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Abstract
There is little information on whether prenatal multiple micronutrient (MMN) supplements

containing iodine affect women's iodine status. In the International Lipid‐based Nutrient

Supplements DYAD‐Ghana trial, we aimed to assess women's urinary iodine concentration

(UIC, μg/L) during pregnancy, as one of the planned secondary outcomes. Women (n = 1,320)

<20 weeks of gestation were randomized to consume 60 mg iron and 400 μg folic acid per day

(iron and folic acid [IFA]); 18 vitamins and minerals including 250 μg iodine per day (MMN); or

20 g/day of small‐quantity lipid‐based nutrient supplements (LNS) with the same and additional

4 vitamins and minerals as the MMN (LNS). In a subsample (n = 295), we tested differences in

groups' geometric mean UICs at 36 weeks of gestation controlling for baseline UIC and compared

the geometric means (approximately median UICs) with the World Health Organization (WHO)

cut‐offs: median UIC <150, 150–249, and ≥500 reflecting low, adequate, and excessive iodine

intakes, respectively. At baseline, overall median UIC was 137. At 36 weeks of gestation,

controlling for baseline UIC, geometric mean (95% confidence interval) UICs of the MMN (161

[133, 184]) and LNS (158 [132, 185]) groups did not differ; both values were significantly greater

(overall p = .004) than that of the IFA group (116 [101, 135]). The median UICs of the MMN and

LNS groups were within the WHO “adequate” range, whereas that of the IFA group was below

the WHO adequate range. In this setting, supplementation during pregnancy with small‐quantity

LNS or MMN providing iodine at the WHO‐recommended dose, compared with IFA, increases

the likelihood of adequate iodine status.
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Key messages

• In this semiurban setting in Ghana, the median spot

urinary iodine concentration of pregnant women at

<20 weeks of gestation (137 μg/L) was below the

World Health Organization range (150–249 μg/L) for

adequate iodine intake. Only about one third of the

women reportedly used iodized salt usually, or always,

despite a national salt iodization programme.

• During pregnancy, daily supplementation with multiple

micronutrients or small‐quantity lipid‐based nutrient

supplements, compared with iron and folic acid,

increased the likelihood of adequate iodine status.

• Regular monitoring of the iodine status of pregnant

women is needed to ensure the elimination of iodine

deficiency in Ghana.
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1 | INTRODUCTION

Iodine is needed for the synthesis of thyroid hormones; these

hormones are required for body metabolism and are key in the

development of the central nervous system in fetuses and children

(de Escobar, Obregon, & del Rey, 2007). Consequences of iodine

deficiency disorders (IDD) among women include miscarriage, impaired

mental function, development of goitre, and delivery of stillborn or

neurocognitively impaired infants (United Nations Children's Fund

[UNICEF], 2007; World Health Organization [WHO], 2007).

In 1994, universal salt iodization was recommended as the main

strategy for preventing iodine deficiency (WHO, 1994; WHO, 2007),

and iodized salt consumption has increased since then (Tran, Hetzel,

& Fisher, 2016) due to national salt iodization programmes (UNICEF,

2008; WHO, 2007). Nonetheless, in 2013, 35% of the global popula-

tion was at risk of iodine deficiency because of inadequate intakes

(WHO, 2013), and in Africa, 11 countries remained iodine deficient

(Jooste, Andersson, & Assey, 2013). Thus, despite the substantial prog-

ress in the prevention of IDD, iodine deficiency continues to be a public

health problem in many countries (Tran et al., 2016; UNICEF, 2007).

In 2007, the WHO increased the then Food and Agriculture Orga-

nization of the United Nations recommended nutrient intake for iodine

during pregnancy (Food and Agriculture Organization of the United

Nations/WHO, 2005) from 200 to 250 μg/day (WHO Secretariat et al.,

2007) and called for possible supplementation or food fortification

with iodine for pregnant women in areas where universal salt

iodization is not fully implemented and/or pregnant women might

not be adequately covered by iodized salt in order to ensure optimal

brain development of their infants (WHO/UNICEF, 2007).

The national salt iodization programme in Ghana began more than

two decades ago (Government of Ghana, 1996). According to the 2014

Ghana Demographic and Health Survey (Ghana Statistical Service [GSS]

et al., 2015), only 39% of households in Ghana have adequately iodized

salt (15+ ppm). Along with previous reports (Jooste et al., 2013; UNICEF,

2008), this estimate suggests that many pregnant women in the country

may not consume adequate iodine. Because deficiencies of

micronutrients often occur together and not in isolation (Bailey, West,

& Black, 2015; Haider & Bhutta, 2017; UNICEF/WHO/United Nations

University, 1999), it is possible that pregnant women in Ghana might

benefit from the provision of a multiple micronutrient (MMN) regimen

that includes iodine, as compared with the provision of iodine alone.

In the International Lipid‐based Nutrient Supplements (iLiNS)

DYAD‐Ghana trial, as part of the iLiNS Project, we tested the impact

of prenatal consumption of small‐quantity lipid‐based nutrient

supplements (SQ‐LNS; Arimond et al., 2015) or MMN capsules

on various maternal (Adu‐Afarwuah, Lartey, Okronipa, Ashorn, Zeilani,

et al., 2016; Adu‐Afarwuah et al., 2017) and child (Adu‐Afarwuah

et al., 2015; Adu‐Afarwuah, Lartey, Okronipa, Ashorn, Peerson, et al.,

2016) outcomes. Only a few such studies (Haider & Bhutta, 2017)

comparing the impact of MMN supplementation versus iron and folic

acid [IFA] supplementation during pregnancy have reported on

women's urinary iodine concentration (UIC), even though the elimina-

tion of iodine deficiency is an international priority (UNICEF, 2008). In

the analyses reported herein, we aimed to compare the UIC among the

three groups of pregnant women enrolled in the iLiNS DYAD‐Ghana
trial (UIC was one of the planned secondary outcomes of the trial)

and to assess the groups' iodine intake adequacy on the basis of the

WHO cut‐offs for UIC.
2 | METHODS

2.1 | Study setting, design, and participants

The setting, design, and participants of the iLiNS DYAD‐Ghana trial have

been described elsewhere (Adu‐Afarwuah et al., 2015). Briefly, we con-

ducted the study in the semiurban Somanya‐Odumase‐Kpong area,

about 70 km north of Accra, Ghana. The studywas designed as a partially

double‐blind, parallel, individually randomized, controlled trial with three

equal‐size groups andwas approved by the ethics committees of theUni-

versity of California, Davis; the Ghana Health Service; and the University

of Ghana Noguchi Memorial Institute for Medical Research and regis-

tered at clinicaltrials.gov (Identifier NCT00970866).

Between December 2009 and December 2011, pregnant women

attending usual antenatal clinics in the four major health facilities in

the area were screened if they were ≥18 years old; ≤20 weeks of

gestation; and had fully completed antenatal cards. Women were

excluded if any of the following applied: intention to move out of the

area within the next 2 years; milk or peanut allergy; unwillingness to

receive field workers or take study supplement; participation in

another trial; gestational age >20 weeks before completion of enrol-

ment; and antenatal card indicated HIV infection, asthma, epilepsy,

tuberculosis, or malignant disease.

2.2 | Group assignments and micronutrient
supplements

As described previously (Adu‐Afarwuah et al., 2015), after baseline

assessments, pregnant women were randomized to receive either

60 mg iron and 400 μg folic acid per day (hereafter, IFA supplement

or group) or 18 vitamins and minerals (including 20 mg iron) per day

(hereafter, MMN supplement or group) or 20 g/day of SQ‐LNS

http://clinicaltrials.gov
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containing similar micronutrients as the MMN supplement, plus

calcium, phosphorus, potassium, and magnesium, as well as energy

(118 kcal/day) and macronutrients (e.g., protein and essential fatty

acids; hereafter, SQ‐LNS or LNS group). The IFA and MMN were sup-

plied by DSM South Africa in 10‐capsule‐blister packs and the SQ‐LNS

by Nutriset S.A.S. (Malaunay, France) in individual 20‐g sachets. The

nutrient contents of the supplements (Adu‐Afarwuah et al., 2015)

and the rationale for the concentrations used (Arimond et al., 2015)

have been published. For most of the vitamins and minerals in the

MMN and SQ‐LNS, the contents were either 1× or 2× the recom-

mended dietary allowance for pregnancy (Arimond et al., 2015), except

for iron (Adu‐Afarwuah, Lartey, Okronipa, Ashorn, Zeilani, et al.,

2016). We included 250 μg/day for iodine based on the WHO

recommendation (WHO Secretariat et al., 2007).

The group assignments were performed as follows: the study

statistician at UC Davis, Janet M. Peerson, used a computer‐

generated (SAS version 9.4) scheme to develop the group alloca-

tions in blocks of 9, with the IFA and MMN groups coded by six

different colours, to maintain blinding. In Ghana, someone unrelated

to the randomization placed the group assignments in opaque

envelopes, which were labelled with the block numbers, sealed,

and stacked in increasing order of block numbers. The labelling

was done in pencil on the side of the envelopes not conspicuous

to the women, so as to not influence the women's choices. At each

enrolment, the study nurse took the topmost nine envelopes off

the stack, shuffled them, and asked the woman to pick one of

the nine envelopes, which revealed the group assignment. The

study nurse then returned the unused envelopes to the top of

the stack. This process continued until all of the envelopes

prepared for the target sample were used. When there were less

than nine women left to be enrolled, it was no longer possible for

a participant to pick one of the nine envelopes, except for

the study nurse to shuffle whatever number of envelopes that

remained, for the women to make a pick. At no point during ran-

domization was it possible for the study nurse to guess the remain-

ing allocations, because she had no knowledge of the randomization

scheme. Any allocation information was kept securely by the field

supervisor in Ghana and the study statistician at UC Davis only.
2.3 | Intervention

The intervention procedures were reported previously (Adu‐Afarwuah

et al., 2015; Adu‐Afarwuah, Lartey, Okronipa, Ashorn, Peerson, et al.,

2016). At enrolment, the study nurse gave each woman a 2‐week

supply of the assigned supplement and provided instructions on how

to consume it (IFA and MMN, with water after a meal, one capsule

per day; SQ‐LNS, mixed with any prepared food, one 20‐g sachet per

day). Thereafter, field workers delivered fresh supplies of supplement

and monitored supplement intakes and morbidity biweekly

(Adu‐Afarwuah et al., 2015). Women were told not to consume more

than one capsule (IFA and MMN groups) or sachet (LNS group) per day,

even if they forgot to take the supplement the previous day or days.

Women travelling out of the study area for periods beyond the next

biweekly visit were given extra supplies of supplements for the period

they intended to be away.
It was not possible to blind field workers and participants to

women who received the capsules (IFA and MMN) versus those who

received SQ‐LNS, because of the apparent differences between these

supplements. However, the laboratory staff who collected or analysed

the samples were blinded to the group assignments.
2.4 | Procedures and outcome measures

At baseline, we collected data on women's demographic and socio‐eco-

nomic characteristics and how often women used iodized salt (whether

never, sometimes, usually, or always). We presumed that women knew

iodized salt versus non‐iodized salt by the packaging and cost (even if

they could not read any labels), because the latter is often not packaged

and costs less. Further, we conducted anthropometric and laboratory

assessments and obtained spot urine samples, which were frozen until

analysed (Adu‐Afarwuah et al., 2015). We measured women's weight

(Seca 874, Seca), height (Seca 217, Seca), mid‐upper arm circumference

(Shorr tapes), and triceps skinfold thickness (Holtain calipers) by using

standard procedures and determined blood haemoglobin concentration

(HemoCue, HemoCue AG), malaria parasitaemia (Vision Biotech), and

gestational age (mostly by ultrasound biometry, Aloka SSD 500). We

calculated the assets index, housing index, and Household Food Insecu-

rity Access Scale score as proxy indicators of background socio‐eco-

nomic status, by using principal component analysis (Coates,

Swindale, & Bilinsky, 2007). At 36 weeks of gestation, we asked the

women again about their frequency of using iodized salt. The women

returned to the laboratory (last laboratory visit before delivery), where-

upon we repeated the collection of spot urine samples.

Urine samples were air‐freighted on dry ice to the laboratories of

the Medical Research Council in Cape Town, South Africa, where UIC

was determined. First, the urine samples were manually digested in a 96‐

well plate by using ammonium persulfate. The digested samples were then

transferred to a newmicroplate for the Sandell–Kolthoff reaction, and UIC

was read at 405 nm (Henjum et al., 2016; Jooste & Strydom, 2010).

The secondary outcomes evaluated here were geometric mean

UIC (μg/L) at 36 weeks of gestation and median change in UIC over

the intervention period.
2.5 | Sample size basis and data analysis

For women's UIC during pregnancy (as well as several other biochemical

outcomes in our trial), we based the target sample size on detecting an

effect size or Cohen's d (Cohen, 1988) of ≥0.5 between any two groups,

with a two‐sided 5% test and 80% power. This required 105 women per

group or 315women for the three groups, after taking into account up to

25% attrition. Subsequently, we randomly selected a subsample of 315

women from the 810 women enrolled after we had corrected the

mislabelling situation we reported previously (Adu‐Afarwuah et al.,

2015; Adu‐Afarwuah, Lartey, Okronipa, Ashorn, Peerson, et al., 2016),

to ensure that none of the women in the UIC analyses had been exposed

to unintended supplements during pregnancy. At 36 weeks of gestation,

we had UIC values for 292women, which gave >93%power to detect an

effect size of 0.5 between any two groups.

The analysis for the results presented here was part of the

iLiNS DYAD‐Ghana statistical analysis plan, which was developed and
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posted at our website (www.ilins.org) before data analysis began. Both

the statistical analysis plan and trial protocol at clinicaltrials.gov list

women's UIC as a secondary outcome to be analysed separately. We

analysed data on an intention‐to‐treat basis (by including

women regardless of adherence to treatment) and by using SAS for

Windows Release 9.4 (Cary, NC, USA).We summarized the background

characteristics at enrolment, by group, as mean ± SD or frequency (%).

Because UICs are known to be not normally distributed (WHO, 2013),

we summarized baseline UIC and change in UIC from baseline to

36 weeks of gestation as median (Q1, Q3), by group, and compared

UIC of groups at 36 weeks of gestation after natural log transformation.

The comparison at 36 weeks of gestation was performed by using

analysis of covariance (SAS PROC GLIMMIX), with Tukey adjustment

for multiple comparison. The prespecified variables evaluated as

potential covariates and for interaction in bivariate models were gesta-

tional age at enrolment, years of formal education, parity (nulliparous

or parous), season of enrolment (wet or not wet), household assets

index (by principal component analysis), Household Food Insecurity

Access Scale score (Coates et al., 2007), reported use of iodized salt,

and baseline UIC. The covariate for use of iodized salt was created

from the frequency of using iodized salt at baseline and 36 weeks of

gestation by assigning 0, 1, 2, and 3 to never, sometimes, usually, and

always, respectively, and averaging the coded responses across the

two time points. Values of this covariate ranged from 0 to 3, where

higher values represented higher frequency of use of iodized salt. Only

the prespecified variables significantly associated with the outcome at

<.1 level of significance were included as covariates. Interactions with

p‐for‐interaction <.1 were considered significant.

We performed the analysis of covariance twice: first, with baseline

UIC as the only covariate in the model and, second, with all of the
TABLE 1 Background characteristics at enrolment of women randomly se
randomized trial of micronutrient supplementation during pregnancy in a s

Characteristics IFA (n = 94)

Age (years) 26.3 ± 5.2 [92]

Years of formal education (years) 7.8 ± 2.9 [92]

Weight (kg) 63.0 ± 11.6 [91]

Height (cm) 158 ± 5.0 [91]

MUAC (cm) 28.3 ± 4.0 [91]

Triceps skinfold (mm) 19.3 ± 7.1 [91]

Body mass index (kg/m2) 25.1 ± 4.2 [91]

HFIAS scoreb 2.5 ± 3.7 [92]

Gestational age at enrolment (weeks) 16.2 ± 3.0 [92]

Nulliparous women, n/total (%) 37/92 (40.2)

Hb <100 g/L, n/total (%) 9/92 (9.8)

Positive malarial RDT, n/total (%) 4/92 (4.3)

Note. HFIAS = Household Food Insecurity Access Scale; IFA = iron and folic aci
RDT = rapid diagnostic test (Clearview Malarial Combo; Vision Biotech, which de
SQ‐LNS = small‐quantity lipid‐based nutrient supplements; Hb = haemoglobin.
an = 295. IFA group: Women were assigned to receive 60 mg Fe + 400 mg fo
receive 18 vitamins and minerals (including 20 mg Fe) per day during pregnancy
the same micronutrients as the MMN group + calcium, phosphorus, potassium
means ± SDs (n) unless otherwise indicated. n/total indicates the number of pa
number of participants analysed for the variable in question.
bHFIAS score is a proxy indicator for household food insecurity (Coates et al., 2
identified covariates in themodel. A visual inspection and a Shapiro–Wilk

test of normality revealed that the residuals of the models were normally

distributed. We obtained the group geometric means of UICs and their

95% confidence intervals by back‐transformation. The geometric mean

UIC is an approximate estimator of median UIC (Hauschke, Steinijans,

& Pigeot, 2007; Thomas, 1990). For prespecified variables with a signifi-

cant interaction, we performed subgroup analyses to determine whether

intervention groups differed in the different subgroups. Each interaction

variable was considered separately in the model to avoid collinearity.

Finally, to assess the adequacy of iodine intakes of groups, we com-

pared the group geometric mean (approximately the group median) UICs

with WHO cut‐off levels: median UIC <150 μg/L representing inade-

quate iodine intakes, median UIC 150–249 μg/L representing adequate

iodine intakes, and UIC ≥500 μg/L representing excessive iodine intakes.

Statistics in the texts are median (Q1, Q3) or geometric mean

(95% confidence interval). We previously reported (Klevor et al.,

2016) that women's adherence to supplement intake during pregnancy

(i.e., percentage of follow‐up days women self‐reportedly consumed

the supplements) was 88.1% for the IFA group; 87.0% for the MMN

group; and 83.7% for the LNS group (Klevor et al., 2016).
3 | RESULTS

The data presented here were collected between October 2010 and

June 2012. The background characteristics of women in the subsample

whose spot UICs were analysed are shown inTable 1. These character-

istics were generally balanced across the three groups. There were no

differences in these background characteristics between women in the

subsample and those who were not selected for the UIC analysis

(results not shown), except that the former had greater mean ± SD
lected for urinary iodine analysis out of women who participated in a
emiurban setting in Ghana, by groupa

MMN (n = 102) LNS (n = 101)

26.0 ± 5.1 [102] 26.9 ± 5.6 [101]

7.5 ± 3.2 [102] 8.1 ± 3.8 [101]

62.8 ± 11.8 [100] 61.9 ± 9.2 [98]

159 ± 5.7 [100] 159 ± 5.2 [98]

27.8 ± 3.7 [100] 27.8 ± 3.4 [98]

18.5 ± 7.2 [100] 18.7 ± 6.3 [98]

24.8 ± 4.2 [100] 24.6 ± 3.6 [98]

2.2 ± 3.3 [101] 2.1 ± 3.0 [101]

16.1 ± 3.1 [102] 16.1 ± 3.2 [101]

37/102 (36.3) 34/101 (33.7)

19/102 (18.6) 10/101 (9.9)

4/102 (3.9) 9/101 (8.9)

d; LNS = lipid‐based nutrient supplement; MMN = multiple micronutrients;
tected Plasmodium falciparum and non‐P. falciparum histidine‐rich protein 2);

lic acid per day during pregnancy; MMN group: Women were assigned to
; LNS group: Women were assigned to receive 20 g SQ‐LNS per day with
, and magnesium as well as macronutrients during pregnancy. Values are
rticipants whose response was “yes” for the variable in question per total

007); higher values represent higher food insecurity.

http://www.ilins.org
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years of formal education (7.8 ± 3.3 vs. 7.3 ± 3.6 years; p = .045) and a

lower percentage of women with a positive rapid diagnostic test for

malaria (6% vs. 10%; p = .036). The percentage of women who

reported using iodized salt usually or always was 31% at baseline

and 33% at 36 weeks of gestation. Otherwise, the majority of the

women reported that they never used iodized salt, or they used it

sometimes.

Results of the analysis of the UICs of women, by group at baseline

and 36 weeks of gestation, are presented in Table 2. At baseline, the

median (Q1, Q3) UIC for the MMN group appeared lower than the

overall median (137 [78, 221] μg/L). The median change in UIC from

baseline to 36 weeks of gestation was positive for the MMN and

LNS groups, whereas the reverse was true for the IFA group.
TABLE 2 UIC (μg/L) of women who received IFA, MMN, and SQ‐LNS dur

Group

UIC (μg/L) IFA (n = 91)

Baselineb 150 (94, 234)

Change (enrolment to 36 weeks of gestation) −24 (−123, 52)

36 weeks of gestationc 116 (101, 138)e

36 weeks of gestationd 113 (100, 138)e

Note. UIC = urinary iodine concentration; iLiNS = International Lipid‐based Nu
supplements; MMN = multiple micronutrients; SQ‐LNS = small‐quantity lipid‐b
on analysis of covariance (SAS PROC GLIMMIX).
an = 292. IFA group: Women were assigned to receive 60 mg Fe + 400 mg folic a
minerals including 250 μg iodine per day; LNS group: Women were assigned to
group, plus calcium, phosphorus, potassium, and magnesium as well as macronu
bBaseline values are median (Q1, Q3).
cValues at 36 weeks of gestation are geometric means (95% CI) obtained by b
Tukey adjustment for multiple comparison. Geometric mean (95% CI) values wi
dValues at 36 weeks of gestation are geometric means (95% CI) obtained by ba
years of formal education, parity, season of enrolment, and household assets
(95% CI) values with different superscript letters are significant different.

TABLE 3 Geometric mean UIC (μg/L) at 36 weeks of gestation of women
DYAD‐Ghana trial, stratified by subgroups of gestational age at enrolment

Baseline characteristics and subgroups IFAb

Gestational age at enrolment (weeks)

In first trimester (n = 44) 99 (71, 139)e

In second trimester (n = 248) 122 (103, 146)e

Parity

Nulliparous (n = 108) 117 (88, 147)

Parous (n = 184) 109 (97, 149)e

Baseline UIC

UIC ≥ 150 μg/L (n = 147) 140 (112, 175)

UIC < 150 μg/L (n = 145) 100 (79, 126)e

Note. IFA = iron and folic acid; LNS = lipid‐based nutrient supplement; MMN
supplements; UIC = urinary iodine concentration. Analysis at 36 weeks of gesta
an = 292. IFA group: Women were assigned to receive 60 mg Fe + 400 mg folic a
minerals including 250 μg iodine per day; LNS group: Women were assigned to
group, plus calcium, phosphorus, potassium, and magnesium as well as macronu
bValues are geometric means (95% CI), adjusted for variables significantly assoc
years of formal education, parity, season of enrolment, and household assets in
significant different.
cp‐values are for interaction with intervention group.
dp‐values compare all three groups in each stratum.
At 36 weeks of gestation, controlling for baseline UIC, the MMN

and LNS groups did not differ significantly in geometric mean UIC,

but each of these groups had a geometric mean UIC that was signifi-

cantly greater than that of the IFA group. These results remained

unchanged after controlling for additional background variables. The

geometric mean (approximately median) UICs of the MMN and LNS

groups were each greater than 150 μg/L, the WHO cut‐off for ade-

quate iodine intakes, whereas the value for the IFA group was less than

150 μg/L. None of the geometric means was close to being ≥500 μg/L,

the WHO cut‐off reflecting excessive iodine intakes.

Of the eight potential effect modifiers tested, three (gestational

age at enrolment, parity, and baseline UIC) had a significant interaction

with the intervention group (Table 3). There was a significant
ing pregnancy in the iLiNS DYAD‐Ghana trial, by groupa

MMN (n = 100) LNS (n = 101) p

119 (67, 203) 151 (88, 218)

39 (−34, 122) 14 (−64, 102)

161 (133, 184)f 158 (132, 185)f .004

162 (132, 182)f 159 (135, 186)f .001

trient Supplements; IFA = iron and folic acid; LNS = lipid‐based nutrient
ased nutrient supplements. Analysis at 36 weeks of gestation was based

cid per day; MMN group: Women were assigned to receive 18 vitamins and
receive 20 g SQ‐LNS per day with the same micronutrients as the MMN
trients.

ack‐transforming the log‐mean UIC after controlling for baseline UIC, with
th different superscript letters are significant different.

ck‐transforming log‐mean UIC after controlling for baseline UIC as well as
index, with Tukey adjustment for multiple comparison. Geometric mean

who received IFA, MMN, and SQ‐LNS during pregnancy in the iLiNS
, parity, and baseline UICa

MMNb LNSb pc pd

.022

156 (109, 223)f 106 (73, 146)e .021

157 (131, 187)f 171 (143, 203)f .015

.035

130 (98, 173) 117 (93, 153) .74

185 (144, 212)f 187 (149, 222)f .001

.021

210 (164, 268) 161 (131, 198) .059

132 (108, 161)f 156 (124, 198)f .025

= multiple micronutrients; SQ‐LNS = small‐quantity lipid‐based nutrient
tion was based on analysis of covariance (SAS PROC GLIMMIX).

cid per day; MMN group: Women were assigned to receive 18 vitamins and
receive 20 g SQ‐LNS per day with the same micronutrients as the MMN
trients.

iated with the outcome variable at α < .1 in bivariate analysis: baseline UIC,
dex. Geometric mean (95% CI) values with different superscript letters are
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difference between intervention groups in UIC at 36 weeks of gesta-

tion among women enrolled in either the first or second trimester,

but the groups that differed varied: UIC was higher in those in the

MMN versus IFA group among those enrolled in the first trimester,

whereas it was higher in both the MMN and LNS groups, compared

with IFA, among those enrolled in the second trimester. With regard

to parity, intervention groups differed in UIC at 36 weeks among par-

ous women, but not among nulliparous women. Last, the effect of the

intervention group was more evident in those with baseline UIC

<150 μg/L than in those with higher baseline UIC.

The interaction between reported use of iodized salt and interven-

tion group was not significant. However, the likelihood that median

UIC would fall below the WHO cut‐off for adequacy differed depend-

ing on the reported use of iodized salt. At baseline, median UIC was

178 μg/L in women who reported using iodized salt usually or always

at either baseline or 36 weeks of gestation and 126 μg/L for women

who did not report using iodized salt usually or always at either time

point; within each of these categories of women, the median UICs of

the three intervention groups were comparable at baseline. At

36 weeks of gestation, median UIC among women who reported

using iodized salt usually or always at either time point was

188 μg/L in the IFA group, 228 μg/L in the MMN group, and

211 μg/L in the LNS group; among women who did not report using

iodized salt usually or always at either time point, median UIC was

86 μg/L in the IFA group, 137 μg/L in the MMN group, and

133 μg/L in the LNS group.
4 | DISCUSSION

We found that in this semiurban setting in Ghana, the consumption of

SQ‐LNS or MMN, compared with IFA, during pregnancy increased

maternal UIC. At 36 weeks of gestation, the iodine status of women

provided with MMN or SQ‐LNS was adequate according to WHO‐

recommended cut‐off levels, whereas the iodine status of women

provided with IFA was insufficient. The impact of MMN or SQ‐LNS

consumption during pregnancy on UIC appeared to be greater in

parous than in nulliparous women.

We previously mentioned several strengths, as well as weak-

nesses, of our study (Adu‐Afarwuah et al., 2015; Adu‐Afarwuah

et al., 2017). The former include use of a fully randomized design and

blinding of laboratory analysts involved in the analysis of UIC. We paid

special attention to ensuring data quality. The study weaknesses

included our inability to fully blind all nonlaboratory study staff and

participants to the supplementation allocation because of the obvious

differences between the IFA and MMN capsules compared with the

SQ‐LNS sachets.

The WHO recommends the use of median UIC from spot urine

samples to describe iodine status in settings where salt iodization

programmes are in place (WHO, 2007). Median UICs from spot urine

samples (WHO, 2007) and the cut‐offs (WHO, 2013) are recom-

mended for assessing iodine intakes in populations (WHO, 2013). In

individuals, UICs are known to vary (between and within days) consid-

erably (Rasmussen, Ovesen, & Christiansen, 1999; WHO, 2007). We

did not examine the proportion of individuals within versus outside
of the adequate range for UIC because we had no data to estimate

and correct for day‐to‐day intraindividual variability.

Several previous trials have compared women given MMN includ-

ing iodine with those given IFA during pregnancy, including studies in

Pakistan (Bhutta et al., 2009), Guinea Bissau (Kaestel, Michaelsen,

Aaby, & Friis, 2005), Nepal (Osrin et al., 2005), Burkina Faso

(Roberfroid et al., 2008), Indonesia (Sunawang, Utomo, Hidayat,

Kusharisupeni, & Subarkah, 2009; Supplementation with Multiple

Micronutrients Intervention Trial Study et al., 2008), Bangladesh

(Eneroth et al., 2010), Niger (Zagre, Desplats, Adou, Mamadoultaibou,

& Aguayo, 2007), and China (Zeng et al., 2008), but we found only

one study that reported UIC: In Indonesia (Sunawang et al., 2009),

the investigators reported that “iodine levels increased” in pregnant

women receiving either the MMN supplement or IFA. It is unclear

what the magnitude of the increase was and what explained the

increase in UIC in the group receiving IFA. In the Rang‐Din Nutrition

Study (Mridha et al., 2017), the geometric mean UIC of the

Bangladeshi women (48 μg/L in early pregnancy and 29 μg/L at

36 weeks of gestation) was very low compared with that of the women

in Ghana, and there was no significant effect of SQ‐LNS containing

iodine on UIC. The investigators speculated that under such circum-

stances, the supplemental iodine was utilized in the thyroid gland, as

opposed to being excreted in the urine.

Although there are no universally accepted cut‐offs for defining

severe, moderate, or mild iodine deficiency in pregnant women based

on UICs, the observed UIC of women in the IFA group at 36

gestational weeks may suggest iodine deficiency (Zimmermann,

2007), particularly for those who did not report using iodized salt

usually or always. These results for the IFA group are comparable with

those from several iodine‐deficient countries, in which median UICs

during pregnancy have been found to be relatively low (Zimmermann,

2007). In contrast, the results for the MMN and LNS groups are similar

to those of longitudinal and cross‐sectional studies from several

iodine‐sufficient countries (where all salt is iodized, or dietary iodine

comes from either iodized salt or other food sources) in which the

median UICs during pregnancy were ≥140 μg/L (Zimmermann, 2007).

Median UIC of pregnant women recently reported for Ghana

(Iodine Global Network, 2017), which was based on a nationally

representative survey, suggests that at the national population level,

the iodine intakes of pregnant women are adequate. Our finding of

inadequate iodine intakes, based on UIC, among women in the IFA

group conflicts with this national report. It may be that the national

level UIC results (Iodine Global Network, 2017) obscure regional or

subregional disparities, which is common in such national cross‐

sectional surveys (Doggui, El Ati‐Hellal, Traissac, Lahmar, & El Ati,

2016). The study site is not a known iodine deficiency‐endemic area,

but much of the staple food consumed in the area comes from a

nearby mountainous district (Upper Manya Krobo District) and may

have low iodine content because of leaching from soil erosion

(Zimmermann, 2015). Consequently, the pregnant women in the

study area, who consume these staple foods, may have low iodine

status (Zimmermann, 2015).

The low geometric mean UIC of women in the IFA group, whose

supplement contained no iodine, may not be surprising. Since the

mid‐1990s, the national salt iodization programme in Ghana has been
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the main driving force preventing IDD in the country, and a consider-

able progress has been made in reducing IDD. The implementation of

the programme has, however, been hampered by various challenges,

including the difficulty in acquiring the needed fortificant (potassium

iodate) and the large number of small‐scale salt producers, some of

whom have little or no capacity to iodize the salt they produce

(Nyumuah et al., 2012). The large percentage of households consuming

inadequately iodized salt observed in previous national surveys (GSS,

2011, GSS et al., 2015), and supported by findings from this study,

suggests that those challenges remain to some degree, despite

attempts at resolving them (Nyumuah et al., 2012), and as a result,

much of the salt produced in Ghana is still not iodized. Women know

that noniodized salt is cheaper and more accessible, compared with

the usually factory‐processed, fine‐textured, and branded iodized salt

(Agbozo, Dera, Gloverb, & Ellahi, 2016; Avinash & Prabha Adhikari,

2002; Knowles et al., 2017).

Thus, our results suggest that without iodine supplementation,

it is difficult for pregnant women in our study setting to achieve

adequate iodine status, unless they use iodized salt usually or

always during pregnancy. In fact, there are similar reports from

other countries showing low iodine status of pregnant women even

when a national salt iodization programme is in place (Mao et al.,

2015; Oral et al., 2016). We did not measure the iodine status of

infants born to women in our study, but in Morocco (Stinca et al.,

2017) the iodine status (as measured by total thyroxine) of infants

whose mothers were iodine deficient appeared to be worse than

that of the women themselves. Although the full impact of mild

iodine deficiency during pregnancy on fetal development may not

be known, the consequences could include increased risk of lower

verbal intelligence quotient later in life (Bath, Steer, Golding,

Emmett, & Rayman, 2013; Stinca et al., 2017). Maternal serum

thyroid hormone concentration or production may, however, be

normal even when mean UIC is as low as 33 μg/L (Cao et al.,

1994; Caron et al., 1997; Pedersen et al., 1993; Silva & Silva,

1981), although it is not certain what else may be affected when

UIC falls below the 150 μg/L WHO cut‐off.

Our results also suggest that ensuring adequate iodine status of

pregnant women in Ghana requires a policy for regular monitoring of

the iodine status of the population, especially pregnant women, in

addition to periodically determining the coverage of iodized salt

consumption at the household level (GSS et al., 2015, GSS, 2011).

Currently, the percentage of Ghanaian pregnant women showing

obvious signs of iodine deficiency is low (Government of Ghana,

2009), but a large number of women living in certain parts of the

country may be consuming insufficient iodine.

Results from subgroup analyses in randomized controlled trials

should be interpreted with caution (Brookes et al., 2001; Sedgwick,

2014); however, our subgroup analyses were prespecified (Brookes

et al., 2001; Moher et al., 2010; Sedgwick, 2014), and our finding

that MMN and SQ‐LNS consumption did not affect the UIC of

nulliparous women is presented to stimulate further investigation,

as it may reflect the greater vulnerability of nulliparous women

compared with their parous counterparts. As reported previously

(Adu‐Afarwuah et al., 2015), apart from being younger, the first‐

time mothers weighed less, had a lower mean haemoglobin
concentration, and were more likely to be anaemic or test positive

for malaria at baseline than parous women. It is possible that some

of these conditions, for example, increased risk of anaemia, could

have negatively affected the impact of MMN and SQ‐LNS supple-

mentation. In the Cote d'Ivoire (Zimmermann, Adou, Torresani,

Zeder, & Hurrell, 2000), iron deficiency anaemia weakened the

efficacy of iodine supplementation in goitrous children possibly by

reducing the activity of iron‐containing thyroid peroxidase (Hess,

Zimmermann, Arnold, Langhans, & Hurrell, 2002), which can impair

thyroid hormone production. The increased risk of anaemia and

malaria in nulliparous women also could have reduced iodine

intakes through the reduction of food consumption because of

anorexia or the cultural practice of withdrawal from food during

illness (Scrimshaw, 1992).

We conclude that in this semiurban setting in Ghana, the

iodine intakes of pregnant women appear to be insufficient despite

the national salt iodization programme and that the consumption of

SQ‐LNS or MMN supplements providing iodine at the current WHO‐

recommended daily dose increases the likelihood of adequate iodine

status. Although universal salt iodization remains to be achieved in

Ghana, supplementation with SQ‐LNS or MMN would ensure optimal

iodine status among pregnant women in this setting.

ACKNOWLEDGMENTS

We thank Maku Ocansey, Seth Antwi, and Ronnie Osei‐Boateng for

their roles in subject enrolment and urine sample collection; Sonja

Y. Hess for helping to get the urine samples analysed in South

Africa; Charles D. Arnold for contributing to SAS programming;

Mary Arimond for comments and suggestions; iLiNS Project

Steering Committee members Kenneth H. Brown, Stephen A. Vosti,

Kenneth Maleta, and Jean Bosco Ouedraogo for advice in trial con-

ceptualization; and Lindsay Allen for helping to define the SQ‐LNS

formulation. This study was funded by a grant to the University

of California, Davis, from the Bill & Melinda Gates Foundation,

Grant/Award Number: OPP49817. The findings and conclusions

contained within are those of the authors, and do not necessarily

reflect positions or policies of the Bill & Melinda Gates Foundation.

CONFLICTS OF INTEREST

S. Adu‐Afarwuah, R. T. Young, A. Lartey, H. Okronipa, P. Ashorn, U.

Ashorn, and K. G. Dewey declare no conflicts of interest. At the time

of the study, M. Zeilani was an employee of Nutriset S.A.S., which is

a commercial producer of LNS products. The funder of the study had

no role in the study design; data collection, analysis, and interpretation;

and the preparation of the manuscript.

CONTRIBUTIONS

SA‐A, AL, PA, MZ, and KGD designed the research; MZ was responsi-

ble for the development and production of the SQ‐LNS used in the

study based on the specifications agreed upon by the iLiNS Project;

SA‐A, AL, and HO conducted the research; SA‐A and RTY performed

the statistical analysis; SA‐A and KGD wrote the manuscript; and AL,

HO, PA, UA, and MZ reviewed the draft manuscript. All authors read

and approved the final manuscript.



8 of 10 ADU‐AFARWUAH ET AL.
bs_bs_banner
ORCID

Seth Adu‐Afarwuah http://orcid.org/0000-0002-2720-5474

REFERENCES

Adu‐Afarwuah, S., Lartey, A., Okronipa, H., Ashorn, P., Ashorn, U., Zeilani,
M., … Dewey, K. G. (2017). Maternal supplementation with small‐
quantity lipid‐based nutrient supplements compared with multiple
micronutrients, but not with iron and folic acid, reduces the prevalence
of low gestational weight gain in semi‐urban Ghana: A randomized
controlled trial. The Journal of Nutrition, 147, 697–705.

Adu‐Afarwuah, S., Lartey, A., Okronipa, H., Ashorn, P., Peerson, J. M.,
Arimond, M., … Dewey, K. G. (2016). Small‐quantity, lipid‐based
nutrient supplements provided to women during pregnancy and 6 mo
postpartum and to their infants from 6 mo of age increase the mean
attained length of 18‐mo‐old children in semi‐urban Ghana: A random-
ized controlled trial. The American Journal of Clinical Nutrition, 104,
797–808.

Adu‐Afarwuah, S., Lartey, A., Okronipa, H., Ashorn, P., Zeilani, M., Baldiviez,
L. M., … Dewey, K. G. (2016). Impact of small‐quantity lipid‐based
nutrient supplement on hemoglobin, iron status and biomarkers of
inflammation in pregnant Ghanaian women. Maternal & Child Nutrition.
https://doi.org/10.1111/mcn.12262

Adu‐Afarwuah, S., Lartey, A., Okronipa, H., Ashorn, P., Zeilani, M., Peerson,
J. M., …Dewey, K. G. (2015). Lipid‐based nutrient supplement increases
the birth size of infants of primiparous women in Ghana. The American
Journal of Clinical Nutrition, 101, 835–846.

Agbozo, F., Dera, J. B., Gloverb, N. J., & Ellahi, B. (2016). Household and
market survey on availability of adequately iodized salt in the Volta
region, Ghana. International Journal of Health Promotion and Education.
https://doi.org/10.1080/14635240.2016.1250658

Arimond, M., Zeilani, M., Jungjohann, S., Brown, K. H., Ashorn, P., Allen, L.
H., & Dewey, K. G. (2015). Considerations in developing lipid‐based
nutrient supplements for prevention of undernutrition: Experience
from the International Lipid‐Based Nutrient Supplements (iLiNS) Pro-
ject. Maternal & Child Nutrition, 11(Suppl 4), 31–61.

Avinash, K. R., & Prabha Adhikari, M. R. (2002). Iodine content of various
salt samples sold in Mangalore—A coastal city with endemic goitre.
The Journal of the Association of Physicians of India, 50, 1146–1148.

Bailey, R. L., West, K. P. Jr., & Black, R. E. (2015). The epidemiology of
global micronutrient deficiencies. Annals of Nutrition & Metabolism,
66(Suppl 2), 22–33.

Bath, S. C., Steer, C. D., Golding, J., Emmett, P., & Rayman, M. P. (2013).
Effect of inadequate iodine status in UK pregnant women on cognitive
outcomes in their children: Results from the Avon Longitudinal Study of
Parents and Children (ALSPAC). Lancet, 382, 331–337.

Bhutta, Z. A., Rizvi, A., Raza, F., Hotwani, S., Zaidi, S., Moazzam, H. S., …
Bhutta, S. (2009). A comparative evaluation of multiple micronutrient
and iron–folic acid supplementation during pregnancy in Pakistan:
Impact on pregnancy outcomes. Food and Nutrition Bulletin, 30, S496–
S505.

Brookes, S. T., Whitley, E., Peters, T. J., Mulheran, P. A., Egger, M., & Davey,
S. G. (2001). Subgroup analyses in randomised controlled trials: Quanti-
fying the risks of false‐positives and false‐negatives. Health Technology
Assessment, 5, 1–56.

Cao, X. Y., Jiang, X. M., Dou, Z. H., Rakeman, M. A., Zhang, M. L., O'Donnell,
K., … DeLong, G. R. (1994). Timing of vulnerability of the brain to iodine
deficiency in endemic cretinism. The New England Journal of Medicine,
331, 1739–1744.

Caron, P., Hoff, M., Bazzi, S., Dufor, A., Faure, G., Ghandour, I., … Grange, V.
(1997). Urinary iodine excretion during normal pregnancy in healthy
women living in the southwest of France: Correlation with maternal
thyroid parameters. Thyroid, 7, 749–754.

Coates, J., Swindale, A., & Bilinsky, P. (2007). Household Food Insecurity
Access Scale (HFIAS) for measurement of food access: Indicator guide
(V.3) [Internet]. Food and Nutrition Technical Assistance Project,
Academy for Educational Development, Washington, D.C [cited 2013
Aug 12]. Retrieved from http://www.fao.org/fileadmin/user_upload/
eufao‐fsi4dm/doc‐training/hfias.pdf

Cohen, J. (1988). Statistical power analysis for the behavioral sciences
(2nd ed.). Hillsdale, NJ, USA: Lawrence Earlbaum Associates, Inc.

de Escobar, G. M., Obregon, M. J., & del Rey, F. E. (2007). Iodine deficiency
and brain development in the first half of pregnancy. Public Health
Nutrition, 10, 1554–1570.

Doggui, R., El Ati‐Hellal, M., Traissac, P., Lahmar, L., & El Ati, J. (2016).
Adequacy assessment of a universal salt iodization program two
decades after its implementation: A national cross‐sectional study of
iodine status among school‐age children in Tunisia. Nutrients, 9.
https://doi.org/10.3390/nu9010006

Eneroth, H., El Arifeen, S., Persson, L. A., Lonnerdal, B., Hossain, M. B.,
Stephensen, C. B., & Ekstrom, E. C. (2010). Maternal multiple micronu-
trient supplementation has limited impact on micronutrient status of
Bangladeshi infants compared with standard iron and folic acid supple-
mentation. The Journal of Nutrition, 140, 618–624.

FAO/WHO. (2005). Vitamin and mineral requirements in human nutrition,
2nd ed [Internet]. Geneva, Switzerland; World Health Organization
[cited 2017 Apr 02]. Retrieved from http://whqlibdoc.who.int/publica-
tions/2004/9241546123.pdf

Ghana Statistical Service (GSS), Ghana Health Service (GHS), & ICF Interna-
tional. (2015). Ghana Demographic and Health Survey 2014 [Internet].
GSS, GHS, and ICF International. Rockville, Maryland, USA [cited 2016
May 07]. Retrieved from https://dhsprogram.com/pubs/pdf/FR307/
FR307.pdf

Government of Ghana. (1996). The Five Hundred and Twenty‐Third Act of
the Parliament of the Republic of Ghana entitled Food and Drugs
(Amendment) Act, 1996 [Internet]. Accra, Ghana. Government of
Ghana [cited 2017 Feb 27]. Retrieved from http://extwprlegs1.fao.
org/docs/pdf/gha17283.pdf

Government of Ghana. (2009) Achieving universal salt iodization: Ghana
national strategy II. 2009–2011. CSIR‐FRI/MA/G‐AM/2009/009
[Internet]. Accra, Ghana [cited 2017 Jun 01]. Retrieved from http://
intranet.foodresearchgh.org:8080/library/bitstream/0/999/1/Glover_
Amengor_Manual5.pdf

GSS. (2011). Ghana Multiple Indicator Cluster Survey with an enhanced
malaria module and biomarker. Final Report [Internet]. Accra, Ghana;
Ghana Statistical Service [cited 2017 Feb 12]. Retrieved from http://
www.statsghana.gov.gh/nada/index.php/catalog/88/download/365.

Haider, B. A., & Bhutta, Z. A. (2017). Multiple‐micronutrient supplementa-
tion for women during pregnancy. Cochrane Database of Systematic
Reviews, 4, CD004905.

Hauschke, D., Steinijans, V., & Pigeot, I. (2007). Bioequivalence studies in
drug development: Methods and applications. West Sussex, England:
John Wiley & Sons, Ltd.

Henjum, S., Kjellevold, M., Ulak, M., Chandyo, R. K., Shrestha, P. S.,
Froyland, L., … Strand, T. A. (2016). Iodine concentration in breastmilk
and urine among lactating women of Bhaktapur, Nepal. Nutrients, 8,
E255. https://doi.org/10.3390/nu8050255.

Hess, S. Y., Zimmermann, M. B., Arnold, M., Langhans, W., & Hurrell, R. F.
(2002). Iron deficiency anemia reduces thyroid peroxidase activity in
rats. The Journal of Nutrition, 132, 1951–1955.

Iodine Global Network. (2017). Global Scorecard of Iodine Nutrition in
2017 in the general population and in pregnant women (PW) [Internet].
IGN: Zurich, Switzerland [cited 2017 Jul 06]. Retrieved from http://
www.ign.org/cm_data/IGN_Global_Scorecard_AllPop_and_PW_
May2017.pdf

Jooste, P., Andersson, M., & Assey V. (2013, Nov). Iodine nutrition in
Africa: Where are we in 2013? [Internet]. Cape Town, South Africa.
International Council for Control of Iodine Deficiency Disorders
(ICCIDD) Iodine Network. IDD Newsletter. n.d.[cited 2017 Mar 17].
Retrieved from http://www.ign.org/cm_data/idd_nov13_africa_over-
view.pdf

http://orcid.org/0000-0002-2720-5474
https://doi.org/10.1111/mcn.12262
https://doi.org/10.1080/14635240.2016.1250658
http://www.fao.org/fileadmin/user_upload/eufao-fsi4dm/doc-training/hfias.pdf
http://www.fao.org/fileadmin/user_upload/eufao-fsi4dm/doc-training/hfias.pdf
https://doi.org/10.3390/nu9010006
http://whqlibdoc.who.int/publications/2004/9241546123.pdf
http://whqlibdoc.who.int/publications/2004/9241546123.pdf
https://dhsprogram.com/pubs/pdf/FR307/FR307.pdf
https://dhsprogram.com/pubs/pdf/FR307/FR307.pdf
http://extwprlegs1.fao.org/docs/pdf/gha17283.pdf
http://extwprlegs1.fao.org/docs/pdf/gha17283.pdf
http://intranet.foodresearchgh.org:8080/library/bitstream/0/999/1/Glover_Amengor_Manual5.pdf
http://intranet.foodresearchgh.org:8080/library/bitstream/0/999/1/Glover_Amengor_Manual5.pdf
http://intranet.foodresearchgh.org:8080/library/bitstream/0/999/1/Glover_Amengor_Manual5.pdf
http://www.statsghana.gov.gh/nada/index.php/catalog/88/download/365
http://www.statsghana.gov.gh/nada/index.php/catalog/88/download/365
https://doi.org/10.3390/nu8050255
http://www.ign.org/cm_data/IGN_Global_Scorecard_AllPop_and_PW_May2017.pdf
http://www.ign.org/cm_data/IGN_Global_Scorecard_AllPop_and_PW_May2017.pdf
http://www.ign.org/cm_data/IGN_Global_Scorecard_AllPop_and_PW_May2017.pdf
http://www.ign.org/cm_data/idd_nov13_africa_overview.pdf
http://www.ign.org/cm_data/idd_nov13_africa_overview.pdf


ADU‐AFARWUAH ET AL. 9 of 10
bs_bs_banner
Jooste, P. L., & Strydom, E. (2010). Methods for determination of iodine in
urine and salt. Best Practice & Research. Clinical Endocrinology & Metab-
olism, 24, 77–88.

Kaestel, P., Michaelsen, K. F., Aaby, P., & Friis, H. (2005). Effects of prenatal
multimicronutrient supplements on birth weight and perinatal mortal-
ity: A randomised, controlled trial in Guinea‐Bissau. European Journal
of Clinical Nutrition, 59, 1081–1089.

Klevor, M. K., Adu‐Afarwuah, S., Ashorn, P., Arimond, M., Dewey, K. G.,
Lartey, A., … Ashorn, U. (2016). A mixed method study exploring adher-
ence to and acceptability of small quantity lipid‐based nutrient
supplements (SQ‐LNS) among pregnant and lactating women in Ghana
and Malawi. BMC Pregnancy and Childbirth, 16, 253.

Knowles, J. M., Garrett, G. S., Gorstein, J., Kupka, R., Situma, R., Yadav, K., …
Universal Salt Iodization Coverage Survey Team. (2017). Household
coverage with adequately iodized salt varies greatly between countries
and by residence type and socioeconomic status within countries:
Results from 10 national coverage surveys. The Journal of Nutrition,
147, 1004S–1014S.

Mao, G., Ding, G., Lou, X., Zhang, R., Zheng, P., Mo, Z., … Gu, F. (2015). Sur-
vey of iodine nutritional status in 2011, Zhejiang, China. Asia Pacific
Journal of Clinical Nutrition, 24, 234–244.

Moher, D., Hopewell, S., Schulz, K. F., Montori, V., Gotzsche, P. C.,
Devereaux, P. J., … Altman, D. G. (2010). CONSORT 2010 explanation
and elaboration: Updated guidelines for reporting parallel group
randomised trials. BMJ, 340, c869.

Mridha, M. K., Matias, S. L., Paul, R. R., Hussain, S., Khan, M. S. A.,
Siddiqui, Z., … Dewey, K. G. (2017). Daily consumption of lipid‐based
nutrient supplements containing 250 mug iodine does not increase
urinary iodine concentrations in pregnant and postpartum women in
Bangladesh. The Journal of Nutrition. https://doi.org/10.3945/
jn.117.248963

Nyumuah, R. O., Hoang, T. C., Amoaful, E. F., Agble, R., Meyer, M., Wirth,
J. P., … Panagides, D. (2012). Implementing large‐scale food fortifica-
tion in Ghana: Lessons learned. Food and Nutrition Bulletin, 33,
S293–S300.

Oral, E., Aydogan Mathyk, B., Aydogan, B. I., Acikgoz, A. S., Erenel, H., Celik
Acioglu, H., … Erdogan, M. F. (2016). Iodine status of pregnant women
in a metropolitan city which proved to be an iodine‐sufficient area. Is
mandatory salt iodisation enough for pregnant women? Gynecological
Endocrinology, 32, 188–192.

Osrin, D., Vaidya, A., Shrestha, Y., Baniya, R. B., Manandhar, D. S.,
Adhikari, R. K., … Costello, A. M. (2005). Effects of antenatal multiple
micronutrient supplementation on birthweight and gestational dura-
tion in Nepal: Double‐blind, randomised controlled trial. Lancet, 365,
955–962.

Pedersen, K. M., Laurberg, P., Iversen, E., Knudsen, P. R., Gregersen, H. E.,
Rasmussen, O. S., … Johannesen, P. L. (1993). Amelioration of some
pregnancy‐associated variations in thyroid function by iodine supple-
mentation. The Journal of Clinical Endocrinology and Metabolism, 77,
1078–1083.

Rasmussen, L. B., Ovesen, L., & Christiansen, E. (1999). Day‐to‐day and
within‐day variation in urinary iodine excretion. European Journal of
Clinical Nutrition, 53, 401–407.

Roberfroid, D., Huybregts, L., Lanou, H., Henry, M. C., Meda, N., Menten, J.,
& Kolsteren, P. (2008). Effects of maternal multiple micronutrient sup-
plementation on fetal growth: A double‐blind randomized controlled
trial in rural Burkina Faso. The American Journal of Clinical Nutrition,
88, 1330–1340.

Scrimshaw, N. S. (1992). Effect of infection on nutritional status. Proceed-
ings of the National Science Council, Republic of China. Part B, 16, 46–64.

Sedgwick, P. (2014). Randomised controlled trials: Subgroup analyses. BMJ,
349, g7513.

Silva, J. E., & Silva, S. (1981). Interrelationships among serum thyroxine,
triiodothyronine, reverse triiodothyronine, and thyroid‐stimulating hor-
mone in iodine‐deficient pregnant women and their offspring: Effects
of iodine supplementation. The Journal of Clinical Endocrinology and
Metabolism, 52, 671–677.

Stinca, S., Andersson, M., Herter‐Aeberli, I., Chabaa, L., Cherkaoui, M., El
Ansari, N., … Zimmermann, M. B. (2017). Moderate‐to‐severe iodine
deficiency in the “first 1000 days” causes more thyroid hypofunction
in infants than in pregnant or lactating women. The Journal of Nutrition,
147, 589–595.

Sunawang, Utomo, B., Hidayat, A., Kusharisupeni, & Subarkah (2009).
Preventing low birthweight through maternal multiple micronutrient
supplementation: A cluster‐randomized, controlled trial in Indramayu,
West Java. Food and Nutrition Bulletin, 30, S488–S495.

Supplementation with Multiple Micronutrients Intervention Trial Study
Group, Shankar, A. H., Jahari, A. B., Sebayang, S. K., Aditiawarman,
Apriatni, M., … Sofia, G. (2008). Effect of maternal multiple micro-
nutrient supplementation on fetal loss and infant death in
Indonesia: A double‐blind cluster‐randomised trial. Lancet, 371,
215–227.

Thomas, C. D. (1990). What do real population dynamics tell us about
minimum viable population sizes? Conseration Biology, 4, 324–327.

Tran, T. D., Hetzel, B., & Fisher, J. (2016). Access to iodized salt in 11 low‐
and lower‐middle‐income countries: 2000 and 2010. Bulletin of the
World Health Organization, 94, 122–129.

UNICEF. (2007). Progress for children: A world fit for children statistical
review number 6 [Internet]. New York, USA. United Nations Children's
Fund [cited 2017 April 05]. Retrieved from https://www.unicef.org/
publications/files/Progress_for_Children_No_6_revised.pdf

UNICEF. (2008). Sustainable elimination of iodine deficiency: Progress
since the 1990 World Summit for Children [Internet]. New York, USA.
United Nations Children's Fund [cited 2017 Apr 10]. Retrieved from
https://www.unicef.org/publications/files/Sustainable_Elimination_of_
Iodine_Deficiency.pdf

UNICEF/WHO/UNU. (1999). Composition of a multi‐micronutrient sup-
plement to be used in pilot programmes among pregnant women in
developing countries [Internet]. UNICEF, New York [cited 2015 Jan
18]. Retrieved from http://apps.who.int/iris/bitstream/10665/75358/
1/UNICEF‐WHO‐multi‐micronutrients.pdf?ua=1

WHO. (1994). World Summit for Children—Mid Decade Goal: Iodine defi-
ciency disorders. UNICEF‐WHO Joint Committee on Health Policy,
no. JCHPSS/94/2.7 [Internet]. Geneva, Switzerland. United Nations
Children's Fund, World Health Organization [cited 2017 Mar 29].
Retrieved from http://www.ceecis.org/iodine/01_global/01_pl/01_
01_1994_summit.pdf

WHO. (2007). Assessment of iodine deficiency disorders and monitoring
their elimination : A guide for programme managers. Third Edition
[Internet]. Geneva, Switzerland. World Health Organization [cited
2017 April 02]. Retrieved from http://apps.who.int/iris/bitstream/
10665/43781/1/9789241595827_eng.pdf

WHO. (2013). Urinary iodine concentrations for determining iodine status
deficiency in populations. Vitamin and Mineral Nutrition Information
System [Internet]. Geneva, Switzerland. World Health Organization
[cited 2017 Mar 6]. Retrieved from http://apps.who.int/iris/
bitstream/10665/85972/1/WHO_NMH_NHD_EPG_13.1_eng.pdf

WHO Secretariat, Andersson, M., de Benoist, B., Delange, F., & Zupan, J.
(2007). Prevention and control of iodine deficiency in pregnant and
lactating women and in children less than 2‐years‐old: Conclusions
and recommendations of the technical consultation. Public Health
Nutrition, 10, 1606–1611.

WHO/UNICEF. (2007). Reaching optimal iodine nutrition in pregnant and
lactating women and young children: Joint statement by the World
Health Organization and the United Nations Children's Fund [Internet].
Geneva, Switzerland; World Health Organization and United Nations
Children's Fund [cited 2017 Apr 10]. Retrieved from http://www.
who.int/nutrition/publications/WHOStatement__IDD_pregnancy.pdf

Zagre, N. M., Desplats, G., Adou, P., Mamadoultaibou, A., & Aguayo, V. M.
(2007). Prenatal multiple micronutrient supplementation has greater
impact on birthweight than supplementation with iron and folic acid:

https://doi.org/10.3945/jn.117.248963
https://doi.org/10.3945/jn.117.248963
https://www.unicef.org/publications/files/Progress_for_Children_No_6_revised.pdf
https://www.unicef.org/publications/files/Progress_for_Children_No_6_revised.pdf
https://www.unicef.org/publications/files/Sustainable_Elimination_of_Iodine_Deficiency.pdf
https://www.unicef.org/publications/files/Sustainable_Elimination_of_Iodine_Deficiency.pdf
http://apps.who.int/iris/bitstream/10665/75358/1/UNICEF-WHO-multi-micronutrients.pdf?ua=1
http://apps.who.int/iris/bitstream/10665/75358/1/UNICEF-WHO-multi-micronutrients.pdf?ua=1
http://www.ceecis.org/iodine/01_global/01_pl/01_01_1994_summit.pdf
http://www.ceecis.org/iodine/01_global/01_pl/01_01_1994_summit.pdf
http://apps.who.int/iris/bitstream/10665/43781/1/9789241595827_eng.pdf
http://apps.who.int/iris/bitstream/10665/43781/1/9789241595827_eng.pdf
http://apps.who.int/iris/bitstream/10665/85972/1/WHO_NMH_NHD_EPG_13.1_eng.pdf
http://apps.who.int/iris/bitstream/10665/85972/1/WHO_NMH_NHD_EPG_13.1_eng.pdf
http://www.who.int/nutrition/publications/WHOStatement__IDD_pregnancy.pdf
http://www.who.int/nutrition/publications/WHOStatement__IDD_pregnancy.pdf


10 of 10 ADU‐AFARWUAH ET AL.
bs_bs_banner
A cluster‐randomized, double‐blind, controlled programmatic study in
rural Niger. Food and Nutrition Bulletin, 28, 317–327.

Zeng, L., Dibley, M. J., Cheng, Y., Dang, S., Chang, S., Kong, L., & Yan, H.
(2008). Impact of micronutrient supplementation during pregnancy on
birth weight, duration of gestation, and perinatal mortality in rural west-
ern China: Double blind cluster randomised controlled trial. BMJ, 337,
a2001.

Zimmermann, M., Adou, P., Torresani, T., Zeder, C., & Hurrell, R. (2000). Per-
sistence of goiter despite oral iodine supplementation in goitrous
children with iron deficiency anemia in Cote d'Ivoire. The American Jour-
nal of Clinical Nutrition, 71, 88–93.

Zimmermann, M. B. (2007). The impact of iodised salt or iodine supple-
ments on iodine status during pregnancy, lactation and infancy. Public
Health Nutrition, 10, 1584–1595.
Zimmermann, M. B. (2015). Iodine deficiency disorders and their correction
using iodized salt and/or iodine supplements. In Iodine chemistry and
applications). New Jersey: John Wiley & Sons, Inc.

How to cite this article: Adu‐Afarwuah S, Young RT, Lartey A,

et al. Supplementation during pregnancy with small‐quantity

lipid‐based nutrient supplements or multiple micronutrients,

compared with iron and folic acid, increases women's urinary

iodine concentration in semiurban Ghana: A randomized con-

trolled trial. Matern Child Nutr. 2018;14:e12570. https://doi.

org/10.1111/mcn.12570

https://doi.org/10.1111/mcn.12570
https://doi.org/10.1111/mcn.12570

