or mitochondria (e22),
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Fig. 7 The metabolic network of Pichia pastoris considered in this study and adopted from Tortajada et al. [23]. The different colored arrows
correspond to the PEMs of the experimental case study
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respectively. However, the length of EM4 of 6 is significant
shorter than e22 with 25, wherefore it could be hypothe-
sized that e4 is more likely to be “really” active. The pro-
duction of energy and NADH from glycerol is described
by e12, which has a length of 16. For reactions 2, 3 and 4,
the direction of e32 is opposed to e33 and e37, which seems
to violate the non-cancelation principle [5, 23]. However,
looking at the weights in Fig. 8, it can be observed that the
opposing contributions of the EMs generally differ by one
order of magnitude. For different experiments the EMs
are weighted differently, i.e. a distinct EM activity pattern
can be observed for every experiment. Thus, it seems that
for each experiment the cancelation principle is retained.
Other opposing contributions of EMs to reactions in the
pentose phosphate pathway, which were analyzed in the
same way, also seem experimentally to adhere to the can-
celation principle. In future, the introduction of a hard
constraint into the branch and bound part of the algo-
rithm that accounts explicitly for the cancelation principle
might help to reduce the number of evaluations of EM
combinations further.
None of the PEMs is predominantly active for all ex-

periments (Fig. 8). This might be due to the algorithm,
which requires sufficient excitation/variation in the data
for the identification of the EMs, whereas constantly ac-
tive EMs might show a rather low variation. However,
the variations in the activity patterns might be due to
changes in the cellular environment. For instance, ex-
periment D1 was the only one in which glucose uptake
and citrate secretion were present, which is reflected by
much greater activity of e14 than in the other experi-
ments. Therefore, it seems that the cell responds to the
changing environment by regulation of the activity of
different pathways, reflected by the activity of the differ-
ent EMs, as is captured by PEMA.

Saccharomyces cerevisiae experimental case study
A metabolic network for Saccharomyces cerevisiae pro-
posed by Hayakawa et al. [28] and fluxome data from
[28] and [29] was used in this study (Additional file 4

contains both data sets). The network describes the cen-
tral cytosolic and mitochondrial metabolism of S. cerevi-
siae, comprising glycolysis, the pentose phosphate
pathway, anaplerotic carboxylation, fermentative path-
ways, the TCA cycle, malic enzyme and anabolic
reactions from intermediary metabolites into anabolism
[28, 29]. A biomass synthesis reaction was incorporated
from [30] replacing the single reactions for every bio-
mass component, in order to bundle the flux contribu-
tions for biomass growth (see Additional file 4). The
network contains 42 compounds (30 of which are in-
ternal metabolites, which can be balanced for growth)
and 47 reactions, yielding a total number of 1182 EMs,
which were calculated using the EFM toolbox [31].
The objective in this case study is to evaluate the per-

formance of PEMA on fluxome data and for a case with
a greater number of EMs, i.e. 1182 EMs in this case in
comparison to 98 EMs in the prior cases. The observed
behavior in the explained variance for one to six factors
is similar to the one observed in the other case studies,
i.e. a shift from an initial selection of the same 1 to nFac-
1 EMs (1–3 factors) to a second selection of the same
EMs for four to six factors (Table 4). However, in the
present case the combination of selected EMs changes
several times for further increases in the number of fac-
tors. Only for eight and nine factors the same 1 to nFac-1
EMs are selected again. For nine factors all reactions are
represented for the first time in the selected EMs, as can
e.g. be seen in Fig. 9 (all results can be found in the
Additional file 1), wherefore nine factors seem to pro-
vide a minimal base. However, the explained variance
value increases by 2.6 % from nine to ten factors, which
in comparison to the behavior observed in the cases be-
fore, seems to indicate that more than nine factors
should be chosen. The percentage of the explained vari-
ance of the greedy solution is found to stabilize around
91 % from ten factors on (Table 4) and the explained
variance seems to converge towards 92 % for an increas-
ing number of factors, which agrees with the behavior
observed in the previous cases. The computation time

A1 A2 A3 A4 B1 B2 B3 C1 C2 C3 D1

10
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10
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# Exp

e32
e14
e33
e4/22
e37
e12

Fig. 8 Intensities of the scaled weights, p, for each identified EM and for each of the experiments are shown. In all experiments vGlc = 0 (reaction 37)
and vCit = 0 (reaction 41) except for D1. vMet = 0 (reaction 43) in experiments A1 and B1. vGly = 0 (reaction 40) in C3 and D1. vEth = 0 for all
experiments. For more details see Tortajada et al. [23]

von Stosch et al. BMC Bioinformatics  (2016) 17:200 Page 13 of 19



required for the evaluation of combinations with 11 fac-
tors stalled as described later, which is most likely due to
the very low differences in the explained variance values
between different combinations of EMs. Hence, it might
be that the increase in the explained variance value from
ten factors on is describing noise rather than the under-
lying behavior. For PCA, the total explained variance is
slightly higher than in case of PEMA, which matches the
observation in the other cases. Three or four latent vari-
ables can be chosen for PCA.
The estimated flux values for the exchange reactions

with eight, nine and ten factors in case of PEMA and for
PCA with four latent variables are shown in Fig. 9 (for
the other reactions the plots can be found in the Add-
itional file 1). The fit of the estimates to the experimen-
tal data is generally good for all these numbers of
factors, however SAM production is only modeled from
nine factors on. The greatest discrepancies can be ob-
served in case of the malate reaction for both PEMA
and PCA. With ten factors PEMA estimates the acetate
and glycerol reactions significantly better than with nine

factors, thus the PEMA solution with ten factors is pre-
ferred over the one with nine factors.

Biological interpretation of the PEMs
The active EMs and their contributions to each experi-
ment are shown in Fig. 10. The conversion of glucose to
ethanol described by e1145 was repeatedly selected by
PEMA across different factors. This EM has a particu-
larly high contribution in experiments six and seven,
which were performed at high glucose consumption
rates. It has a length of nine, which is the shortest EM
for the conversion of glucose to ethanol. The shortest
EM is also selected for transforming glucose into acetate,
e659. This EM is active in experiments one, two and five
to seven. The contributions are particularly high in ex-
periments six and seven. As mentioned before, shorter
EMs are assumed to be evolutionary favored [26, 27]
and they can carry greater fluxes [9].
Three EMs, e972, e750 and e999, describe the conversion

of glucose to biomass growth via different routes. The
lengths of the EMs are 28, 27 and 30, respectively. The

Table 4 Selected EMs and the respective captured variance (ϑ) values for one to ten number of nFacs obtained for experimental
data extracted from [28] and [29]

nFac EM/ϑ 1 2 3 4 5 6 7 8 9 10 11 12 13

1 EMs 915

1 ϑ 28.12

2 EMs 915 1145

2 ϑ 28.12 46.44

3 EMs 678 1145 988

3 ϑ 25.54 44.93 56.05

4 EMs 1145 663 968 750

4 ϑ 22.62 41.62 55.31 65.07

5 EMs 1145 663 968 750 48

5 ϑ 22.62 41.62 55.31 65.07 72.62

6 EMs 1145 663 968 750 48 31

6 ϑ 22.62 41.62 55.31 65.07 72.62 77.23

7 EMs 1145 663 766 968 48 31 1047

7 ϑ 22.62 41.62 55.33 65.05 72.61 77.22 81.15

8 EMs 1145 663 750 48 647 718 31 1040

8 ϑ 22.62 41.62 55.25 62.80 69.99 76.42 81.03 84.98

9 EMs 1145 663 750 48 647 718 31 1040 641

9 ϑ 22.62 41.62 55.25 62.80 69.99 76.42 81.03 84.98 87.61

10 EMs 1145 972 697 750 48 685 31 999 659 501

10 ϑ 22.62 40.25 51.57 62.43 69.99 75.60 80.21 83.94 87.57 90.20

PCA #Lv 1 2 3 4 5 6

PCA nlv** 68.44 84.28 94.82 98.42 99.53 100.00

BF* EMs 893 1123 675 1115 26 13 1022 637 630 672 33 1155 1117

BF* ϑ 28.12 46.44 55.71 64.85 72.40 77.01 80.69 84.14 86.77 89.19 90.42 91.29 91.73

nlv** number of latent variables for PCA. BF* best first solution obtained by the greedy approach
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shortest EMs for biomass growth have a length of 26,
the longest are 31, and the average length is 29. In ex-
periments five to seven e999 is not active. Since the yield
of biomass as a function of glucose varies between the
experiments, two/three EMs are required to describe
biomass growth. This also explains the variation in the
length of the three selected EMs, which results in differ-
ent yields of biomass growth on glucose of EMs, e972,
e750 and e999, i.e.: 0.19, 0.37 and 0.27, respectively.
Energy generation is described by e697, which seems to

be more active in experiments five to seven (experiments
with strain ATCC 32167). The conversion of glucose to
lactate and succinate, e48, can be observed to be pre-
dominantly active in experiments one and three, which
both have a low specific biomass growth rate. Lactate
and succinate formation were assumed to be zero for ex-
periments five to seven and at the same time e48 is
hardly active. This EM is the only one which transforms

glucose to lactate and succinate and it is interesting to
note that the flux goes through the pentose phosphate
pathway. It was described in [29] that during oxidative
growth the pentose phosphate pathway alone is suffi-
cient to completely supply NADPH for anabolism, which
might explain why the flux goes through this pathway.
The conversion of glucose to glycerol and the gener-

ation of energy are described by e685, which due to the
involvement in both processes has a length of 15 and
such is longer than EMs that only describe glucose con-
version. This EM is majorly active in experiments six
and seven, in agreement with the observed higher gly-
cerol formation. The e31 was repeatedly selected by
PEMA across different numbers of factors and it de-
scribes the formation of citrate and malate from glucose.
The flux goes through the pentose phosphate pathway,
thus it is longer (length 23) than the shortest option
(length 21). In experiments five to seven citrate and
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malate formation was assumed to be zero and conse-
quently this EM is not active for those experiments.
The production of S-adenosyl-L-methionine (SAM),

malate and glycerol is described by e501. This EM is par-
ticularly active in experiments three and four, the experi-
ments with the high SAM producing strain Kyokai 6.
The increased activity of the TCA cycle observed in
these experiments [28], is partially reflected by e501, in
that malate is produced via the TCA cycle.

Analysis of the number of evaluated EMs combinations and
computation time
The number of theoretically possible combinations of
EM increased significantly due to the greater number of
1182 EMs opposed to 98 EMs in the cases before, i.e.
1.17 × 1024 (Fig. 11a) opposed to 1.26 × 10+13 (Fig. 4a)
for 10 factors, respectively. The number of evaluated
combinations and the computation of the branch and
bound method also increased in the present case, but
the average time to evaluate how much variance is ex-
plained by one combination decreased to 7.94 × 10−7 s in
comparison to 1.57 × 10−6 s in the simulated case, Fig. 4b
and Fig. 11b (Note that the average time is only com-
puted for nFac > 4, since before this the time values are
too low and they do not reflect the evaluation of the

EMs but rather other effects, e.g. memory allocation).
Thus, in this case the combinations are evaluated about
2 times faster (1.57 × 10−6/7.94 × 10−7). The reason for
this improvement in performance is the way the algo-
rithm can be implemented, using vector and matrix
multiplications. Only two operations are required to
evaluate m − iFac EMs, i.e.: computing the results for eqs.
(5) and (8). Thus, it can be expected that in cases of a
greater number of EMs a solution can still be obtained
with reasonable computation time. However, critical for
the computation time is increases in the number of fac-
tors, as can be seen in Fig. 11a. This also becomes evi-
dent looking at the theoretically possible number of EM
combinations:

ncomb ¼ m!

nFac!⋅ m−nFacð Þ!

¼
YnFac

i¼1
m− i−1ð Þð Þ
nFac!

≈
mnFac

nFac!
ð10Þ

The increase in the number of factors results in an
exponential increase in the number of combinations.
The numbers of evaluated combinations do increase
much more slowly, however the number of evaluated
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Fig. 10 The entries in the active EMs selected by PEMA with ten factors for the reactions. Zero valued entries are shown in grey. The
contributions of the active EMs to the seven experiments. Experiments 1 to 4: Strains S288C and Kyokai 6 at specific growth rates 0.06 and 0.1
(1/h) [28] and Experiments 5 to 7: Strain ATCC 32167 at specific growth rates 0.15, 0.3 and 0.4 (1/h) [29]
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combinations and computation time for more than ten
factors are not shown, since the computation time
exceeded two weeks. The reason for the drastic increase
in computation time from ten to 11 factors is most likely
that the differences in the explained variance values be-
tween the combinations is not as distinct as in the previ-
ous cases, wherefore many more combinations need to be
evaluated and compared. This assumption is also sup-
ported by the observation that the explained variance
values produced by the greedy approach stabilize around
91 % from ten factors on (Table 4). Thus, the proposed
branch and bound approach seems to work efficiently
even for greater number of EMs as long as the differences
in the explained variance values for a given number of fac-
tors are sufficiently distinct. However, Increases in the
number of EMs by several orders of magnitude have not
been studied here and it might be that even with the pro-
posed branch and bound approach the number of evalua-
tions is so elevated that the application of approximation
techniques, such as relaxation, becomes necessary.

Conclusions
A method that analyzes reaction flux data using combi-
nations of elementary (flux) modes (EM) has been

proposed. The method avoids the evaluation of all pos-
sible combinations of EMs by using a branch and bound
approach. It was shown that PEMA identifies the princi-
pal elementary modes (PEMs), which are those combi-
nations of EMs that account for most of the variance in
the flux data, and that PEMs are a faithful representation
of active pathways. From studies in which 2 and 10 %
Gaussian noise was added to the data, it can be con-
cluded that the performance did not deteriorate for the
correct identification of the PEMs. Also the performance
in terms of explained variance did not decrease signifi-
cantly for increasing levels of noise. In comparison to
PCA it was observed that PCA can explain more vari-
ance in the data with fewer latent variables, but in con-
trast to PCA latent structures, the PEMs have a
biological meaning. It also appears to be easier to choose
the number of PEMs than the number of principal com-
ponents in PCA. In addition, it was shown that the ana-
lysis of the PEMs might reveal insights into the
regulation of the pathways. The set of PEMs is not ex-
haustive as only those PEMs can be identified that have
a traceable footprint in the flux data, whereas other EMs
might be active that do not contribute to the footprint
significantly and thus are probably of minor interest.
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