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Abstract: Virus-like particles (VLPs) resemble authentic virus while not containing any genomic
information. Here, we present a fast and powerful method for the production of SARS-CoV-2 VLP
in insect cells and the application of these VLPs to evaluate the inhibition capacity of monoclonal
antibodies and sera of vaccinated donors. Our method avoids the baculovirus-based approaches
commonly used in insect cells by employing direct plasmid transfection to co-express SARS-CoV-2
envelope, membrane, and spike protein that self-assemble into VLPs. After optimization of the
expression plasmids and vector ratios, VLPs with an ~145 nm diameter and the typical “Corona”
aura were obtained, as confirmed by nanoparticle tracking analysis (NTA) and transmission electron
microscopy (TEM). Fusion of the membrane protein to GFP allowed direct quantification of binding
inhibition to angiotensin II-converting enzyme 2 (ACE2) on cells by therapeutic antibody candidates
or sera from vaccinated individuals. Neither VLP purification nor fluorescent labeling by secondary
antibodies are required to perform these flow cytometric assays.

Keywords: virus-like particles (VLPs); SARS-CoV-2; insect cells; expression vector; antibodies;
cellular assay

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first described in
December 2019, has caused a still ongoing worldwide pandemic. Biosafety restrictions
limit the research with authentic SARS-CoV-2 virus. As a circumvention, scientists devel-
oped various pseudovirus systems, e.g., based on vesicular stomatitis virus (VSV) [1–3]
or lentivirus [4–6]. However, the resulting pseudovirus particles typically only express
one structural protein of the authentic virus. In the case of SARS-CoV-2, this is typi-
cally the spike protein, which provides binding to the human virus receptor angiotensin
II-converting enzyme 2 (ACE2). Therefore, the functions of the other structural proteins
of SARS-CoV-2 (envelope (E), nucleocapsid (N), and membrane (M) protein) might be
overlooked [7]. Further, SARS-CoV-2-derived pseudoviruses still require Biosafety Level 2
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(BSL2) safety-level laboratories. An alternative is virus-like particles (VLPs). VLPs can self-
assemble upon co-expression of a subset or all viral structural proteins but do not contain
genomic information [8]. Hence, they cannot replicate and are considered safe, allowing
their production and use in BSL1 laboratories. Further, they can resemble all molecular and
morphological features of an authentic virus, and several VLP-based vaccines are approved
for clinical use [9].

The production of SARS-CoV-2 VLPs has been described in mammalian cells [10–13],
plant cells [14], yeast [15], and insect cells using the Baculovirus expression vector system
(BEVS) [16–18]. One of the first SARS-CoV-2 VLP studies was published by Xu et al. in 2020.
Xu et al. produced VLP in mammalian cells, finding that E and M protein are critical for
VLP formation [11], whereas the influence of N-protein is still debated [12,13]. Kumar et al.
studied the VLP formation in Hela cells, allowing monitoring of the SARS-CoV-2 cell en-
try by a split-Luciferase-based assay [10]. In addition, the expression in plant cells was
described [14] and Mazumder et al. produced SARS-CoV-2 VLP in yeast as a promising
vaccine candidate [15]. Yet, the most common VLP production system so far is BEVS as
it offers generally higher VLP yields than mammalian systems and in parallel can per-
form complex post-translational modifications [19,20]. Consequently, some VLP produced
by BEVS are already approved vaccines for humans, e.g., Cervarix against human papil-
lomavirus [21]. The yield in the case of SARS-CoV-2 VLP by BEVS was reported to be
5.8 × 1011 particles per liter [17] while a yield was not reported for other expression systems.
VLP produced by BEVS reacted with patient sera and elicited a neutralizing IgG response
in the Syrian hamster model of COVID-19, indicating a potential to be used as vaccine
regardless of differences to mammalian glycosylation [18].

Despite these successes, baculovirus-based VLP production systems have some major
drawbacks. First, adjustment of the ratios between the different proteins is challenging as
co-infection by a mixture of baculovirus is not very efficient and generation of co-expressing
baculovirus is not simple [22]. Second, baculoviruses are always produced in parallel to
VLPs, requiring a tedious and difficult purification process [23]. Third, BEVS is a lytic
system, which leads to the release of a large number of potential contaminants that could
compromise the quality of the VLPs.

In more recent studies, different plasmid-based expression systems in insect cells have
been presented [24–28] that avoid the baculoviral limitations described above. The aim of
this study was to establish such a plasmid-based VLP production system in insect cells and
in parallel use these VLPs as a cell-based assay for a simple and fast screening of potential
protection by sera and monoclonal antibodies. Hereto, we produced SARS-CoV-2 VLP
in our baculovirus-free insect cell system [27]. We analyzed different expression vector
designs and optimal ratios of the M Protein for our GFP-based cellular assay and compared
their performance in spike-dependent ELISA. Afterwards, we assessed the quality of our
VLP by transmission electron microscopy (TEM), confocal microscopy, Western blot, and
nano tracking analysis (NTA), confirming ACE2 binding and resemblance to authentic
SARS-CoV-2 virus. In a next step, we applied these VLPs to establish and optimize our
cytometric assay and test the batch-to-batch differences and storage of VLPs. Finally, we
screened antibody candidates and sera for their respective inhibition potential using the
developed VLP inhibition assay.

2. Materials and Methods
2.1. Design of Expression Vectors

For transient expression in High Five cells (BNI-TN-5B1-4; Thermo Fisher Scien-
tific, Waltham, USA), the vector pOpiE2 was used [28]. A Kozak sequence was inserted
downstream of the OpiE2 promoter and the signal peptide of the mouse Ig heavy chain
variable region was added, as this was shown to enhance expression [27]. The E, M,
and spike protein (13–1273 aa) encoding DNA sequences of the Wuhan SARS-CoV-2
(GeneBank QIH45025.1, QIH45036.1, and QIH45023.1) were inserted into the expression
vector. In addition, a spike protein version stabilized by proline substitutions at position
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986 and 987 and “GSAS” substitution at the Furin site (residues 682–685 aa) described by
Wrapp et al. [29] was also used. E and spike protein were C-terminal tagged by 6× His
and M protein was either fused to GFP11 [30] or full-length eGFP. An overview of the
expression vectors can be found in Supplementary Figure S1.

For transient expression full-length ACE2 without endogenous signal peptide (17–805 aa,
NCBI Reference Sequence: NP_001358344.1) expression vector pCSE2.5 in Expi293F cells
(A14527; Thermo Fisher Scientific, Waltham, MA, USA) was used. Control cells (not
expressing ACE2) were transfected by mock DNA consisting of an unrelated pOpiE2
construct. To obtain cytosolic mCherry expression, pFlpBtM-II-mCherry [31] was added
to represent 5% of the total DNA used for transfections. The expression of TMPRSS2
(GenBank: AK313338.1) was achieved by replacing 50% of the pCSE2.5-ACE2 plasmid by
pCorona2a1 DNA (coding for TMPRSS2) in the transfection mix.

2.2. Cultivation and Transfection of High Five Cells

High Five cells (BNI-TN-5B1-4; Thermo Fisher Scientific, Waltham, MA, USA) were
cultivated in EX-CELL 405 medium (Merck, Darmstadt, Germany) at 27 ◦C and 150 rpm
and kept at a cell density of 0.3–5.5 × 106 cells/mL. Transfection was performed as de-
scribed before [27]. In brief, 4 × 106 cells per mL of transfection volume (typically 30 mL)
were centrifuged for 4 min at 180× g. The cell pellet was resuspended in fresh EX-CELL
405 media in the respective volume. In total, 1 µg DNA and 4 µg of linear 40 kDa PEI
(Polysciences, Warrington, USA) per 1 × 106 cells was added directly to the cell suspension.
About 6–10 h after transfection, fresh medium was added to adjust the cell number to
~1 × 106 cells/mL. Then, 48 h after transfection, the volume was doubled and 96 h after
transfection, the supernatant containing the VLPs was harvested. Cells were removed
by centrifugation at 180× g for 4 min. In a next step, supernatant was cleared further by
20 min of centrifugation at 1000× g. To concentrate the VLPs, 20% sucrose was added, and
the supernatant was centrifuged at 21,000× g for 7 h. The resulting pellet was resolved in
sterile PBS (pH 7.4) in 1/30 of the original volume.

2.3. Purification of VLP

SARS-CoV-2 VLP obtained from 3 L of cultivation supernatant was harvested by
centrifugation for 45 min at 3000× g and room temperature. After filtration through a
0.2 µm filter (Sartolab-P20 plus, Sartorius, Göttingen, Germany), the supernatant was
concentrated approximately 10-fold via diafiltration using a Hollow Fiber Module with
a 300 kDa molecular weight cut-off (MidiKros, mPES, 235 cm2; Repligen, Waltham, MA,
USA) attached to a KrosFlo Research IIi TFF System (Repligen, Waltham, MA, USA).
Resulting retentate was filled into ultracentrifuge tubes (No.344058; Beckman Coulter,
Krefeld, Germany) and combined with 4 mL of a 20% (w/v) sucrose cushion in phosphate-
buffered saline. Sucrose cushion ultracentrifugation was performed using a Beckman
Coulter SW 32 Ti rotor for 2 h at 100,000× g and 4 ◦C. The pelleted material was dried
briefly and subsequently resuspended in 200 µL of phosphate-buffered saline. This sample
was concentrated to ~75 µL via ultrafiltration by Vivaspin 500 with a 100 kDa molecular
weight cut-off (No. VS0142, Sartorius, Göttingen, Germany). For further purification,
a linear sucrose density gradient was made through by 3.2 mL of 50%, 40%, 30%, 20%,
and 10% (w/v) sucrose into ultracentrifuge tubes (No. 344061; Beckman Coulter, Krefeld,
Germany): To avoid mixing, tubes were frozen in liquid nitrogen before adding the next
concentration. The final gradients formed while thawing overnight at 4 ◦C. The ~75 µL of
SARS-CoV2 VLP-containing sample was loaded on top of the gradient. Ultracentrifugation
was carried out in a Beckman Coulter SW 32 Ti rotor for 9 h at 100,000× g and 4 ◦C. A
Piston Gradient Fractionator (BioComp Instruments, Fredericton, Canada) with an attached
BioComp TRIAX Full Spectrum Flow Cell and Gilson FC 203B Fraction Collector (Gilson Inc.,
Middleton, USA) was utilized to collect 17 fractions of 1 mL each from top to bottom. The
sucrose concentrations in the fractions were determined using a Zeiss Abbe-Refractometer
(Carl Zeiss AG, Oberkochen, Germany).
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2.4. SDS-PAGE, In-Gel Fluorescence, and Immunoblotting

Separated gradient fractions were applied to SDS-PAGE for subsequent staining, in-gel
fluorescence, and immunoblotting. For SDS-PAGE, pre-cast Mini-PROTEAN TGX Any
kD gels (Bio-Rad Laboratories, Hercules, USA) were used. Samples were prepared with
reducing 6× Laemmli sample buffer and incubated for 5 min at 37 ◦C. SDS-PAGE gels
were stained using InstantBlue Coomassie Protein Stain (abcam, Cambridge, UK). In gel
fluorescence was recorded on a fluorescence scanner FujiFilm FLA-9000 (GE Healthcare,
Chicago, USA) set to the EGFP channel. Immunoblotting onto Immobilon-P 0.45 µm PVDF
membranes (Merck Millipore, Burlington, VT, USA) was carried out using the Power Blotter
Semi-dry Transfer System (Invitrogen, Waltham, MA, USA). Membranes were blocked
using 0.05% Tween20 and 5% skim dry milk powder in TBS and incubated for 30 min at
37 ◦C followed by 30 min at room temperature. After three washing steps with TBST, mem-
branes were incubated overnight at 4 ◦C with mouse monoclonal Anti-His (C-term)/AP
Ab (No. 46-0284, now R932-25) diluted at 1:3000. Following another two washing steps
with TBST (15 min) and subsequent equilibration (5 min) with alkaline phosphatase buffer
(100 mM Tris-Base, 100 mM NaCl, 5 mM MgCl2, pH 9.5), the recombinant 6×His-tagged
spike protein was detected by incubation with BCIP/NBT Color Development Substrate
(Promega, Madison, WI, USA).

2.5. Cultivation and Transfection of Expi293F Cells

Expi293F cells (A14527, Thermo Fisher Scientific, Waltham, MA, USA) were cultivated
at 37 ◦C, 110 rpm, and 5% CO2 in Gibco FreeStyle F17 expression media (Thermo Fisher
Scientific, Waltham, MA, USA) supplemented with 8 mM glutamine and 0.1% Pluronic F68
(PAN Biotech, Aidenbach, Germany), with the cell density kept at ~0.2–4.5 × 106 cells/mL.
Transfection was performed as described before [32]. VLP assays were performed ~48 h
after transfection.

2.6. Sandwich ELISA

First, 200 ng/well of the Receptor Binding Domain of Spike (RBD) binding human
antibody STE90-C11 [33] was immobilized overnight at 4 ◦C or at RT for ~1 h in a 96-well
plate (High Binding, Costar, Corning, NY, USA). Afterwards, wells were blocked by 2%
MPBST overnight at 4 ◦C or for ~1 h at RT, followed by three washing steps using an
automatic washing system EL 405 select (BioTek, Winooski, VT, USA) with MilliQ-Tween20
(0.05% v/v). Next, the concentrated VLP were incubated for 1 h at RT at the indicated
dilutions. After another three washing steps as described above, 200 ng/well of soluble
ACE2-mFc [32] was added for 1 h at RT. After three washing steps as described above,
goat anti-mouse antibody conjugated with HRP (A0168, Sigma-Aldrich, St. Louis, MI,
USA, diluted 1:42,000) was added for 1 h at RT. Bound antibodies were visualized by TMB
substrate (20 parts TMB solution A (30 mM potassium citrate; 1% (w/v) citric acid (pH 4.1))
and 1 part TMB solution B (10 mM TMB; 10% (v/v) acetone; 90% (v/v) ethanol; 80 mM
H2O2 (30%))). The reaction was stopped by the addition of 1 N H2SO4 and absorbance at
450 nm with a 620 nm reference was measured in an ELISA plate reader (Epoch, BioTek,
Winooski, VT, USA).

2.7. VLP Inhibition Cell Assay

In total, 50 µL of 30× concentrated (not purified) VLPs were preincubated for
45–60 min at RT with 50 µL of antibodies or sera or PBS at the indicated concentration or
dilution. During that time, transfected Expi293F cells expressing ACE2 or a mock control
were counted and 0.5 × 106 cells per well were prepared in 400 µL of FACS buffer (2% FCS,
10 mM EDTA, 1× PBS, pH 7.4) in a 96-deep-well plate (Axygen, Corning, CA, USA). After
centrifugation for 4 min at 280× g, the supernatant was removed, and the cells were resus-
pended in the 100 µL of VLP mix and incubated at 37 ◦C for 60 min before 400 µL of FACS
buffer was added. The plate was centrifuged again for 4 min at 280× g and supernatant was
removed. This was followed by a washing step, resuspending the cells in 400 µL of FACS
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buffer and centrifugation for 4 min at 280× g. The resulting cell pellet was resuspended in
200 µL of FACS buffer and measured in a flow cytometer (MACSQuant, Miltenyi Biotech,
Bergisch Gladbach, Germany or BD FACSMelody, BD Biosciences, Franklin Lakes, NJ,
USA). Analysis was performed by Flowing Software 2 (Turku Bioscience Centre, Turku,
Finland) or FlowJo 10.8.1 (BD Biosciences, Franklin Lakes, NJ, USA) gating single cells and
measurement of their GFP median (see Supplementary Figure S2 for the gating strategy).

2.8. Serum Samples

Blood samples were obtained from vaccinated individuals in Germany. All donors
were informed about the project and gave their consent for this study. The sampling was
performed in accordance with the Declaration of Helsinki. Approval was given by the
ethical committee of the Technische Universität Braunschweig (Ethik-Kommission der
Fakultät 2 der TU Braunschweig, approval number FV-2020-02). Details of the serum
samples can be found in Supplementary Table S1.

2.9. Transmission Electron Microscopy (TEM)

Transmission electron microscopy (TEM) measurements were carried out using a
JEM-1011 (JEOL) microscope operating at 80 kV. To negatively stain the VLP, first, the TEM
grid (formvar/carbon-coated copper grid, mesh size 300, Ted Pella, Inc., Redding, CA,
USA) was treated in a plasma cleaner for 60 s. Next, 5 µL of the VLP buffer suspension
(30× concentrated VLP, not purified) was placed on the TEM gird and incubated for 3 min,
followed by a quick washing step and 10 s of staining with 5 µL of 2% w/v Uranyl format
solution (SPI Supplies, West Chester, PA, USA). Afterwards, the grid was left under the
fume hood to thoroughly dry prior to measurements.

2.10. Nanoparticle Tracking Analysis (NTA)

The concentration and size distribution of 30× concentrated (not purified) VLPs were
measured with NanoSight (NS300) (Malvern Panalytical Ltd., Malvern, UK) equipped
with NTA software (version 3.4; Malvern Panalytical Ltd., Malvern, UK). All samples were
diluted in PBS to a final volume of 1 mL. Ideal measurement concentrations were found by
pre-testing the ideal particle per frame value (20–100 particles/frame). For each sample,
5 videos of 60 s were recorded with a Camer Level of 13. After capture, the videos were
analyzed by the NanoSight Software (version 3.4; Malvern Panalytical Ltd., Malvern, UK)
with a detection threshold of 5. The settings were established according to the manufacturer’s
software manual (NanoSight NS300 User Manual, MAN0541-01-EN-00, 2017).

2.11. Epifluorescence Microscopy

Transfected Expi293F cells (all by 5% of pFlpBtM-II-mCherry and 95% of ACE2 or
mock expression vector or 47.5% of ACE2 expression vector and 47.5% of pCorona2a1
(encoding TMPRSS2)) were seeded on glass coverslips coated with poly-L-lysine in a 24-
well plate. The cells were incubated for 24 h at 37 ◦C and 5% CO2 with 400 µL of F17 media
supplemented by 10% FCS. After 24 h, each coverslip was placed upside down on a drop
of the indicated VLPs and incubated for 1 h at 37 ◦C and 5% CO2. To fixate the cells, the
coverslips were placed in 4% PFA/PBS for 10 min at 4 ◦C and afterwards washed 5 times
with 1× PBS. A drop of mounting media (Fluoro-Gel with Tris Buffer, Electron Microscopy
Sciences, Hatfield, PA, USA) was placed on a glass slide and the coverslips were put onto it.
Before imaging, the samples were stored for a minimum of one night at 4 ◦C. The pictures
were acquired using an epifluorescence microscope type DM 5500 B from Leica with LAS X
software (Leica, Wetzlar, Germany) using a 63× (oil immersion) objective. The used filter
for the GFP fluorescence had an excitation range from 460–500 nm and an emission range
from 512–542 nm. The used filter for the mCherry fluorescence had an excitation range
from 542–582 nm and an emission range from 602–644 nm. Exposure times ranged from
134 to 705 ms and the gain was set to 1.0. The scale bars were edited using FIJi software.
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2.12. Confocal Laser Scanning Microscopy

The samples were prepared as described for the epifluorescence microscopy. The
pictures were acquired using a confocal laser scanning microscope type TCS SP8 DMI 6000
from Leica with LAS X software (Leica, Wetzlar, Germany) using a 63× (water immersion)
objective. The used laser for the GFP fluorescence had an excitation of 476 nm, an intensity
of 10%, and the emission ranged from 488–556 nm. The used laser for the mCherry
fluorescence had an excitation of 561 nm, an intensity of 4.9%, and emission ranged from
566–779 nm. The pictures had a format of 2048 × 2048 and were taken with a speed off
600–700 Hz and a line average of 2–3.

3. Results
3.1. Expression Vector Design and Ratio

For the expression of SARS-CoV-2 VLP E, M, and spike protein were co-expressed. In
SARS-CoV-2, the spike protein is preceded by a signal peptide. We exchanged the viral
signal peptide for the mouse Ig heavy chain variable region signal peptide (“SP”) shown to
work well in High Five cells [27]. Furthermore, we compared VLP containing the wildtype
full-length spike protein to VLP containing full-length stabilized spike version (with proline
substitutions at position 986 and 987 and “GSAS” substitution at the Furin site, residues
682–685 aa as described in Wrapp et al. [29]). E and M protein of SARS-CoV-2 are not
predicted to contain a signal peptide but are still targeted to the endoplasmic reticulum
in mammalian cells [34]. Thus, E and M protein expression vectors with and without
signal peptide were tested to elucidate whether membrane expression in insect cells could
be enhanced. Nucleocapsid (N) protein was not included as it is not essential for VLP
formation [10].

After baculovirus-free production, the enriched VLP were analyzed by sandwich
ELISA using the SARS-CoV-2 spike RBD-specific antibody STE90-C11 [33] for capture and
soluble ACE2-mFc fusions for detection (Figure 1A). For initial analysis, a 1:1:1 ratio of
S:E:M expression vectors was used. When the signal peptide was fused to M protein, the
ELISA signal of VLP binding decreased significantly. In comparison, the fusion of the signal
peptide to the E protein increased binding. As a result, all VLP expression vectors used in
the subsequent studies encoded the spike and E protein preceded by the signal peptide
while the M protein was expressed without one.

A main advantage of the plasmid-based system is the opportunity for a straightfor-
ward adjustment of plasmid ratios, as up to 100,000 plasmids can be taken up by a single
cell at least for the calcium-based transfection method [35], suggesting similar levels for
the PEI-based transfections. Here, we aimed to optimize the M protein-eGFP (full-length)
fusion expression, as this determines the maximal assay signal, while at the same time, an
appropriate amount of spike protein on the VLPs has to be maintained. Thus, different
ratios (1:1:1 (VLP-1M), 1:1:4 (VLP-4M), 1:1:6 (VLP-6M), and 1:1:8 (VLP-8M)) of S:E:M ex-
pression vector and a VLP-6M version that does contain wildtype spike (VLP-6M-Furin)
were analyzed by sandwich ELISA. The SARS-CoV-2 spike RBD-specific antibody STE90-
C11 was used for capture and soluble ACE2-mFc fusions for the detection of the VLPs
(Figure 1B). No differences between the VLP S:E:M ratios were observed with the exception
of VLP-6M-Furin, which only showed slight binding at the highest concentration used.
In addition, flow cytometry was used to determine the amount of VLP bound to ACE2-
expressing Expi293F cells (Figure 1C). Again, no significant differences were observed.
Surprisingly, even VLP-6M-Furin led only to a tendentially lower signal. For the subsequent
cell binding assays, VLP-6M was chosen.
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capturing, anti-RBD antibody STE90-C11 was coated and soluble ACE2-mFc fusion was used for 
detection. M protein was fused to GFP11. Technical triplicates were measured, and standard devi-
ation is indicated. Curves were fitted using the Logistic5 function in OriginPro 2019b. SP stands for 
signal peptide of the mouse Ig heavy chain variable region. (B) Influence of different ratios of spike, 
E, and M-eGFP expression vector on VLP production measured in sandwich ELISA of concentrated 
VLPs. VLPs were expressed by co-transfection of the vectors in the indicated ratios using either 
stabilized spike protein version or wildtype (VLP-6M-Furin). For VLP capture, anti-spike antibody 
STE90-C11 was coated and soluble ACE2-mFc fusion was used for detection. Error bars indicate the 
standard deviation of technical triplicates. Curves were fitted using the Logistic5 function in 
OriginPro 2019b. (C) GFP median signal to noise ratios of the indicated GFP-positive VLPs binding 
to recombinantly ACE2-expressing Expi293F cells versus ACE2-negative cells determined by cyto-
fluorometry. 
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Figure 1. Spike protein and GFP expression analysis for different vector design and ratios.
(A) Sandwich ELISA of concentrated VLP expressed by co-transfection of the indicated vectors.
For VLP capturing, anti-RBD antibody STE90-C11 was coated and soluble ACE2-mFc fusion was
used for detection. M protein was fused to GFP11. Technical triplicates were measured, and standard
deviation is indicated. Curves were fitted using the Logistic5 function in OriginPro 2019b. SP stands
for signal peptide of the mouse Ig heavy chain variable region. (B) Influence of different ratios
of spike, E, and M-eGFP expression vector on VLP production measured in sandwich ELISA of
concentrated VLPs. VLPs were expressed by co-transfection of the vectors in the indicated ratios
using either stabilized spike protein version or wildtype (VLP-6M-Furin). For VLP capture, anti-spike
antibody STE90-C11 was coated and soluble ACE2-mFc fusion was used for detection. Error bars
indicate the standard deviation of technical triplicates. Curves were fitted using the Logistic5 func-
tion in OriginPro 2019b. (C) GFP median signal to noise ratios of the indicated GFP-positive VLPs
binding to recombinantly ACE2-expressing Expi293F cells versus ACE2-negative cells determined
by cytofluorometry.

3.2. Quality of SARS-CoV-2 VLP

The VLP size, morphology, quality, and size distribution were assessed by negatively
stained transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA)
(Figure 2). The VLPs showed the expected structure in TEM and were similar to authentic
SARS-CoV-2 virus [36]. The amount of spike protein visible on the VLP surface correlates
to the amount of spike expression vector applied in transfection, resulting in a typical spike
aura for VLP-1M, VLP-4M, and VLP-6M but a less obvious one of the other versions. The
yield per liter of culture supernatant was determined by NTA to be around 1013 particles for
all variants except for VLP-6M-Furin (7.6 × 1012). Furthermore, the NTA revealed average
diameters ranging from 123 (VLP-8M) to 145 nm (VLP-6M), which is in line with the
diameter of coronaviruses of 100–200 nm [37]. In addition, VLP-6M was purified by sucrose
gradient centrifugation and the incorporation of spike and M protein was confirmed by SDS
PAGE and Western blot analysis whereas E protein was not detectable (see Supplementary
Figure S3).

3.3. Visualization of VLP Binding to Cells

SARS-CoV-2 virus binds to the ACE2 receptor and can enter the cells via the Furin
and TMPRSS2-dependent so-called “early pathway” or the less efficient “late pathway”,
which is described to be Furin and TMPRSS2 independent [38]. Therefore, VLPs with and
without a Furin site in the spike protein can, in theory, be taken up by the cells, with a
higher uptake rate expected for cells expressing both ACE2 and TMPRSS2 and VLPs still
containing the Furin site. By confocal microscopy, we analyzed the location of concentrated
VLPs containing the stabilized spike protein (VLP-6M) or containing the wildtype spike
(VLP-6M-Furin) on cells either not expressing ACE2, expressing ACE2, or expressing ACE2
and TMPRSS2 (Figure 3A, Supplementary Figure S4).
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Figure 2. TEM pictures and NTA size analysis of the concentrated VLPs (not purified) with different
ratios of spike, E, and M proteins. (A) TEM pictures of the indicated VLPs. Scale bar is 200 nm.
Arrows indicate typical Spike Corona aura (B) Representative NanoSight traces of the indicated VLPs.
(C) VLP yield per L of culture assessed by NTA. Error bars indicate the standard deviation between
three different production batches. (D) Mode diameter of the VLPs. Error bars indicate the standard
deviation between at least three different production batches of VLPs. Significances were determined
by two-sided t-Test (* = 90%, ** = 95%). If not indicated, no significant differences were observed.

VLP were visible as small green dots on the cells due to their M protein-eGFP content in
all images, but a high laser intensity had to be applied that resulted in auto-fluorescence of
the cells. When cells did not express ACE2, VLPs could not be detected. On Expi293F HEK
cells expressing ACE2 or coexpressing ACE2 and TMPRSS2, VLPs were located mainly on
the surface of the cells. Co-localization with mCherry expressed in the cytoplasm could be
observed for some individual ACE2- and TMPRSS2-positive cells with VLP-6M-Furin (see
Supplementary Figure S4A). The GFP intensity and number of observed VLPs seemed to
be slightly higher when VLP-6M was used compared to VLP-6M-Furin while co-expression
of TMPRSS2 did not seem to have an influence. Yet, flow cytometric analysis revealed a
significant difference between the VLP and GFP histogram of VLP-6M, which resulted in
two distinct populations (Figure 3B, green). One population expressed ACE2 and bound
VLP-6M while the other did not. In contrast, for VLP-6M-Furin, a shift in the population
was observed (Figure 3B, violet), reflecting the lower binding capacity shown in ELISA
(Figure 1B). Coexpression of TMPRSS2 did not lead to a significant difference in the signal
to noise ratios obtained. Only a slight tendency for a reduction in the signal to noise could
be observed for VLP-6M-Furin binding to ACE2 positive cells vs. ACE2 and TMPRSS2
positive cells (see Supplementary Figure S3B), suggesting, similar to the microscope results,
a more efficient uptake of these VLPs.
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Figure 3. Visualized binding and localization of VLP with stabilized (VLP-6M) or wildtype spike
protein (VLP-6M-Furin). (A) Confocal GFP images of VLP-6M and VLP-6M-Furin on ACE2 negative,
ACE2 expressing, and ACE2 and TMPRSS2 co-expressing Expi293F HEK cells. VLPs are visible as
small green dots. Bright field, red fluorescence (=mCherry), and merged images can be found in
Supplementary Figure S5. (B) GFP histograms of the indicated VLP binding to ACE2 negative cells,
ACE2 or ACE2, and TMPRSS2 expressing Expi293F cells.

3.4. Optimizing of the Cell Binding Assay

To optimize the signal to noise ratio of VLP binding to the ACE2 positive cells com-
pared to ACE2 negative cells in flow cytometry, different incubation temperatures (4 or
37 ◦C) and times (60, 120, 180 min; Figure 4A) were tested. Incubation of VLPs and cells
at 37 ◦C led to a significantly higher signal to noise ratio and lower standard deviation
than incubation at 4 ◦C, independent of the incubation time. After 2 h, the highest signal
to noise (~3.2) was obtained while after 1 or 3 h, a signal to noise ratio of ~3 could be
observed, suggesting that the assay could be performed within an hour without significant
loss of signal.
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neutralization potential, we tested various anti-spike protein monoclonal antibodies at a 
fixed concentration of 150 µg/mL (Figure 5B). The neutralization potential of these anti-
bodies against authentic virus and their performance in a soluble spike protein inhibition 
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candidates (STE90-C11, STE90-B2-D12, STE94-F12, and STE94-B1-E12) independent of the 
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Figure 4. Influence of incubation time, VLP storage, and batch-to batch variation on VLP binding to
ACE2 transfected cells. (A) Signal to noise ratios of VLP binding to recombinant ACE2 expressing
Expi293F cells versus ACE2 negative cells determined by cytofluorometry of one batch of VLP-6M
(GFP positive) after 1, 2, or 3 h of incubation at 4 or 37 ◦C. Error bars indicate the standard deviation
between three different independently transfected Expi293F cell preparations. (B) Signal to noise
ratios of VLP binding to recombinant ACE2 expressing Expi293F cells versus ACE2 negative cells
determined by cytofluorometry of one batch of VLP containing GFP-fusions after storage at −80,
4, or 37 ◦C for 7, 14, or 21 days. Error bars indicate the standard deviation between three different
independently transfected Expi293F cell populations. (C) Signal to noise ratios of different VLP
production batches (standard deviation represents technical triplicates) and (D) their respective
absolute GFP signals on ACE positive or mock DNA transfected Expi293F cells. Significances were
determined by two-sided t-Test (* = 90%, ** = 95%).

The stability of the VLPs was monitored after storage of the concentrated VLPs at
different temperatures over 4 weeks (−80 ◦C, 4 ◦C, 37 ◦C, Figure 4B). The signal to noise
ratio was always higher for VLPs stored at −80 ◦C compared to 37 ◦C and at least slightly
higher compared to storage at 4 ◦C, suggesting −80 ◦C as the optimal storage temperature
for VLPs. Interestingly, individual Expi293F HEK transfection batches seemed to influence
the result more than storage itself, despite a relatively constant transfection efficacy of
around 65–75% for all experiments.

Finally, different VLP batches of the same composition (VLP-6M) were compared. A
batch-to-batch variation was observed, with two batches (batch#1 and batch#5) providing
a signal to noise ratio of ~1.5 whereas all other tested batches provided ~2.5 (Figure 4C).
In addition, the absolute GFP value differed between the batches and a higher GFP signal
correlated with a higher background signal (Figure 4D). For example, batch#4 provided the
highest absolute GFP signal but the signal to noise of batch#2 was in a similar range while
it just reached half of the absolute GFP signal. Yet, and most importantly, the GFP signal
of all batches varied significantly on ACE2 positive cells compared to cells transfected by
mock DNA. Interestingly, no correlation between the total protein amount to the obtained
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signal to noise or to the total GFP signal was observed but the spike amount seemed very
low in batch#1 und batch#5 (see Supplementary Figure S6).

In conclusion, VLP-6M was suitable to provide a significant GFP signal on ACE2
positive Expi293F cells without purification (only concentration) or staining steps being
required. Yet, for direct comparisons of different antibodies or sera with respect to their
neutralization capacity, it is recommended to use the same batch of VLPs.

3.5. Neutralization Ranking of Monoclonal Antibodies and Sera

The influence of neutralizing antibodies on VLP cell binding was tested with both
recombinant monoclonal antibodies and sera of vaccinated donors (Figure 5). Titration of
soluble ACE2-hFc or STE90-C11 (an antibody against RBD in clinical trials [33]) showed a
successful concentration-dependent inhibition of the VLP binding to the cells, with STE90-
C11 being more efficient, probably due to its higher affinity (560 pM) compared to ~20 nM
of ACE2 (Figure 5A). To assess the potential of the assay to provide a quick ranking of the
neutralization potential, we tested various anti-spike protein monoclonal antibodies at a
fixed concentration of 150 µg/mL (Figure 5B). The neutralization potential of these anti-
bodies against authentic virus and their performance in a soluble spike protein inhibition
assay is known [33]. The ranking by VLP cell binding identified the identical four best
candidates (STE90-C11, STE90-B2-D12, STE94-F12, and STE94-B1-E12) independent of the
method (Table 1). The VLP assay mirrored the results of the authentic virus neutralization
assay more closely than the soluble spike inhibition assay. Most significantly, the VLP cell
binding assay is simpler and more rapid as it does not require a purification step and no
antibody staining.
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(Ab), ACE2-hFc, or STE90-C11 (IgG) were applied for inhibition of the VLP binding to ACE2 pos-
itive cells at the indicated concentrations. (B) Obtained inhibition of VLP binding using different
antibody candidates at a concentration of 150 µg/mL. Bars represent the normalized binding ac-
tivity by setting the VLP binding without antibody to 1 and binding to ACE2 negative cells to 0.
(C) Inhibition of VLP cell binding by human sera from, respectively, one pre-SARS-CoV-2 donor
or individuals vaccinated with 1× Ad26.COV2.S or 3× BNT162b2. Values represent the binding
activity normalized by setting the signal of VLP binding to ACE2 positive cells without sera to 1 and
binding to ACE2 negative cells to 0. (D) VLP cell binding inhibition by sera from 1× Ad26.COV2.S,
2× BNT162b2, or 3× BNT162b2 vaccinated donors at a dilution of 1:20. The blue or green crosses
identify the sera used in (C). (E) Inhibition of the same sera used in B at a dilution of 1:50. The blue
or green crosses identify the sera used in (C). All experiments were performed in triplicates using
one batch of VLP but three independent batches of ACE2 (or mock) transfected Expi293F cells. The
standard deviation is indicated by error bars. Significances were determined by two-sided t-Test
(* = 90%, ** = 95%).

Table 1. Heatmap comparison of VLP cell binding inhibition assay to the inhibition of soluble
spike protein binding to ACE2 positive cells and authentic virus neutralization. Data of authentic
virus neutralization and binding of trimeric spike protein to ACE2 positive cells were taken from
Bertoglio et al. [31] for comparison. Color code: From dark green to yellow to dark red = from the
highest neutralization potential to the lowest potential in the respective assay.

Antibody Clone Neutralization of Authentic
SARS-CoV-2 Virus (Plaque Assay) [31]

Trimeric Spike Protein Cell
Binding Inhibition [31]

VLP Cell Binding
Inhibition Assay

STE90-D7 0.00 0.33 −0.16
STE94-B2 0.06 0.57 0.30

STE90-B2-C5 0.13 0.59 0,07
STE91-C4 0.14 0.75 0.15

STE90-B3-B10 0.18 0.65 0.13
STE90-B2-B3 0.22 0.36 −0.01
STE90-B2-A1 0.25 0.59 0.51

STE94-A1 0.32 0.58 0.21
STE94-B1-E12 0.50 0.88 0.68

STE94-F12 0.65 0.82 0.54
STE90-B2-D12 0.89 0.92 0.80

STE90-C11 0.98 0.98 0.95

Furthermore, we analyzed the inhibition of VLP binding to cells by sera of vaccinated
persons in comparison to pre-SARS-CoV-2 sera. Here, a significant inhibition was only
achieved at the lowest dilution (1:10) with sera of a 3× BNT162b2 person (Figure 5C).
Sera of four individuals (single vaccinated with Ad26.COV2.S, double with BNT162b2,
or three times with BNT162b2) were tested for inhibition at dilutions of 1:20 (Figure 5D)
or 1:50 (Figure 5E). For both dilutions, the best inhibition was achieved with the serum
from 3× BNT162b2 vaccinated donors. This confirms the importance of a third “booster”
vaccination is in accordance with previous results [39].

4. Discussion

In this study, we successfully applied baculovirus-free protein expression in insect
cells for the production of SARS-CoV-2 VLPs. The baculovirus-free approach allowed for
an easy optimization of expression vector combinations and ratios, thereby promising rapid
adaption of the VLPs to the latest SARS-CoV-2 variant as it only requires the exchange of
one of the vectors. The yield of unpurified VLPs was close to 1013 per L culture, promising
a higher yield of purified VLPs than reported by Naskalska et al. [17], who obtained
5.8 × 1011 particles per L after purification using a BEVS system and claiming that as a high
yield. The presumably higher yield obtained in the plasmid-based system compared to
BEVS, despite the availability of stronger very late promotors (p10 or polH) in BEVS, might
be explained by the fact that BEVS simultaneously produces baculoviral particles and is a
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lytic system. Thus, translation machinery is not only occupied to produce VLPs but also
baculovirus particles in parallel. Additionally, the time frame to have optimal expression
and functional secretion of VLPs before cell death is narrow. In addition, expression vectors
and their ratios have been adjusted here, which was not the case and is not feasible in BEVS.
Comparison to the mammalian production system is not conclusive as to our knowledge,
none of the published studies report the obtained amount of SARS-CoV-2 VLP per L so far.
Yet, soluble fragments of spike S1–S2 and S1 alone were produced in a much lower amount
(<8× or <15× less, respectively) in Expi293F cells compared to the yield obtained in the
plasmid-based High Five cell system [32], suggesting a lower rate of VLP production in the
mammalian system. This might be due to the simpler and more homogenous glycosylation
in insect cells but is still an unexpected observation for a virus infecting mammalian cells.
To reliably determine the best system for SARS-CoV-2 VLP production, a comparison of all
systems side by side before (or after) purification using the same analysis methods (e.g.,
NTA) to avoid bias would be required. Furthermore, in future studies, the VLP yield in
the baculovirus-free system may be increased by co-expression of N protein. Despite the
fact that N protein may not be incorporated into the VLP [17], it was found to considerably
enhance the production of VLP in HEK cells [10].

A high similarity between the VLP and authentic SARS-CoV-2 virus was observed in
terms of the microscopic appearance, binding to ACE2, and diameter. While the presence
of E protein could not be directly confirmed, which might be caused by its small size
and general low amount of incorporation into SARS-CoV-2 virions, its presence may be
assumed from its main function to help with the assembly of the virions [40]. Additionally,
comparison of the E protein expression vectors with and without signal peptide had an
influence on the total ELISA signal, again hinting at successful expression of the E protein
(Figure 1A). Differences between the insect cell-derived VLPs and mammalian cell-derived
VLPs or authentic virus can be assumed to be the different glycosylation and the insect-
specific lipid composition of the membrane.

Furthermore, as our main aim was to apply the VLPs for rapid, scalable, parallelized
inhibition assays compatible with BSL1 conditions, we used a stabilized variant of the
spike protein to enhance binding to ACE2. This stabilized variant led to much higher
signals in spike-dependent sandwich ELISA than the wildtype version, which only showed
a background signal in ELISA (Figure 1B, comparison of VLP-6M and VLP-6M-Furin).
Additionally, the cell populations of binding VLP and not binding VLP cells could not
be clearly distinguished in the cytometric assay for VLP-6M-Furin compared to VLP-6M
(Figure 3B). In contrast to that, the signal to noise ratio in the cytometric assay was not
significantly affected by this and only tendentially decreased (Figure 1C), an observation
that correlates with the slightly but significantly lower amount of VLP-6M-Furin compared
to VLP-6M (Figure 2C). A possible explanation for the differences in the ELISA performance
to the obtained signal to noise ratio is the processed spike. As High Five cells process the
Furin site of S1 by around 50% [32], the same can be assumed for full-length wildtype spike.
In addition, the diameter of VLP-6M-Furin is reduced (Figure 2D), also indicating a lower
number of unprocessed full-length spike on the surface of these VLPs, which was also
hinted by the TEM results (Figure 2A). Yet, only the full-length spike version contains the
RBD and thereby the ability to bind ACE2. In ELISA, the amount of full-length spike might
not be enough to make the VLP-6M-Furin stick to the ACE2 immobilized on a plate during
the stringent washing procedure that was performed three times, whereas the VLP-6M has
a higher avidity (as it contains only full-length spike) and thereby survives the stringent
washing steps. In comparison, the washing procedure in the cytometric assay is much less
stringent (careful washing by hand, only one step) and ACE2 might be presented more
naturally than when it is immobilized on a plate. Thus, VLP-6M-Furin (but probably in
a lower amount; compare Figure 3B) remain bound to the ACE positive cells with less
background on ACE2 negative cells, which may explain the similar performance in respect
to the signal to noise ratios. In conclusion, the VLP-6M-Furin (able to employ both entry
pathways) could be used to set up another assay for analysis of the VLP entry into cells by
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employing another reporter system activated only upon cell entry. Such a system could be
applied to identify antibodies that do not directly bind the RBD of spike but block the entry
into the cells by other mechanisms.

In general, our VLPs can be used in simple and rapid cell binding assays amenable
to the 96-well plate format to screen for virus-inhibiting antibody candidates, reflect-
ing authentic virus neutralization. No VLP purification—just concentration by simple
centrifugation—and no labeling or antibody staining is required for the assay. Future im-
provements of the VLP should include an exchange of the eGFP to, i.e., a red fluorescence
marker that does not overlap with cellular autofluorescence [41].

In conclusion, our study highlights the potential of baculovirus-free expression in
insect cells not only to rapidly generate multi-protein VLPs of SARS-CoV-2 but also for
other viruses. The approach further offers a new opportunity for vaccine production.
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