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A B S T R A C T   

Purpose: Acute respiratory distress syndrome (ARDS) is characterized by uncontrollable inflammation. 
Cyclooxygenase-2(COX-2) and its metabolite prostaglandins are known to promote the inflammatory resolution 
of ARDS. Recently, a newly discovered endogenous lipid mediator, Protectin DX (PDX), was also shown to 
mediate the resolution of inflammation. However, the regulatory of PDX on the pro-resolving COX-2 in ARDS 
remains unknown. 
Material and Methods: PDX (5 μg/kg) was injected into rats intravenously 12 h after the lipopolysaccharide (LPS, 
3 mg/kg) challenge. Primary rat lung fibroblasts were incubated with LPS (1 μg/ml) and/or PDX (100 nM). Lung 
pathological changes examined using H&E staining. Protein levels of COX-2, PGDS and PGES were evaluated 
using western blot. Inflammatory cytokines were tested by qPCR, and the concentration of prostaglandins 
measured by using ELISA. 
Results: Our study revealed that, COX-2 and L-PGDS has biphasic activation characteristics that LPS could induce 
induced by LPS both in vivo and in vitro.. The secondary peak of COX-2, L-PGDS-PGD2 promoted the inflam-
matory resolution in ARDS model with the DP1 receptor being activated and PDX up-regulated the inflammatory 
resolutionvia enhancing the secondary peak of COX-2/L-PGDS-PGD2 and activating the DP1 receptor. 
Conclusion: PDX promoted the resolution of inflammation of ARDS model via enhancing the expression of sec-
ondary peak of COX-2/L-PGDS-PGD2 and activating the DP1 receptor. PDX shows promising therapeutic po-
tential in the clinical management of ARDS.   

1. 1.Introduction 

Acute respiratory distress syndrome (ARDS) is a severe acute in-
flammatory disease, caused by various factors like pneumonia, aspira-
tion of gastric contents and sepsis. [1–2] Main pathological damages of 
ARDS were alveolar epithelial and lung endothelial barrier injury, 
resulting in the accumulation of protein-rich edema fluid in the alveolar 
space. [3] ARDS lacks of effective pharmacological treatment. [4] The 
resolution of inflammation serves as the self-protected character in host 
and it is an initiative process. Therefore, the active inflammatory reso-
lution may become a clue to find out effective therapeutic method for 

ARDS. 
COX-2, and prostaglandins, are associated with a variety of inflam-

matory diseases. In ARDS patients’ bronchoalveolar fluid, PGs levels 
were found to be increased. [5], However, inhibition of COX-2 has not 
been proven being clinically effective in ARDS [6]. In animal studies, 
pharmacologic inhibition or gene silencing of COX-2 would block the 
inflammatory resolution of Acute Lung Injury. [7] In the mouse model of 
carrageenin-induced pleurisy, COX-2 promotes resolution by generating 
pro-resolving prostaglandins. [8] Moreover, COX-2 is responsible for the 
producing of pro-resolving PGs, like PGD2, 15-deoxy-D12,14-PGJ2, and 
PGF2α. [9–10] These works suggest that COX-2 may play both pro- 
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inflammatory and pro-resolving roles in inflammatory diseases like 
ARDS. 

Prostaglandins were induced by COXs, especially COX-2 when in the 
presence of in an inflammatory environment. Prostaglandin E2 (PGE2) 
was normally considered to be a pro-inflammatory PG. Previous study 
showed that administration of PGE2 or its receptor agonist improved 
lung function in mice ALI model. [11] Another prostaglandin, prosta-
glandin D2 (PGD2) ameliorated lung injury in ALI/ARDS model via 
enhancing the endothelial barrier repairment. [12–13] Both PGE2 and 
PGD2 are converted from PGH2 by various synthases. PGE2 synthases 
consist of cPGES, microsomal prostaglandin E synthase-1(mPGES-1) and 
microsomal prostaglandin E synthase-2 (mPGES-2). Various pro- 
inflammatory stimulations can up-regulate mPGES-1, m. Meanwhile, 
cPGES and mPGES-2 are constitutively expressed. [14] PGD2 is induced 
by lipocalin-type prostaglandin D synthase (L-PGDS) and hematopoietic 
PGDS (H-PGDS). PGD2 acts its important role via G protein-coupled 
receptor DP (DP1) and the chemoattractant receptor-homologous 
molecule CRTH2 (DP2). PGD2 showing multiple pathophysiological 
characters via different receptors. [15] 

Primary lung fibroblasts, which are far from being bystander cells, 
are important to host defense in ARDS. After the inflammatory stimu-
lation, fibroblasts are activated following the immune response, and 
secreting a large number of cytokines like interleukin 6 (IL-6) and 
interleukin 8 (IL-8). [16] Growing evidence manifested that fibroblasts- 
secreted growth factors promote the alveolar barrier functions and 
alleviate the lung injury induced by LPS. [17–18] Our pervious study 
suggested that fibroblasts regulate the inflammatory resolution by pro-
ducing proresolving mediators PGD2. [19] 

Formal studies have reported that endogenous lipid mediators and 
mechanisms can drive the resolution of inflammation the resolution of 
inflammation was driven by novel lipid mediators and endogenously 
triggered mechanisms. [20] Specialized pro-resolving lipid mediators 
(SPM) were identified as new genus, including Resolvins, Protectins and 
their aspirin-triggered forms. [21–22] Protectin DX (10S,17S-dihy-
droxydocosa-4Z,7Z,11E,13Z,15E,19 Zhexaenoic acid) is a newly 
discovered member of this genus, which derived from natural ω-3-fatty 
acid docosahexaenoic acid (DHA), [23] PDX possesses anti- 
inflammatory and inflammation pro-resolving bioactions. [24] A study 
reported that PDX maintains the integrity of lung epithelium, increases 
the alveolar fluid clearance of ARDS in rat. [25] PDX regulates inflam-
matory cell infiltration via resident macrophage in LPS-induced lung 
injury. [26] Moreover, PDX was shown to alleviate lung injury induced 
by LPS via inducing primary rat type II alveolar epithelial cells prolif-
eration and inhibiting their apoptosis in vivo and in vitro. [27] 

Our studies confirmed that COX-2 has a biphasic activation pattern 
in LPS stimulated lung fibroblasts, showing that COX-2 and PGD2 
expression levels peaked at 6 h and subsequently after 48 h. [28] 
Moreover, NF-κB p50/50 was responsible for regulating the secondary 
expression peak of COX-2 in the resolution stage of the ARDS rats model. 
[29] However, the downstream mechanism of secondary peak COX-2 
and PGD2 in the resolution of inflammation remains unclear Further-
more, whether PDX promotes the resolution of inflammation by regu-
lating secondary peak of the COX-2 and PGD2 has not been proved yet. 

In this study, we hypothesize that the secondary peak of COX-2/L- 
PGDS-PGD2 a promote the resolution of inflammation in the ARDS 
model. Moreover, we surmise that PDX plays a pro-resolving role in 
ARDS by enhancing the pro-resolving COX-2/L-PGDS-PGD2 expressions 
and activating the DP1 receptor. 

2. 2.Materials and Methods 

2.1. Reagents 

Protectin DX, NS-398(selective COX-2 inhibitor), AT-56 (L-PGDS 
inhibitor), BW245C (DP1 receptor agonist), 15(R)-15-methyl- 
PGD2(CRTH2/DP2 receptor agonist), MK-0524(DP1 receptor antagonist) 

and CAY-10471(CRTH2/DP2 receptor antagonist) were obtained from 
Cayman Chemical (Ann Arbor, MI, USA), Lipopolysaccharide (Escher-
ichia coli O55: B5), BOC-2 (ALX/FPR2 receptor inhibitor) were pur-
chased from Biomol/Enzo Life Sciences (Farmingdale, NY, USA). 

2.2. Animal procedures 

Male Sprague Dawley (SD) rats (200–250 g) were purchased from 
SLAC Laboratory (Shanghai, China). SD rats were raised in a 
temperature-controlled room (22–24 ◦C) on a 12 h day/night cycle with 
free access to food and water. All animal experimental procedures were 
approved by the Animal Care and Use Committee Institutional of 
Wenzhou Medical University (Wenzhou, China). 

SD rats were injected with 3 mg/kg body weight of LPS intrave-
nously, meanwhile, control group animals were administered the same 
volume of sterile 0.9% saline. Rats were euthanized at the different time 
points: 0,6, 12, 24, 48 and 72 h after LPS stimulation. 

For experimental procedures, NS-398, BOC-2, AT-56, BW-245C,15 
(R)-15-methyl-PGD2, MK-0524 and CAY-10471 were dissolved in DMSO 
and then diluted into sterile 0.9% saline for further use. At 12 h after the 
LPS challenge, rats were given PDX (5 μg/kg) or an equivalent volume of 
ethanol via tail vein injection. Rats were administered NS-398(5 mg/kg) 
i.v. 1 h prior than the LPS challenge or 12 h after the LPS administration. 
AT-56 was given intravenously (5 mg/kg) 12 h after the LPS challenge. 
For DP receptors studies, BW-245C,15(R)-15-methyl-PGD2, MK-0524 
and CAY-10471 were injected (5 mg/kg) i.p. to rats 12 h after the LPS 
exposure.BOC-2(600 ng/kg) were given i.v. to rats 1 h prior to PDX 
injection, whereas other groups received an equal volume of DMSO/ 
saline solution. Rats were sacrificed at 24 h humanely under anesthesia. 

2.3. Western blot analysis 

Rat primary lung fibroblasts and lung tissues were washed in iced 
PBS and harvested by using RIPA buffer supplemented with protease 
inhibitors. Resulting supernatant fraction was homogenized in 1 ×
SDS–PAGE sample buffer and boiled for 10 min at 95 ◦C. For the 
immunoblotting, protein lysates were electrophoresed via 10%,12% or 
15% SDS-PAGE gels and then transferred to polyvinylidene-difluoride 
(PVDF) membranes. Membranes were blocked and incubated with the 
indicated primary antibody overnight at 4 ◦C. Primary antibodies 
against COX-2 (ab-52237), L-PGDS (ab-182141) were purchased from 
Abcam (Cambridge, UK), mPGES-1 antibody (DF-8592) and mPGES-2 
antibody (DF-12712) were purchased from Affinity (Cincinnati, OH, 
USA). Bound primary antibodies were incubated with appropriate sec-
ondary antibodies for another 1 h. Protein levels were detected by using 
chemiluminescence reagents from Thermo Scientific (Rockford, IL, 
USA). Images were scanned by a UVP imaging system and analyzed by 
the Image Quant LAS 4000 mini system (GE Healthcare Bio-Sciences AB, 
Uppsala, Sweden). 

2.4. Cell culture 

Primary lung fibroblasts were isolated from SD rats; isolation process 
was same as we described before. [30] For experimental procedures, 
fibroblasts (5 × 105 were plated in six wells plates and grown to 80% 
confluence. Pulmonary fibroblasts were allowed to remain in a quiescent 
state for 24 h by incubating them in medium containing 1% FBS (Life 
Technologies BRL; Grand Island, NY, USA) prior to experimental treat-
ment. After 24 h of culture with LPS (1 μg/ml) or a control medium, 
fibroblasts were treated with 1,50,100 nM PDX or a vehicle solution 
(0.1% ethanol, as the PDX was supplied in ethanol) for an additional 24 
h. BOC-2 (10 μM) was added 30 min before PDX administration. Fi-
broblasts were harvested at the different time points:0, 6, 12, 24, 48 and 
72 h after LPS challenge for further use. 
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2.5. Histopathological staining 

The same part of the left lung of each rat was fixed in 10% para-
formaldehyde for 24 h. Lung tissues were embedded in paraffin wax, 
sectioned, and stained with H&E for light microscopy analysis. Acute 
lung injury scores were quantified by a single observer who was blinded 
to the treatment groups via the established histopathological scoring 
system. [31] 

2.6. Elisa 

PGE2 and PGD2 concentrations in fibroblasts cellular supernatants 
and rat homogenized lung tissues were measured as previously 
described. [32] ELISA kits were purchased from R&D Systems 

(Minneapolis, MN, USA), all procedures were performed according to 
the manufacturers’ instructions. All analyzes were run in triplicate and 
repeated twice. 

2.7. Quantitative real-time PCR 

Total RNA samples in lungs were isolated using TRIzol reagent 
(Takara Bio, Kusatsu, Japan) according to the manufacturer’s protocol. 
The cDNA of mRNA was synthesized by the reverse transcription kit 
purchased from Thermo Scientific (Rockford, IL, USA). The expression 
of mRNA was detected by qPCR (Bio-Rad, Hercules, CA, USA) with TB 
Green® Premix Ex Taq™ PCR kit (Takara Bio, Kusatsu, Japan). The 
gene-specific primers used are listed in Table S1 and mRNA levels 
normalized to GAPDH. Data were calculated with using the 2- 

Fig. 1. Biphasic activation of COX-2 and L-PGDS in rat primary lung fibroblasts stimulated by LPS.(A) Rat primary lung fibroblasts were incubated with LPS 
(1 μg/ml) for 0, 6, 12, 24, 48, 72 h. (B–E) Relative protein levels of COX-2, L-PGDS, mPGES-1 and mPGES-2 were determined by western blot analysis. (F and G) 
Supernatants were collected at 0, 6, 12, 24, 48 and 72 h after LPS challenge for ELISA detection. PGE2 and PGD2 levels at each time point were determined by ELISA. 
Data are presented as mean ± SEM, n = 6 *p < 0.05, **p < 0.01,***p ＜ 0.001,****p < 0.0001. 
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ΔΔCtmethod. 

2.8. Statistical analysis 

All data were presented as mean ± SEM. All data were analyzed 
using one-way ANOVA, followed by a Tukey test for post hoc compar-
isons. P < 0.05 was considered as significant. Statistical analyses were 
performed using GraphPad Prism 8.0 software (GraphPad Software, San 
Diego, CA, USA). 

3. Results 

3.1. Biphasic activation of COX-2, L-PGDS in rat primary lung fibroblasts 
stimulated by LPS 

Pulmonary lung fibroblasts play an important role in inflammatory 
diseases and participate actively in immune response. [33] Herein, to 
find out the dynamic change of COX-2 expression in fibroblasts, cells 
were exposed to LPS for 0,6,12,24,48,72 h (Fig. 1A). We found that the 
COX-2 protein presents a biphasic expression character, COX-2 firstly 
peaked at 6 h and secondary one at 48 h (Fig. 1B). 

Interestingly, we found that the L-PGDS also showed a biphasic 
expression, similar to that of COX-2 expression, peaking at 6 and 48 h. 
(Fig. 1C). Moreover, mPGES-1 only presented a single peak expression at 
6 h (Fig. 1D). mPGES-2, as a constitutively expressed synthetase, [34] 

Fig. 2. PDX enhances the secondary peak of COX-2, L-PGDS via the ALX/FPR2 receptor in vitro.(A). Primary lung fibroblasts were incubated with LPS (1 μg/ 
ml) for 48 h. Fibroblasts were treated with various concentrations of PDX (1 nM, 50 nM, 100 nM) for 24 h. BOC-2 (10 μM) was administered 30 min prior to PDX 
(100 nM) treatment, then cells were harvested and sonicated at 48 h. (B and C) The protein expression of COX-2 and L-PGDS after PDX treatment were tested by 
western blot and analyzed by densitometry compared to β-actin. (D and E) COX-2 and L-PGDS protein levels after the BOC-2 treatment were detected by western 
blot. Data are shown as mean ± SEM, n = 3–10. *p < 0.05, **p < 0.01,***p ＜ 0.001,****p < 0.0001. 
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showed no significant changes after the LPS challenge (Fig. 1E). PGE2, as 
a pro-inflammatory prostaglandin, [35] highly expressed at 6 h only 
(Fig. 1F). In contrast, PGD2 highly peaked both at 6 h and 48 h, and the 
secondary peak of PGD2 was significantly higher than the first one 
(Fig. 1G). We revealed that there was a biphasic activation character of 
COX-2/L-PGDS-PGD2 in LPS-stimulated lung fibroblasts. 

3.2. PDX enhances the secondary peak of COX-2, L-PGDS via activating 
the ALX receptor in vitro 

To determine the effect of Protectin DX on the secondary peak of 
COX-2/L-PGDS expression. COX-2 and L-PGDS protein levels were 
tested at 48 h with the treatment of PDX (Fig. 2A). Our results demon-
strated that PDX enhanced COX-2 and L-PGDS protein levels in a dosage- 

dependent pattern (Fig. 2B and 2C). 
We have previously demonstrated that PDX ameliorates the wound 

repair of the lung epithelial barrier via ALX receptor. [27] Here we 
would like to know whether PDX enhances the secondary peak of COX- 
2/L-PGDS via ALX receptor. The ALX receptor antagonist, BOC-2(10 
μM) was added 30 min before the PDX treatment. As Fig. 2D and Fig. 2E 
presented, pre-treatment with BOC-2 reversed the promoting effect of 
PDX on the secondary peak of COX-2 and L-PGDS. suggesting the pro-
moting effect of PDX on the expression of secondary peak COX-2, L- 
PGDS are via the ALX receptor. 

Fig. 3. Biphasic activation of COX-2 and L-PGDS in ARDS model.(A) LPS (3 mg/kg) or the equivalent volume of sterile 0.9% saline were injected i.v. to SD rats, 
lung tissues were collected at 0, 6, 12, 24, 48, 72 h for western blot analyze and ELISA detection. (B and C) Relative expression levels of COX-2 and L-PGDS protein in 
lung tissues were determined by western blot. (D and E) Protein expression of mPGES-1 and mPGES-2. (F and G) PGE2 and PGD2 levels were detected by ELISA. All 
data are presented as mean ± SEM, n = 6–10. *p < 0.05, **p < 0.01, ***p ＜ 0.001,****p < 0.0001. 
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3.3. Biphasic activation of COX-2 and L-PGDS in LPS -stimulated ARDS 
murine model 

Next, to explore the activation character of COX-2 and L-PGDS in 
vivo, we established the self-limited ARDS model in SD rats by admin-
istrating low dosage of LPS intravenously (Fig. 3A). Pathomorphological 
changes were detected by H&E staining, compared with the control 

group, the lung architecture in the LPS group showed most remarkable 
damage at 12 h, as evidenced by the changes in lung injury score. The 
mRNA expression of IL-1β, IL-6 and TNF-α in the lungs, peaked at 12 h 
and decreased subsequently after the LPS challenge (data were shown in 
Figure S1). Moreover, COX-2 showed a biphasic expression pattern as 
presented in Fig. 3B.COX-2 first peaked at 6 h after LPS stimulation, and 
the secondary peak appeared at 24 h. 

Fig. 4. The effect of COX-2 secondary peak on inflammation resolution of the rat ARDS model.(A).SD rats were administered with LPS (3 mg/kg) or the same 
volume of sterile intravenously, NS-398 (5 mg/kg), or the same volume of 0.9% saline was intravenously administered to SD rats 1 h prior to the LPS stimulation (NS- 
398 + LPS), administration at 12 h after the LPS challenge (LPS + NS-398), lung sections were collected at 24 h. (B) Representative H&E staining of the lung (original 
magnification, 200x; inset, 400x). (C) Acute lung injury scores of each group. (D–F) The mRNA expression level of inflammatory cytokines: IL-1β, IL-6, TNF-α. (G and 
H) Relative expression level of L-PGDS and mPGES-1 protein in the lung was determined by western blot. (I and J) The concentrations of PGE2 and PGD2 in lungs 
were detected by ELISA. Data are presented as mean ± SEM, n = 6. *p < 0.05, **p < 0.01,***p ＜ 0.001,****p < 0.0001. 
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Our results also showed L-PGDS had a biphasic expression charac-
teristic in vivo as same as in fibroblasts.The expression of L-PGDS firstly 
increased at 6 h, and the secondary peak appeared at 24 h (Fig. 3C), 
mPGES-1 was highly expressed at 6 h only (Fig. 3D). mPGES-2 showed 

no significant change after the LPS stimulation (Fig. 3E). The production 
of PGE2 ,increased only at 6 h and then gradually decreased, in consis-
tent with the mPGES-1 expression (Fig. 3F). PGD2 levels peaked at both 
6 and 24 h, in consistent with the L-PGDS expression (Fig. 3G). 

Fig. 5. L-PGDS secondary peak promotes the inflammatory resolution in vivo.(A).SD rats were administered with LPS (3 mg/kg) or the same volume of sterile 
intravenously, AT-56 (5 mg/kg), or the same volume of 0.9% saline was injected i.v. to rats 12 h after LPS injection. (B) Pathomorphological staining of the lung 
tissues. (Original magnification, 200X; inset, 400X). (C) Acute lung injury scores. (D–F) The mRNA expression levels of inflammatory cytokines: IL-1β, IL-6, TNF-α 
were measured by qPCR. (G and H) PGE2 and PGD2 concentrations in lung tissues were measured by ELISA. Data are shown as mean ± SEM, n = 6. *p < 0.05, **p <
0.01,***p ＜ 0.001,****p < 0.0001. 
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Fig. 6. PDX promotes the inflammatory resolution by enhancing the activation of ALX/FPR2 receptor and the COX-2-L-PGDS-PGD2 expression in vivo.(A). 
SD rats were administered with LPS (3 mg/kg) or the same volume of sterile intravenously, PDX (5 μg/kg) were administered intravenously to rats at 12 h after LPS 
treatment, BOC-2 600 ng/kg was given for 1 h before PDX treatment. Lung tissues were collected at 24 h. (B) Representative pathological H&E staining sections of 
lung tissues. (Original magnification, 200x; inset, 400x). (C) Acute lung injury scores assessment of each group. (D–F) The mRNA expression level of Inflammatory 
cytokines: IL-1β, IL-6, TNF-α. (G and H) Expression levels of COX-2 and L-PGDS protein after PDX treatment was determined by western blot analysis. (I and J) 
Concertation of PGE2 and PGD2 were detected by ELISA. All data are presented as mean ± SEM, n = 6. *p < 0.05, **p < 0.01,***p ＜ c0.001,****p < 0.0001. 
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These findings uncovered that there has a biphasic expression feature 
of COX-2/L-PGDS-PGD2 in ARDS rat model. COX-2 might be proin-
flammatory at early stage (via the mPGES-1/PGE2 expression). Sec-
ondary peak of COX-2 might be pro-resolving in the resolution stage (via 
L-PGDS/PGD2). 

3.4. The effect of COX-2 secondary peak on inflammation resolution of 
the rat ARDS model 

Next, to determine if secondary peak of COX-2 could play a pro- 
resolving role in the resolution of ARDS model. NS-398, a clinical- 
used selective COX-2 inhibitor, was administrated intravenously in 
rats 1 h before (the NS-398 + LPS group) or at 12 h (the LPS + NS-398 
group) after the LPS challenge (Fig. 4A). Pathological features were 
detected at 24 h as shown in Fig. 4B. Compared with the NS-398 + LPS 
group and LPS group, the LPS + NS-398 group revealed more distinct 
interstitial edema, hemorrhaging, thickening of alveolar walls, and in-
flammatory cells infiltration in the lung tissues. In contrast to the LPS 
group, the NS-398 + LPS group showed less pathological damage. As 
shown in Fig. 4C, acute lung injury score was quantified and found to be 
in consistent with the pathophysiological changes. In addition, 
compared with the NS-398 + LPS group and the LPS group, relative 

mRNA levels of the proinflammatory cytokines: IL-1β, IL-6 and TNF-α 
were much higher in LPS + NS-398 group (Fig. 4D-F). These findings 
suggested that inhibition the latter peak of COX-2 postponed the reso-
lution of inflammation. 

Moreover, the COX-2 inhibition significantly decreased the protein 
expression of L-PGDS at 24 h. No significant difference of L-PGDS pro-
tein expression was observed between the NS-398 + LPS group and the 
LPS + NS-398 group (Fig. 4G). Pre-treatment of NS-398 decreased the 
protein level of mPGES-1in ARDS model (Fig. 4H), no significant change 
in the PGE2 production was observed between LPS group and the NS- 
398 + LPS group (Fig. 4I). Inhibition of the COX-2 reduced the pro-
duction of PGD2 at 24 h (Fig. 4J). 

In summary, inhibition of the secondary peak COX-2 in the resolu-
tion stage of inflammation caused more significant lung damages 
compared to the inhibition of the first peak of COX-2 in the early stage of 
inflammation. Based on these findings, we surmise that the secondary 
peak of COX-2 plays a key role in promoting the resolution of inflam-
mation in ARDS. 

Fig. 7. DP1 receptor is activated during the resolution phase in the rat ARDS model. (A).SD rats were administered with LPS (3 mg/kg) or the same volume of 
sterile intravenously, BW245C (DP1 receptor agonist 5 mg/kg), 15(R)-15-methyl-PGD2(CRTH2/DP2 receptor agonist 5 mg/kg), MK-0524(DP1 receptor antagonist 5 
mg/kg) and CAY-10471(CRTH2/DP2 receptor antagonist 5 mg/kg) were injected to rats i.p. at 12 h after LPS exposure. Lung tissues were collected at 24 h. (B) 
Representative micrographs of pulmonary histology, as shown by H&E staining. (C) Acute lung injury score. (D–F) The mRNA levels of IL-1β, IL-6, TNF-α were 
measured via qPCR. Data are shown as mean ± SEM, n = 6. *p < 0.05, **p < 0.01,***p ＜ 0.001,****p < 0.0001. 
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3.5. L-PGDS secondary peak promotes the inflammatory resolution in 
vivo 

We then attempted to figure out the function of the secondary peak of 
L-PGDS. AT-56 was administrated to rats at 12 h after the LPS challenge 
(Fig. 5A). H&E staining (Fig. 5B) revealed that, compared with the LPS 
group, LPS + AT-56 group displayed more interstitial edema, hemor-
rhage, and inflammatory cells infiltration in lung tissues. In accordance 
with this, the lung injury scores were also elevated (Fig. 5C), along with 
the release of IL-1β, IL-6 and TNF-α (Fig. 5D–F). These results indicated 
that suppression of L-PGDS blocked ARDS resolution. ELISA results also 
proved that inhibiting the L-PGDS decreased the PGD2 production at 24 
h (Fig. 5H), while no significant difference was found in PGE2 between 
the LPS group and the LPS + AT-56 group (Fig. 5G). 

All results above indicated that the secondary peak COX-2/L-PGDS 
-PGD2 was responsible for ARDS resolution in murine models. 

3.6. PDX promotes inflammatory resolution by enhancing the activation 
of ALX receptor and the COX-2/L-PGDS-PGD2 expressions in vivo 

PDX have already been proved to enhance the repair of lung 
epithelial barrier in ALI/ARDS murine model. [27] To evaluate whether 
PDX promotes inflammatory resolution via activating ALX receptor 
and the COX-2/L-PGDS-PGD2 expressions in rat ARDS model, PDX 
was given at 12 h after the LPS exposure (Fig. 6A). H&E staining result 
showed that PDX markedly alleviate the morphological and histological 
damages induced by LPS, consistent with a decrease in acute lung injury 
score (Fig. 6B and 6C). Administration of BOC-2 (the ALX receptor in-
hibitor) reversed the effect of PDX on both histological damages and the 
release of pro-inflammatory cytokines induced by LPS (Fig. 6B and 6D- 
F), consistently with the acute lung injury score (Fig. 6C). These findings 
suggested that PDX promotes the inflammation resolution via activating 
the ALX receptor. 

In addition, PDX significantly up-regulated the protein expression of 
COX-2 and L-PGDS during the resolution stage. PDX significantly pro-
moted the expression of the pro-resolving mediator PGD2 (Fig. 6J). No 
significant difference was found in the PGE2 level between the LPS group 

Fig. 8. PDX promotes the inflammatory resolution stage through activation of DP1 receptor in the rat ARDS model.(A) SD rats were administered with LPS 
(3 mg/kg) or the same volume of sterile intravenously, BW245C (DP1 receptor agonist), 15(R)-15-methyl-PGD2(CRTH2/DP2 receptor agonist), MK-0524(DP1 re-
ceptor antagonist) or CAY-10471(CRTH2/DP2 receptor antagonist) were injected i.p. 5 mg/kg to rats at 12 h after LPS exposure with or without the PDX(5 μg/kg) 
administration. (B) Representative pathological H&E staining sections of lung tissues. (Original magnification, 200x; inset, 400x). (C) Acute lung injury scores 
assessment of each group. (D–F) The mRNA expression level of inflammatory cytokines: IL-1β, IL-6, TNF-α.All data are presented as mean ± SEM, n = 6. *p < 0.05, 
**p < 0.01,***p ＜ 0.001,****p < 0.0001. 
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and the LPS + PDX group (Fig. 6I). Pre-stimulation with BOC-2 reversed 
the improved effect of PDX on COX-2 and L-PGDS protein expression as 
well as PGD2 secretion (Fig. 6G -H). These results indicated that PDX 
facilitated the inflammatory resolution via activating ALX receptor and 
enhancing the expression of COX-2/L-PGDS as well as the production of 
PGD2. 

3.7. DP1 receptor is activated during the resolution phase in the murine 
ARDS model 

Previous studies demonstrated that the PGD2-DP1 signaling pathway 
was responsible for the anti-inflammatory function of ALI/ARDS. 
[12–13] Herein, we investigated what kind of PGD2 receptor plays the 
major role during the resolution phase in the murine ARDS model, BW- 
245C (DP1 receptor agonist), 15(R)-15-methyl-PGD2(CRTH2/DP2 re-
ceptor agonist), MK-0524(DP1 receptor antagonist) or CAY-10471 
(CRTH2/DP2 receptor antagonist) was intraperitoneally injected into 
rats at 12 h after the LPS stimulation (Fig. 7A). Morphological staining 
(Fig. 7B) revealed that the DP1 receptor agonist BW-245C significantly 
alleviated the pathological damage, while the DP1 receptor antagonist 
(MK-0524) aggravated the lung injury. In comparison, the agonist or 
antagonist of the DP2 receptor did not significantly influence the lung 
injury condition. As expected, the acute lung injury scores were in line 
with the findings of morphological staining (Fig. 7C). Furthermore, 
mRNA levels of proinflammatory cytokines: IL-1β (Fig. 7D), IL-6 
(Fig. 7E), TNF-α (Fig. 7F) also validated the above results. 

3.8. PDX promotes the inflammatory resolution through the activation of 
the DP1 receptor in the rat ARDS model 

Then, we investigated if PDX promoted the inflammatory resolution 
through the activation of the PGD2 receptors,in the rat ARDS model, BW- 
245C,15(R)-15-methyl-PGD2, MK-0524 or CAY-10471 were given to 
rats with or without PDX (Fig. 8A). Pathological staining (Fig. 8B) 

showed that the DP1 receptor agonist enhanced the pro-resolving 
function of PDX, while the DP1 receptor antagonist suppressed the 
improved inflammatory resolution by the PDX treatment. Meanwhile, 
the DP2 receptor did not significantly affect the resolution of inflam-
mation promoted by PDX (Fig. 8B). The acute lung injury scores were in 
accordance with the findings of morphological staining (Fig. 8C). 
Furthermore, inflammatory cytokines levels (IL-1β, IL-6 and TNF-α) 
were down-regulated after the DP1 receptor agonist treatment, while up- 
regulated by DP1 receptor antagonist (Fig. 8D-F). In contrast, the DP2 
receptor did not affect the release of IL-1β, IL-6 and TNF-α (Fig. 8D-F). 
Altogether, these data suggested that PDX promotes resolution of 
inflammation by activating the DP1 receptor in vivo. 

4. Discussion 

Our study uncovered that COX-2/L-PGDS-PGD2 expressions have a 
dual activation induced by LPS. Importantly we found that the second-
ary peak of COX-2/L-PGDS-induced PGD2 was responsible for the pro- 
resolving process in ARDS. Moreover, we showed that the DP1 recep-
tor was activated in inflammatory resolution. This study provides evi-
dence for a new mechanism by which PDX may promote inflammation 
resolution of the ARDS model through improving the expression of the 
secondary peak of COX-2/L-PGDS-induced PGD2. Interestingly, the ALX 
receptor antagonist, BOC-2, abrogated the effect of PDX on the COX-2/L- 
PGDS-PGD2. Altogether, these findings were summarized in Fig. 9, 
showed that PDX also promotes the inflammatory resolution via acti-
vating the ALX receptor and enhances the inflammatory resolution 
partly via activating the DP1 receptor. 

COX-2 is catalyzed after the inflammatory stimuli immediately. Pro- 
inflammatory PGs were induced by COX-2, [36] Fukunaga K. et al indi-
cated that COX-2 plays a protective role in ALI/ARDS through COX-2- 
derived mediators, partly via enhancing the lipoxin signaling. [7] 
However, this study did not discuss the dynamic change of COX-2 
expression in the ARDS model. In our LPS-stimulated ARDS model, we 
revealed that COX-2 was quickly and peaked at 6 h, then peaked twice at 
24 h in vivo. The secondary peak of COX-2 displayed pro-resolving 
character which was distinguished from traditional concepts. Consis-
tent with our study, Gilroy D.W. et al reported the biphasic expression of 
COX-2 in the carrageenin-induced pleurisy mice model. [8] However, 
the specific role of each COX-2 peak remains unclear. Herein, our 
findings suggested that COX-2 could be proinflammatory at early stage 
and be pro-resolving during the later stage of inflammation. Therefore, 
blindly using COXs inhibitors such as NSAIDs may postpone the reso-
lution process of inflammatory diseases and cause unexpected damage 
to the ARDS patients.. This might be one of the reasons that the appli-
cation of NSAIDS in patients with ARDS or sepsis in the clinical trials 
could not be an effective therapy. [6] Therefore, anti-inflammatory 
drugs should be used carefully depending on the stage of inflamma-
tion in the patients with ARDS. 

Our previous findings revealed that there is a biphasic expression of 
COX-2 induced-PGD2 in LPS-stimulated lung fibroblasts, [19] however 
we did not uncover the downstream PGs synthetases. In this study, we 
demonstrated that mPGES-1 peaked only at 6 h assosiated with maximal 
PGE2 synthesis. While L-PGDS had biphasic peaks at 6 and 48 h asso-
siated with a biphasic PGD2 synthesis. Previous studies indicated that L- 
PGDS alleviated the endothelial barrier injury in ALI/ARDS by pro-
moting the production of PGD2 in vivo. [13] We confirmed that the L- 
PGDS existed biphasic expression in rat ARDS model. Furthermore, we 
found that the secondary peak of COX-2/L-PGDS derived PGD2 pro-
moted the inflammatory resolution of ARDS model. 

PGs, such as PGE2, plays pro-inflammatory role in inflammation. 
[28] Previous studies indicated that PGD2 promoted the resolution of 
inflammation. [37] In addition, PGD2 performs its physiological func-
tion via the DP1 and CRTH2(DP2) receptors. We showed that the DP1 
receptor was activated in the resolution of ARDS. Administration of the 
agonist of the DP1 receptor improved the resolution of inflammation, 

Fig. 9. The underlying mechanism of PDX regulates the resolution of inflam-
mation via enhancing the ALX -COX-2/L-PGDS-PGD2 pathway and activating 
DP1 receptor. 
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while the inhibition of the DP1 receptor aggravated lung injuries. In our 
self-limited ARDS model, activation or inhibition of DP2 receptors did 
not affect the resolution of inflammation. 

As previously described, the resolution of acute inflammatory dis-
eases is an active process. [38] There is an internal, self-protective 
feature among the patient with ARDS. Thus, we established a self- 
limited ARDS model for further study. PDX, as an endogenous 
“braking signal”, displays anti-inflammatory and pro-resolving charac-
teristics. We already have determined that PDX could ameliorate the 
wound repair of the lung epithelial barrier. [27] In this study, we 
demonstrated that PDX significantly alleviated inflammatory injuries in 
ARDS via enhancing the expression of the secondary peak of COX-2/L- 
PGDS-and its metabolite PGD2. Additionally, we revealed that the pro- 
resolving effect of PDX was dependent on the activation of the DP1 
receptor. 

PDX exerts its effects via ALX receptor pathways. [25–27] Thus, our 
study used the ALX antagonist BOC-2. As expected, the ALX antagonist 
reversed the PDX induced improvement on COX-2/L-PGDS-PGD2 
expression both in vivo and in vitro, suggesting that PDX up-regulates 
COX-2/L-PGDS-PGD2 signaling via the ALX/FPR2 receptor. Therefore, 
we found that the activation of the COX-2/L-PGDS-PGD2 secondary peak 
and the DP1 receptor may be the novel mechanism by which PDX exerts 
its pro-resolving effect on inflammation. 
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