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Graphical Abstract

∙ Single-cell RNA sequencing reveals the multi-cellular ecosystem in different
radiological components of pulmonary part-solid nodules.

∙ Pathways related to tumour cell proliferation, invasion, and aggression are sig-
nificantly up-regulated inmalignant cells within solid components than those
within ground-glass components.

∙ Tumour microenvironment cells in solid components tend to show a stronger
pro-tumour function than those in ground-glass components.
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Abstract
Background: Early-stage lung adenocarcinoma that radiologically manifests as
part-solid nodules, consisting of both ground-glass and solid components, has
distinctive growth patterns and prognosis. The characteristics of the tumour
microenvironment and transcriptional features of themalignant cells of different
radiological phenotypes remain poorly understood.
Methods: Twelve treatment-naive patients with radiological part-solid nodules
were enrolled. After frozen pathology was confirmed as lung adenocarcinoma,
two regions (ground-glass and solid) from each of the 12 part-solid nodules and 5
normal lung tissues from5 of the12 patientswere subjected to single-cell sequenc-
ing by 10x Genomics. We used Seurat v3.1.5 for data integration and analysis.
Results: We comprehensively dissected the multicellular ecosystem of the
ground-glass and solid components of part-solid nodules at the single-cell reso-
lution. In tumours, these components had comparable proportions of malignant
cells. However, the angiogenesis, epithelial-to-mesenchymal transition, KRAS,
p53, and cell-cycle signalling pathways were significantly up-regulated in malig-
nant cells within solid components compared to those within ground-glass com-
ponents. For the tumour microenvironment, the relative abundance of myeloid
and NK cells tended to be higher in solid components than in ground-glass com-
ponents. Slight subtype composition differences existed between the ground-
glass and solid components. The T/NK cell subsets’ cytotoxic function and the
macrophages’ pro-inflammation function were suppressed in solid components.
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Moreover, pericytes in solid components had a stronger communication related
to angiogenesis promotion with endothelial cells and tumour cells.
Conclusion: The cellular landscape of ground-glass components is significantly
different from that of normal tissue and similar to that of solid components.How-
ever, transcriptional differences exist in the vital signalling pathways of malig-
nant and immune cells within these components.

KEYWORDS
early-stage lung adenocarcinoma, part-solid nodules, pulmonary subsolid nodules, single-cell
RNA sequencing, tumour microenvironment

1 INTRODUCTION

Along with the widespread application of chest com-
puted tomography (CT), the detection rate of early-stage
lung adenocarcinoma (LUAD) that radiologically mani-
fests as subsolid nodules (SSNs) has increased consider-
ably, particularly in never smokers.1,2 Comparedwith solid
nodules, SSNs have indolent growth patterns and excel-
lent prognosis.3,4 SSNs can be further categorized as pure
ground-glass (GG) nodules or part-solid nodules (PSNs)
according to the presence of solid components on thin-
section CT scans.4 Pathologically, radiological GG and
solid opacities tend to correspond to lepidic (pre-invasive)
and invasive patterns, respectively.4 Clinically, for staging
purposes, only the long-axis dimension of the solid compo-
nents within PSN is used. The size of the solid component
is thought to be strongly correlated with the prognosis of
the patients.4
Several studies have unravelled the evolutionary tra-

jectory from pre-invasive to invasive LUAD, but only a
few of them have focused on SSNs.5–8 Our previous study
revealed branched evolution and remarkable genomic het-
erogeneity in SSNs.9 In addition to tumour cells, the
tumour microenvironment (TME) plays a crucial role in
shaping the biological and clinical behaviour of a tumour.
Our team found that the ecosystem of SSNs is located at
an interim between normal lung (nLung) tissue and solid
LUAD.10 However, for PSNs consisting of two radiological
components, whether the TME of GG components is sim-
ilar to that of nLung tissues or invasive components and
whether the TMEundergoes a stepwise transition fromGG
to solid components remain undetermined.
In this study, we performed single-cell RNA sequencing

(scRNA-seq) on 5 nLung tissues and 12 GG and 12 paired
solid components of PSNs. We comprehensively charac-
terized the ecosystems of GG components, solid compo-
nents, and nLung tissues. We also identified differences
in their cell-type constitutions and molecular signature
expressions. Our findings shed light on the underlying

molecular characteristics of different radiological appear-
ances and provide valuable biological insights into SSNs.

2 RESULTS

2.1 Single-cell landscape of the nLung
tissues and the GG and solid components of
PSNs

We performed droplet-based scRNA-seq (10x Genomics)
and collected 185122 high-quality cell profiles from 12
treatment-naive patients with PSNs (Figure 1A, Table S1).
Together, 44777 cells were from the 5 nLung tissues, 70560
cells were from the 12 GG component samples, and 69785
cells were from the 12 paired solid component samples. All
cells were catalogued into nine main clusters and anno-
tated with canonical marker gene expression (Figure 1B,C,
Table S2), including T cells, myeloid cells, natural killer
(NK) cells, B cells, plasma and mucosa-associated lym-
phoid tissue B cells (MALT B), mast cells, fibroblasts and
pericytes, endothelial cells, and epithelial cells (alveolar
and cancer cells).
To elucidate the immune cell dynamics in the nLung tis-

sues and the GG and solid components, we compared the
compositions of immune cell subsets after removing the
epithelial and stromal populations in the three groups. The
proportions in each clinical group and patient are shown
in Figure 1D,E. The relative abundance of myeloid and NK
cellswas highest in the nLung tissues and tended to decline
stepwise from the nLung tissues to the GG and solid com-
ponent groups. Moreover, the relative proportions of T, B,
plasma andMALTB cells tended to increase fromGGcom-
ponents to solid components but without statistical signif-
icance. Their percentages in the GG and solid components
were significantly higher than those in the nLung tissues,
suggesting activation of adaptive immune responses
in SSNs. Immunohistochemistry staining was further
conducted to provide an overview of the multicellular
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F IGURE 1 Study overview and dissection of the tumour microenvironment of the nLung tissues and the GG and solid components of
PSNs using single-cell RNA sequencing. (A) Schematic of the study design and sample information. (B) UMAP plot of 185,122 single cells
coloured according to the nine major cell types. Cells were collected from nLung (n = 5), GG component (n = 12), and paired solid component
(n = 12) samples. (C) Dot plot of expression of canonical marker genes for the nine major cell types. The dot size is proportional to the fraction
of cells expressing the specific genes. The colour intensity corresponds to the relative expression of each specific gene. (D) Bar plot of the
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ecosystems of nLung, GG and solid components (Fig-
ure 1G). These results suggested that both the GG and
solid components of PSNs represent an active adaptive
immune ecosystem when compared with nLung tissues,
and slight differences in cell proportions were identified
between the GG and solid components.

2.2 Intra-tumour heterogeneity
between GG and solid components

Next, we characterized the transcriptional features of the
main cell types.Within the epithelial cell cluster, 3589 cells
were from normal tissues and were clustered as alveo-
lar type I cells (AT1; AGER+), alveolar type II cells (AT2;
SFTPA1+), secretory club cells (Club; SCGB1A1+), basal
airway epithelial cells (Basal; KRT17+), and ciliated air-
way epithelial cells (Ciliated; TPPP3+) (Figure 2A,B). AT1
and AT2, which can initiate LUAD, were the most abun-
dant subtypes.11 In tumour tissues, epithelial cells com-
prise both malignant cells and non-malignant cells. We
distinguished them by inferring large-scale copy number
variation (CNV) levels for each patient using the meth-
ods detailed in the Supporting information. Each malig-
nant cell was identified with the CNV pattern having the
Pearson correlation coefficient between its CNV pattern
and the CNV reference vector (the calculated average CNV
scores of the cells with a sum of CNV scores in the top 5%)
above 0.3. Overall, 16930 malignant cells from 24 tumour
samples were identified and retained for further tumour
cell analyses.
At the genomic level, the malignant cells of the GG and

solid components within one lesion shared similar CNV
patterns (Figure 2C), suggesting that the genomic features
were not correlated with the radiological features. Based
on the transcriptional profiles, dimension reduction anal-
yses of the tumour cells revealed patient-specific clusters,
highlighting the inter-tumoural heterogeneity at the tran-
scriptional level (Figure 2D). Moreover, the GG and solid
samples had comparable proportions of malignant cells
among all epithelial cells (Figure 2E), suggesting that the
different radiological appearances were not determined by
the degree of the normal-to-malignant transition.

To delineate the transcriptional features of cancer cells
within GG and solid components and unravel their differ-
ences, we captured the common transcriptional patterns
across lesionswith the same radiological appearance. Non-
negative matrix factorization analysis was used to iden-
tify the full transcriptional spectrum of the intratumoural
heterogeneity of each sample, as previously described.12
We performed hierarchical clustering to group the signa-
tures of the lesions into main meta-programs, revealing
the common features of the GG and solid components
that were independent of the patients. The highest con-
cordance and the top co-expressed genes among these pro-
grams within the two groups are shown in Figure 2F. The
seven function modules, marked by the top-scoring genes
of the meta-programs, were found to be identical in both
clinical groups. They included the translational initiation
program, immune activation program, microtubule-based
movement program, RNA splicing program, extracellular
matrix remodelling/epithelial-to-mesenchymal transition
(EMT) program, stress response program, and homeosta-
sis program.
We next explored transcriptional differences between

GG and solid components at the signalling pathway level
by calculating the expression scores of the specific gene set
pathways. The angiogenesis, EMT, KRAS signalling, p53
signalling, and cell-cycle pathways were significantly up-
regulated in tumour cells within solid components com-
pared to those within GG components (Figure 2G). These
results suggested that the malignant cells of the two radi-
ological phenotypes of SSNs had distinct functional pat-
terns, which may cause differences in proliferation and
invasiveness.

2.3 Suppressive cytotoxic function of
T/NK cells in the solid components of SSNs

The sub-clustering of 77562 T and NK cells revealed
16 subtypes clustered by heterogeneous cell lineages
and functional states (Figure 3A): 6 subtypes of CD4+
T cells (CD3D+CD4+), 4 subtypes of CD8 T cells
(CD3D+CD8A+), 3 subtypes of NK cells (CD3D-
CD56+FCGR3A+), 2 subtypes of regulatory T cells

relative percentages of immune cell types across the three clinical groups. (E) Bar plot of the relative percentages of immune cell types across
all samples. (F) Bar plots of the percentages of the six immune cell types among the three groups. Y-axis: average percentage of samples across
the three groups. Groups are shown in different colours. The error bars represent each group’s ± standard error of the mean. The two-sided
unpaired Wilcoxon rank sum test was used for analysis. Multiple-testing adjustment was performed using the Benjamini–Hochberg method.
*P < 0.05; **P < 0.01; ***P < 0.001. GG, ground-glass; nLung, normal lung; ns: not significant; PSN, part-solid nodule; UMAP, uniform
manifold approximation and projection. (G) Immunohistochemistry staining showing the cellular components of nLung, GG, and solid
components
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F IGURE 2 Identification and characterization of malignant cells in the GG and solid component samples. (A) Clustering of 3589
epithelial cells from nLung (n = 5) samples. Each dot corresponds to a single cell and is coloured according to cell type. (B) Feature plots of
canonical markers, which were used to label the epithelial subtypes in the UMAP plots. (C) Heat map showing large-scale CNVs that were
inferred based on single-cell RNA sequencing data of individual cells from GG and solid component samples. Non-malignant cells were
treated as references (top), and large-scale CNVs were observed in malignant cells (bottom). The colour shows the log2 CNV ratio. Red:
amplifications; blue: deletions. (D) UMAP plot of 16930 identified malignant cells from the GG and solid component samples. Each dot
corresponds to a single cell and is coloured according to its origin. (E) Comparison of the proportions of malignant cells among all epithelial
cells between the GG and solid component samples. The two-sided paired Wilcoxon rank sum test was used for analysis. (F) The identified
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(Treg, CD4+FOXP3+TIGIT+), and mucosal-associated
invariant T cells (CD3D+SLC4A10+). Their relative
percentages in the three groups and function scores are
shown in Figure 3B,C.
For the CD4+ T cells, we identified naive

(SELL+CCR7+), memory (CCR6+ LTB+), effector
memory (CCR6+CCL20+), effector GZMA (GZMA+
GZMK+), effector HSPA1B (HSPA1B+IL2+), and
exhausted (CXCL13+ ICA1+) CD4+ sub-clusters (Fig-
ure 3A,D). As central players in the immune system,
CD4+ T cells regulate both innate and adaptive immune
responses.13 Overall, the relative percentages of these
subtypes in the GG components were comparable to those
in the solid components but were significantly higher
than those in the nLung tissues (Figure 3E), suggesting
the important role of CD4+ T-mediated immunity in
both of the radiological appearances of SSNs. Effector
CD4+ T cells and effector memory CD4+ T cells were the
prominent clusters in the tumours. We found that they
were characterized by high expression of the cytokine IL2
(Figure 3D). IL2, originally called T cell growth factor,
is produced primarily by activated T lymphocytes and
increases the cell-killing activity of both NK cells and cyto-
toxic T cells.14 Two effector CD4+ T cells, characterized
by high expression of either IFNγ and TNF or GZMA and
GZMK, showed an anti-tumour function. In addition,
exhausted CD4+ T cells, characterized by high expression
of CXCL13 and BTLA, which are T follicular helper
markers, were mainly collected from the tumour tissue.
For theCD8+T cells, naive CD8+T cells showed expres-

sion of SELL, CCR7, and LEF1 (Figure 3A,D). Memory
CD8+ T cells were identified with ZNF683 and CXCR3
expression. GZMK+CD8+ effector T cells showed high
expression of cytotoxic markers, such as GZMK, EOMES,
and KLRG1. Exhausted CD8+ T cells were characterized
by the low expression of cytotoxic markers, such as GZMK
and NKG7, and high expression of inhibitory receptors
and chemokines, such as LAG3, TIGIT, and BTLA. The
CD8+ T subtypes had similar proportions in the three clin-
ical groups (Figure 3E). However, the cytotoxic scores of
CD8+ effector memory T cells and GZMK+CD8+ effector
T cells were lowest in the solid component group, show-
ing a weakened cytotoxic function compared with the GG
component group (Figure 3F).

Both suppressive (CD4+FOXP3highIL2RAhigh) and
resting (CD4+FOXP3lowIL2RAlow) Treg cells with high
exhaustion scores expressed inhibitory receptors, such as
CTLA4 and TIGIT. Treg cells were significantly enriched
in the GG and solid components (Figure 3E), showing
their immune-suppressive role in SSNs.
Compared with the tumour samples, NK cells

were significantly enriched in the nLung tissues.
NK cells were sub-clustered into three subsets,
including CD16highGZMBhigh, CD16lowGZMHhigh and
CD16lowXCL1high NK cells (Figure 3A). They highly
expressed cytotoxic markers, such as PRF1, NKG7, and
GNLY, and they presented the strongest cytotoxic function
among all of the T and NK subtypes (Figure 3D). NK
cells with high CD16 (FCGR3A) expression showed the
strongest cytotoxic function (Figure 3C). The percentage
of CD16highGZMBhigh NK cells decreased stepwise from
the nLung tissues to the GG and solid component groups.
Moreover, the cytotoxic scores of the NK subtypes were
significantly lower in the solid components than in the
GG components (Figure 3F). We concluded that the
immune response of NK cells was suppressed in the solid
components when compared with the GG components
and that this may promote immune escape in the more
aggressive parts of PSNs.

2.4 Similar distribution of myeloid
subtypes in the GG and solid components

Monocytes, macrophages, neutrophils, and dendritic
cells (DCs) were identified by the sub-clustering
of 36110 myeloid cells (Figure 4A–C). Mono-
cytes were sub-clustered into classical monocytes
(FCN1+CD14+VCAN+) and non-classical mono-
cytes (FCN1+ CD16+CDKN1C+). Four subtypes of
macrophages were revealed, including proliferating
macrophages (STMN1+CENPF+MKI67+), perivascular
resident macrophages (LYVE1+LILRB5+SELENOP+),
IL1Bhigh alveolar resident macrophages (PPARG+
FABP4+MARCO+) with high expression of
IL1B, and IL1Blow alveolar resident macrophages
(PPARG+FABP4+MARCO+) with low expression of IL1B.
Macrophages are usually classified into the canonical

meta-programs revealing the common features of the GG and solid components. Hierarchical clusters of pairwise similarities between
non-negative matrix factorization programs were identified across each GG and solid component sample. The functional annotations and the
top genes are shown on the right. (G) Violin plots comparing the scores of the selected pathways between malignant cells from the GG and
solid component groups. Linear mixed models with a random effect for patient were applied. P-values of fixed effects (clinical group) were
calculated using the Satterthwaite’s method. *P < 0.05; **P < 0.01; ***P < 0.001. CNV, copy number variation; GG, ground-glass; nLung,
normal lung; ns, not significant; UMAP, uniform manifold approximation and projection
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F IGURE 3 Composition and characterization of the T and NK subsets in the nLung tissues and the GG and solid components. (A)
UMAP plot of 77562 T and NK cells revealing 16 subtypes. (B) Bar plot showing the relative percentages of CD4+, CD8+, MAIT, NK and Treg
cells across the three clinical groups. (C) Violin plots showing the distribution of naive, cytotoxic and exhausted state scores in each T/NK cell
subtype. (D) Heat map of the functional gene sets in the T and NK sub-clusters. (E) Bar plots showing the average percentages of each T/NK
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pro-inflammatory M1 and anti-inflammatory M2
classes.15,16 IL1Bhigh alveolar resident macrophages
exhibited a pro-inflammatory M1-dominant gene signa-
ture, with relatively high expression of IL1B, IL1A, tumour
necrosis factor, and CXCL10-11 (Figure 4D,E). Perivascular
resident macrophages exhibited an anti-inflammatory
M2-dominant gene signature (e.g., CD40, CSF1R, CCL2)
but also expressed few M1 signature genes (Figure 4D,E).
In addition, they had high expression of VEGFA and
CXCL8, which are related to angiogenesis (Figure 4F).
Perivascular resident macrophages were more enriched
in the GG and solid component groups than in the nLung
tissues (Figure 4G), suggesting that they played a role
in tumour progression. Moreover, macrophages in the
solid components tended to have less M1-dominant
gene signature expression than the GG components
(Figure 4H), suggesting different inflammatory statuses of
macrophages in the two radiological phenotypes.
Three DC subtypes were identified, including

monocyte-derived DCs (FCGR2B+CCL17+CLEC10A+),
migratory conventional DCs (CCR7+LAMP3+CCL22+)
and type 2 conventional DCs (CD1A+CD207+HLA-
DQB2+). In line with our findings (Figure 4I), DCs
excel at antigen presentation and play a key role in the
induction of anti-tumour T cell immunity.17 Each sub-
type was significantly enriched in the SSNs compared
to in the nLung tissues (Figure 4G). For neutrophils
(G0S2+S100A8+S100A9+), the IL1Bhigh and IL1Blow
subtypes were identified. They showed the strongest acute
inflammatory function among all of the myeloid subtypes
(Figure 4I). Neutrophils are the first line of defence in
the innate immune system,18 and they can release huge
amounts of bioactive IL-1β to regulate the resolution
of inflammation.19,20 We found that the percentage of
neutrophils was higher in the nLung tissues than in either
component of the SSNs, suggesting that the adaptive
immune response was activated in the tumour.

2.5 Diverse functions of stromal
subtypes between the GG and solid
components

To depict the stromal cell landscape of the nLung
tissues and the different radiological components

of SSNs, we obtained 10212 endothelial cells (ECs)
and 10140 fibroblasts. The sub-clustering of ECs
revealed six subtypes, including extra-alveolar
capillary EC (cEC) (FCN3+EDN1+PLVAP+),
alveolar cEC (HPGD+EDNRB+IL1RL1+), arte-
rial EC(GJA5+FBLN5+DKK2), lymphatic EC
(CCL21+TFF3+FABP4), INSR+ tumour EC
(INSRhiHSPG2+PLVAP+), and ACKR1+ tumour EC
(ACKR1+SELP+IL1R1+) (Figure 5A). The top expressed
genes are shown in Figure 5B. The up-regulated expres-
sion of INSR is a marker of tumour-associated endothelial
cells and is functionally involved in angiogenesis.21–23
We found that the INSR+ tumour endothelial cells were
more enriched in the SSNs than in the normal tissues
(Figure 5C), illustrating the remodelling of endothelial
cell subtypes in the TME. Functionally, they demonstrated
strong activation of angiogenesis regulation (Figure 5D).
Compared with normal tissues and lesions with the GG
radiological appearance, ACKR1+ tumour ECs were
significantly enriched in lesions with the solid radiological
appearance (Figure 5C). ACKR1 is expressed on the
endothelial cells of tumour-associated blood vessels.24
ACKR1+ tumour ECs showed that genes related to inflam-
matory response regulation were strongly up-regulated
(Figure 5D), suggesting strong immune activation in the
solid components.
For fibroblasts, four known subtypes were identi-

fied: COL14A1+ (COL14A1+GSN+PI16+CFD+) and
COL13A1+ (COL13A1+GPC3+NPNT+) matrix fibrob-
lasts, myofibroblasts (ACTA2+MYH11+TAGLN+), and
pericytes (RGS5+NOTCH3+HIGD1B+) (Figure 5E,F). The
distribution of fibroblast subtypes in the GG components
was similar to that in the solid components (Figure 5G).
In contrast to normal tissues, pericytes in both the GG
and solid components tended to be enriched but without
statistical significance. Lung pericytes are located in the
perivascular niche and are the progenitors of myofibrob-
lasts, and they are capable of responding to danger signals
and amplifying the inflammatory response through the
elaboration of cytokines and adhesion molecules.25 We
found that the pericytes in the up-regulated gene sets
of the SSNs were related to the leukocyte chemotaxis
involved in the inflammatory response and in antigen
presentation via MHC class I molecules, suggesting that
they play a role in immune modulation in the TME

cell subtype among the nLung tissues and the GG and solid component groups. Groups are shown in different colours. Error bars
represent each group’s ± standard error of the mean. The two-sided unpaired Wilcoxon rank sum test was used for analysis. Multiple-testing
adjustment was performed using the Benjamini–Hochberg method. *P < 0.05; **P < 0.01; ***P < 0.001. (F) Violin plots comparing the
cytotoxic function scores between the 3 clinical groups in the selected subsets. Linear mixed models with a random effect for patient were
applied. P values of fixed effects (clinical group) were calculated using the Satterthwaite’s method. *P < 0.05; **P < 0.01; ***P < 0.001. GG,
ground-glass; MAIT, mucosal-associated invariant T cells; NK, natural killer; nLung, normal lung; ns, not significant; Treg, regulatory T cells;
UMAP, uniform manifold approximation and projection
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F IGURE 4 Composition and characterization of the myeloid subsets in the nLung tissues and the GG and solid components. (A) UMAP
plot of 36110 myeloid cells revealing 11 subtypes. (B) Dot plot of the expression of canonical marker genes for each myeloid subset. The dot size
is proportional to the fraction of cells expressing the specific genes. Colour intensity corresponds to the relative expression of the specific
genes. (C) Bar plot showing the relative percentages of alveolar resident macrophages, DCs, monocytes, neutrophils, and proliferating
macrophages across the three clinical groups. (D) Violin plots showing the distribution of M1 signature genes, M2 signature genes and
proliferating state scores among each macrophage subtype. (E) Heat map of the functional gene sets in the macrophage subtypes. (F) Violin
plots showing the expression of angiogenesis-related genes in each macrophage subset. (G) Bar plots showing the average percentages of each
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(Figure 5H). Moreover, fibroblasts and pericytes in the GG
components had higher immune response scores than
those in the solid components (Figure 5I).
Stromal cells play vital roles in intercellular interactions

in lung cancer.26–28 We studied the roles of stromal cells in
the ligand–receptor crosstalk between cell compartments
in the three clinical groups. Endothelial cells had the great-
est strength in the recruitment of CD4+, CD8+ T cells, and
macrophages through CCL14-CCR1 signalling in the solid
components (Figure 5J). Interactions related to VEGF–
VEGFR crosstalk from endothelial cells to tumour cells
and pericytes were more abundant in the SSNs than in the
normal tissues (Figure 5K). Interestingly, stronger commu-
nication, which was related to chemo-attraction (CCL2-
CCR2, CCL2-ACKR1, CCL11-ACKR1) and angiogenesis
promotion (VEGF-VEGFR), from pericytes to endothelial
cells and tumour cells was identified in the solid compo-
nents than in the GG components (Figure 5L). We specu-
lated that pericytes may have distinct roles in the different
radiological phenotypes of SSNs.

3 DISCUSSION

Early-stage LUAD that radiologically manifests as PSNs,
consisting of both GG and solid components, has distinc-
tive growth patterns and prognosis. The images on high-
resolution CT (HRCT) scans can be suggestive of patho-
logic diagnoses, the GG components within PSNs tend
to correlate with the histologic lepidic growth pattern,
whereas the solid components correlate with invasive ade-
nocarcinoma patterns. As described in the IASLC 8th Edi-
tion of the TNM Classification Proposals for Assessment of
Tumour Size in Part-solid Tumours,4 only the long-axis
dimension of the solid components is used for staging pur-
poses. This means that the GG components are not cal-
culated in the tumour size for clinical T staging. Whether
the biological behaviour of GG components in part solid
LUAD is similar to that of nLung tissues or solid compo-
nents, is a very important question. Whether the TME of
GG components is similar to that of nLung tissues or solid
components, and whether the TME undergoes a stepwise
transition from the GG to solid components of PSNs are
still unknown. In this study, we depicted the cellular land-

scape of the GG and solid components of PSNs, revealing
their tumour cell characteristics and associated microen-
vironments. We also identified differences in the cell-type
composition andmolecular signature expression of the dif-
ferent radiological appearances.
Regarding tumour cells, the GG and solid compo-

nents had comparable proportions of malignant cells and
shared similar CNV patterns, suggesting that the differ-
ent radiological appearances were neither determined by
the degree of normal-to-malignant transition nor associ-
ated with genomic features. This finding was consistent
with our previous results.29 Moreover, the functionalmeta-
programs were identical in the two components. Interest-
ingly, the cell-cycle module, which is often enriched in
some aggressive cancers,28,30,31 was not identified in either
component, thereby revealing the underlying molecular
mechanism of the indolent clinical behaviour of SSNs. In
addition, our previous study showed that mutations in the
gene encoding the splicing factor RNA-binding motif pro-
tein 10 (RBM10) were the hallmark of SSN tumorigenesis.29
Another study reported that RBM10 mutations in LUAD
generally lead to the loss of function and cause extensive
alterations.32 Consistent with these results, we found that
the RNA splicing program was enriched in both compo-
nents, suggesting that the high expression of genes related
to RNA splicing contributes to tumour growth in GG
and solid components. Signatures with the functions of
stress response, immune activation, extracellular matrix
remodelling/EMT, and translational initiation were iden-
tified, suggesting that the cellular states of the malignant
cells in SSNs displayed the normal-to-malignant transi-
tion and responded to the pressure of the TME. Of note,
transcriptional differences at the signalling pathway level
were identified between the GG and solid components.
We found that pathways related to tumour cell prolif-
eration, invasion, and aggression were significantly up-
regulated in the solid components, which may correspond
to the more aggressive behaviour of the solid components.
Angiogenesis33,34 and EMT35 are assumed to be the pivotal
mechanisms for tumour cell invasion and aggression. The
p53 signalling pathway, which is associated with apoptosis,
DNA repair, and cell cycle arrest, is normally “turned off”
and can be activated when cells are stressed.36 Its activa-
tion can be triggered by DNA damage and aberrant growth

myeloid subtype among the nLung tissues and the GG and solid component groups. Groups are shown in different colours. Error bars
represent each group’s ± standard error of the mean. The two-sided unpaired Wilcoxon rank sum test was used for analysis. Multiple-testing
adjustment was performed using the Benjamini–Hochberg method. *P < 0.05; **P < 0.01; ***P < 0.001. (H) Box plots comparing the M1
signature scores between the three clinical groups in the selected subsets. Linear mixed models with a random effect for patient were applied.
P-values of fixed effects (clinical group) were calculated using the Satterthwaite’s method. *P < 0.05; **P < 0.01; ***P < 0.001. (I) Violin
plots showing the distribution of function scores for antigen processing and presentation and acute inflammatory response in each myeloid
subtype. DC, dendritic cell; GG, ground-glass; nLung, normal lung; ns, not significant; UMAP, uniform manifold approximation and
projection
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F IGURE 5 Composition and function of endothelial cell and fibroblast subsets in the nLung tissues and the GG and solid components.
(A) UMAP plot of 10212 endothelial cells revealing six subtypes. (B) Heat map of the marker gene expression of the endothelial cell subsets.
(C) Bar plots showing the average percentages of each endothelial subtype among the nLung tissues and the GG and solid component groups.
Groups are shown in different colours. Error bars represent each group’s ± standard error of the mean. The two-sided unpaired Wilcoxon rank
sum test was used for analysis. Multiple-testing adjustment was performed using the Benjamini–Hochberg method. *P < 0.05; **P < 0.01;
***P < 0.001. (D) Violin plots showing the distribution of function scores for regulation of angiogenesis and inflammatory response in each
endothelial subtype. (E) UMAP plot of 10140 fibroblasts revealing four subtypes. (F) Heat map of the marker gene expression of the fibroblast
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signals. We found that the p53 pathway exhibited a higher
expression level in the solid component group than in the
GG component group, with a higher degree of response to
greater stress status. Moreover, KRASmutations are driver
events in LUAD and can cause abnormal activation of the
KRAS pathway, through which cell proliferation, survival,
and differentiation are regulated.6 The KRAS pathway was
significantly up-regulated in the solid components com-
pared to in the GG components, suggesting that malignant
cells in solid components have an advantage of becoming
more proliferative and invasive. As a result, the cell-cycle
signalling pathway was up-regulated in the solid compo-
nents. We concluded that tumour cells in the solid com-
ponents of SSNs had higher proliferation and invasiveness
signatures, supporting the notion that solid components
have more aggressive clinical behaviour and deserve more
attention in clinical practice.
On the other hand, the TME plays a crucial role in shap-

ing the radiological features and biological behaviour of
different components within PSNs. However, whether the
TME of GG components is similar to that of nLung tis-
sues or solid components, and whether the TME under-
goes a stepwise transition from the GG to solid compo-
nents of PSNs are unknown. Our findings demonstrated
that the relative abundance of myeloid and NK cells was
highest in the nLung tissues and tended to decline step-
wise from nLung tissues to the GG and solid component
groups. Regarding cell subtypes, a similar distribution of
immune and stromal cells was shown in the GG and solid
components, but it was significantly different from that in
the nLung tissues. For example, the relative percentages of
CD4+, Treg, and DC subtypes in the GG components were
comparable to those in the solid components but were sig-
nificantly higher than those in the nLung tissues, suggest-
ing a similar immune status in the two radiological compo-
nents. These results suggested that the TME of GG compo-
nents is significantly different from that of normal tissues
and is similar to that of solid components.
Meanwhile, slight differences in cellular composition

were seen between the GG and solid components. The per-
centage of CD16highGZMBhigh NK cells with the strongest
cytotoxic function was significantly decreased in the solid

components compared to in theGG components. ACKR1+
tumour endothelial cells, which up-regulate genes related
to inflammatory response regulation, were significantly
enriched in the solid components. Although only a few
significant differences in the percentages of subtypes were
found between the two radiological components, the func-
tional states were already significantly different. For exam-
ple, the cytotoxic scores of CD8+ effector memory T cells,
GZMK+CD8+ effector T cells, and the NK subtypes were
significantly lower in the solid components than those in
the GG components, demonstrating a weakened cytotoxic
function in the more aggressive components. Regarding
the macrophages, the M1 signature expression scores were
significantly higher in the GG components than in the
solid components, suggesting that the pro-inflammatory
functionwasmore powerful in theGG components than in
the solid components. We also found that pericytes in the
solid components had stronger communication related to
angiogenesis promotionwith endothelial cells and tumour
cells, than those in the GG components. These results
highlighted the idea that TME cells in solid components
tend to show a stronger pro-tumour function than those in
GG components.
In summary, our findings offer new insight into intratu-

moural heterogeneity and the evolution of LUAD radiolog-
ically presenting as PSNs.

4 MATERIALS ANDMETHODS

4.1 Patients and sample collection

Frozen pathologically confirmed LUAD samples from
12 PSNs along with 5 paired normal controls from 12
treatment-naive Chinese patients were subjected to single-
cell sequencing. The study design is summarised in Fig-
ure 1A, and the detailed clinical features of the cohort are
summarised in Table S1. Two regions (GG and solid) from
each of the 12 large PSN samples were subjected to single-
cell sequencing by 10x Genomics according to the gross
appearance of the resected tumour and the radiological
characteristics (Figure S1a, Table S1). The 5 paired normal

subsets. (G) Bar plots showing the average percentages of each fibroblast subtype among the nLung tissues and the GG and solid component
groups. Groups are shown in different colours. Error bars represent each group’s ± standard error of the mean. The two-sided unpaired
Wilcoxon rank sum test was used for analysis. Multiple-testing adjustment was performed using the Benjamini–Hochberg method. *P < 0.05;
**P < 0.01; ***P < 0.001. (H) Violin plots showing the distribution of function scores for inflammatory response and antigen processing and
presentation in each fibroblast subtype. (I) Box plots comparing the inflammatory response scores between the three clinical groups in terms
of fibroblasts and pericytes. Linear mixed models with a random effect for patient were applied. P values of fixed effects (clinical group) were
calculated using the Satterthwaite’s method. *P < 0.05; **P < 0.01; ***P < 0.001. (J–L) Dot plots showing the cell–cell interactions of selected
ligand–receptor interactions between different cell types in the three clinical groups. Dot colour reflects communication probability. Dot size
represents computed P-value, which was computed using the one-sided permutation test. Empty spaces indicate that the communication
probability was zero. GG, ground-glass; nLung, normal lung; ns, not significant; UMAP, uniform manifold approximation and projection
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controls were acquired from the same 12 patients. Normal
control was obtained > 2 cm from the tumour edge, and
judged by the frozen pathology to confirm that no cancer
was examined. Pathological diagnoses were made accord-
ing to the 2015 World Health Organization classification
system. This study was approved by the Peking University
People’s Hospital Ethics Committee (2020PHB363-01).

4.2 Preparation of single-cell
suspensions

All tissue samples were transported in ice-cold H1640
(Gibco, Life Technologies) immediately after surgical
resection. Then, they were rinsed with phosphate-buffered
saline (Thermo Fisher Scientific), minced into approxi-
mately 1-mm cubic pieces, and ground with a UTTD dis-
perser (ULTRA-TURRAX R© Tube Drive; IKA, Germany).
Next, the samples were digested by 0.25% trypsin (Gibco,
Life Technologies), terminated by H1640 supplemented
with 2% foetal bovine serum (Gibco, Life Technologies),
and then transferred to 10 ml of digestion medium con-
taining collagenase IV (100 U/ml; Gibco, Life Technolo-
gies) and dispase (0.6 U/ml; Gibco, Life Technologies).
The digested samples were filtered through a 70-μm nylon
mesh.After centrifuging, the pelleted cellswere suspended
with ice-cold red blood cell lysis buffer (Solarbio) and
filtered with a 40-μm nylon mesh. Finally, the pelleted
cells were suspended with 1 ml of Dulbecco’s phosphate-
buffered saline (Solarbio), and the concentrations of live
cells and clumped cells were determined using an auto-
mated cell counter (Countstar).

4.3 Droplet-based single-cell
sequencing

Using the single-cell 3′ Library and Gel Bead Kit V3.1
(10x Genomics, 1000121) and the Chromium Single Cell
G Chip Kit (10x Genomics, 1000120), the cell suspension
was loaded onto the Chromium Single Cell Controller (10x
Genomics) to generate single-cell gel beads in the emul-
sion according to the manufacturer’s protocol. In short,
single cells were suspended in phosphate-buffered saline
containing 0.04% bovine serum albumin. About 6000 cells
were added to each channel, and the target number of cells
to be recovered was estimated to be about 3000 cells. Cap-
tured cells were lysed, and the released RNAwas barcoded
through reverse transcription in individual GEMs. Reverse
transcription was performed on an S1000TM Touch Ther-
mal Cycler (Bio Rad) at 53◦C for 45 min, followed by 85◦C
for 5 min, and then held at 4◦C. The cDNA was gener-
ated and then amplified, and quality was assessed using

anAgilent 4200 system (performed by CapitalBio Technol-
ogy, Beijing, China). According to themanufacture’s intro-
duction, scRNA-seq libraries were constructed using the
Single Cell 3′ Library and Gel Bead Kit V3.1. Finally, the
libraries were sequenced using an Illumina Novaseq6000
sequencer with a sequencing depth of at least 100,000
reads per cell with the paired-end 150 bp strategy (per-
formed by CapitalBio Technology, Beijing, China).

4.4 Multiplex immunohistochemistry

Formalin-fixed/paraffin-embedded samples from the
patients included in this study were collected from Peking
University People’s Hospital. All the samples were cut into
sections of 4-μm thickness. The slides were deparaffinized
in xylene for 30 min and rehydrated in absolute ethyl
alcohol for 5 min (twice), 95% ethyl alcohol for 5 min, 75%
ethyl alcohol for 2 min sequentially. Washed the slides
with distilled water three times. Amicrowave-oven is used
for heat-induced epitope retrieval, and during epitope
retrieval the slideswere I immersed in boiling EDTAbuffer
(pH 9.0; ZLI-9069; Zsbio, Beijing, China) for 15 min. Anti-
body Diluent/Block (72424205; Perkin-Elmer, MA, USA)
was used for blocking. The antibodies used were anti-CD4
(abcam, ab133616), anti-CD8 (abcam, ab237709), anti-
CD19 (abcam, ab134114), anti-CD57 (abcam, ab220187),
anti-CD11b (abcam, ab52478), anti-CD31 (abcam, ab76533),
anti-pan cytokeratin antibody (abcam, ab32570) and
anti-PDGFR alpha + PDGFR beta (abcam, ab32570). The
antigenic binding sites were visualized using the Opal
7-Color Manual IHC Kit (Perkin-Elmer, NEL811001KT)
according to the manufacturer’s protocol. Multicolour
immunohistochemistry data were collected using a
Mantra Quantitative Pathology Workstation (Perkin-
Elmer, CLS140089) and analysed by InForm (version
2.2.1).

4.5 Single-cell RNA sequencing data
pre-processing

First, Cell Ranger v3.1.0 (10x Genomics) was used to
demultiplex the cellular barcodes and align the reads
to the human transcriptome (human reference version
GRCh38) for each sample. Second, each output, whichwas
a rawuniquemolecular identifier (UMI) countmatrix, was
transformed into a Seurat object using the R package Seu-
rat v3.1.5.37 We filtered out genes that expressed in less than
five cells by using the CreateSeuratObject() function with
the parameter min.cells = 5. Then, several criteria were
applied to each dataset to remove cells of low quality: (1)
cells with fewer than 200 genes or more than 6000 genes



14 of 17 LI et al.

detected, (2) cells with more than 15% of UMIs derived
from mitochondrial genes, and (3) cells with more than
60,000 UMIs detected. Third, each filtered gene expres-
sion matrix was normalized and log-transformed by the
Seurat’s NormalizeData() function, in which the raw gene
counts for each cellwere divided by the total counts for that
cell, multiplied by the scale.factor (10000), and then trans-
formed to the log-scale (In(UMI-per-10000+1)). Finally,
identification of 2000 variable genes of each Seurat object
was performed by running Seurat’s FindVariableFeatures
function (x, selection.method = “vst,” nfeatures = 2000).

4.6 Multiple dataset integration

To remove batch effects and perform integrated analysis,
anchors between 29 datasets were identified by using the
FindIntegrationAnchors() function, and then they were
passed to the IntegrateData() function. One Seurat object
with a batch-corrected expression matrix was obtained.
It contained two assays: the integrated assay with the
integrated expression matrix and the RNA assay with
the original uncorrected value matrix. The details of the
integration methods are described at https://satijalab.org/
seurat/articles/integration_introduction.html.38 The new
integrated Seurat object was used for downstream analy-
sis.

4.7 Dimension reduction and
identification of major cell clusters

To scale and centre the genes of the dataset, Seurat’s
ScaleData() function was used on the integrated slot.
To reduce the dimension of the integrated object, the
RunPCA() function was used with default parameters.
A subset of significant PCs was selected according to
the results of the ElbowPlot(), DimHeatmap() and Jack-
StrawPlot() functions. Next, cell clustering was performed
using the FindNeighbors() and FindClusters() functions.
To run the uniform manifold approximation and pro-
jection (UMAP) dimensional reduction for visualization,
the RunUMAP() function was implemented. Cells with
common features were clustered together in the two-
dimensional UMAP map. The annotations of the major
cell types (T cells, myeloid cells, epithelial cells, NK cells,
endothelial cells, fibroblasts, pericytes, B cells, plasma
cells, mucosa-associated lymphoid tissue-derived B cells
and mast cells) were defined by the expression of canon-
ical marker genes (Table S2). Doublet cells were identified
by the expression of two or more canonical cell type mark-
ers and were excluded from further analyses.

4.8 Identification of functional cellular
subsets within the major cell clusters

For the major cell types, including T cells, NK cells,
myeloid cells, B cells, mucosa-associated lymphoid tissue-
derived B cells, plasma cells, endothelial cells, epithe-
lial cells from normal samples, fibroblasts and pericytes,
were extracted and further analysed. Based on the inte-
grated assay, the ScaleData() and RunPCA() functions
were applied. The pipelines of significant PC selection, cell
clustering andUMAP visualization were the same as those
described above. Differentially expressed genes and spe-
cific marker genes for each cellular subset were identified
using Seurat’s FindAllMarkers() function with the param-
eter “test.use = wilcox” by default under the RNA assay.
We defined each cell sub-cluster based on the expression
of canonical markers (Table S2).

4.9 Differentially expressed pathway
analysis between different clinical groups

To characterise the significant biological processes specific
to a cell type between two clinical groups, the gene set
variation analysis feature of the GSVA package (version
1.34.0)was used to performgene set enrichment analysis.39
The gene sets included hallmark gene sets, Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways, Gene
Ontology (GO) biological process terms, and REACTOME
gene sets (MSigDB; http://www.broadinstitute.org/gsea/
msigdb). GSVA’s gsva() function was implemented to esti-
mate the pathway enrichment scores of individual cells.
The differential activities of pathways between clinical
groups were calculated using the Limma R package (ver-
sion 3.42.2).40 Significantly enriched pathwayswere identi-
fied using the Benjamini–Hochberg-corrected p-value of≤

0.01. These pathways were selected for the functional state
analyses that test between clinical groups.

4.10 Gene signature score evaluation

To evaluate the activities of functional expression pro-
grams in one specific group (clinical group or subtype),
we calculated the gene signature expression scores using
Seurat’s AddModuleScore() function. Gene sets of interest
were first predesigned based on well-defined markers or
gene set variation analysis results. Next, the mean normal-
ized expression value of the genes within each set was cal-
culated for each cell. Then, the output values of the gene
signatures were corrected by subtracting the mean expres-
sion value of a set of background genes. Each background

https://satijalab.org/seurat/articles/integration_introduction.html
https://satijalab.org/seurat/articles/integration_introduction.html
http://www.broadinstitute.org/gsea/msigdb
http://www.broadinstitute.org/gsea/msigdb
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gene set was randomly selected and consisted of 100 genes
with expression levels that matched those of the consid-
ered gene set using 25 expression bins. Finally, for each
analysis that tests between clinical groups across func-
tional states, we fitted a function_score∼ clinical_group+
(1|patient) model with the restricted maximum likelihood
(REML = TRUE) by using the lme4 and lmerTest R pack-
ages. P-values were calculated using the Satterthwaite’s
method. The significant results were identified when the
P-value of the fixed effect (clinical group) in each model
was reported to be < 0.05.

4.11 Copy number variation estimation
and identification of malignant cells

Because the epithelial cells of the tumour samples com-
prised both malignant cells and normal cells, we iden-
tified the malignant cells by estimating their CNV lev-
els using the inferCNV R package (https://github.com/
broadinstitute/inferCNV).41 We chose normal epithelial
cells, T cells, endothelial cells and fibroblasts as controls
to define a CNV baseline. The CNV scores were calculated
as the mean square of the re-standardized CNV signals.
From the epithelial cells of both the GG and solid compo-
nent samples from a single patient, we extracted the cells
with a sumofCNV scores in the top 5% and calculated their
average CNV scores as a reference vector. Each malignant
cell was identified with the CNV pattern having the Pear-
son correlation coefficient between its CNV pattern and
the CNV reference vector above 0.3. The identified malig-
nant cells were used for further tumour cell analysis.

4.12 Characterization of intratumoural
expression programs

To identify the underlying intratumoural expression pro-
grams of the GG and solid components of the SSNs, the
CNV-inferred malignant cells from each sample were first
normalized and centre-scaled for each gene. Negative val-
ues in the gene expression matrix of each sample were
transformed to zero. Next, the non-negative matrix factor-
ization was applied to each matrix using the non-negative
matrix factorization R package (version 0.23.0).42 To iden-
tify the robust programs of each sample, we chose the
analysis pipeline as previously described.12 The number of
factor rank (k) of the non-negative matrix factorization’s
nmf() function ranged from 6 to 9. The initially defined
expression programs were the top 50 genes ranked by non-
negative matrix factorization score for each k. The robust
expression programs of each sample were identified as

those with an overlap of at least 70% (35 of 50 genes) with a
program using a different k value. The programs from the
GG and solid samples were clustered separately. The num-
ber of overlapping genes (among the 50 top-scoring genes
of each program)was used as a similaritymetric. Themeta-
programs were defined by manual inspection of the hier-
archical clustering results. The core genes for each meta-
programwere defined as those with aminimum overlap of
25%with a program observed in another sample. The func-
tional enrichment of the core genes was annotated using
GO terms.

4.13 Cell–cell communication analysis

Cell–cell interactions across distinct cell types were
inferred based on the expression of known ligand–
receptor pairs using the CellChat software (version 1.1.1).43
We used the normalized data of labelled cell types as
input for CellChat’s createCellChat() function. Then,
the pre-processing functions, including identifyOverEx-
pressedGenes(), identifyOverExpressedInteractions(), and
projectData(), were applied with default parameters. We
computed the communication probability and inferred the
cellular communication network using the computeCom-
munProb() and filterCommunication() functions.

4.14 Statistics

The statistical tools, methods, and thresholds for each
analysis are explicitly described with the results or are
detailed in the figure legends or in Section 4.
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