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Protein nanovaccine confers robust immunity against

Toxoplasma

Kamal El Bissati', Ying Zhou', Sara Maria Paulillo?, Senthil Kumar Raman?, Christopher P. Karch?, Craig W. Roberts (3", David E. Lanar,
Steve Reed®, Chris Fox®, Darrick Carter@°, Jeff Alexander’, Alessandro Sette®, John Sidney®, Hernan Lorenzi®, lan J. Begeman',

Peter Burkhard®>® and Rima McLeod"'°

We designed and produced a self-assembling protein nanoparticle. This self-assembling protein nanoparticle contains five CD8*
HLA-A03-11 supertypes-restricted epitopes from antigens expressed during Toxoplasma gondii's lifecycle, the universal CD4" T cell
epitope PADRE, and flagellin as a scaffold and TLR5 agonist. These CD8" T cell epitopes were separated by N/KAAA spacers and
optimized for proteasomal cleavage. Self-assembling protein nanoparticle adjuvanted with TLR4 ligand-emulsion GLA-SE were
evaluated for their efficacy in inducing IFN-y responses and protection of HLA-A*1101 transgenic mice against T. gondii.
Immunization, using self-assembling protein nanoparticle-GLA-SE, activated CD8" T cells to produce IFN-y. Self-assembling protein
nanoparticle-GLA-SE also protected HLA-A*1101 transgenic mice against subsequent challenge with Type Il parasites. Hence,
combining CD8* T cell-eliciting peptides and PADRE into a multi-epitope protein that forms a nanoparticle, administered with GLA-
SE, leads to efficient presentation by major histocompatibility complex Class | and Il molecules. Furthermore, these results suggest
that activation of TLR4 and TLR5 could be useful for development of vaccines that elicit T cells to prevent toxoplasmosis in humans.
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INTRODUCTION

Toxoplasma gondii infects all mammals. It can cause severe brain
and eye damage in the fetus, in newborn infants, and in immune-
compromised individuals." Although anti-parasitic medicines such
as sulfadiazine and pyrimethamine are available, some patients
experience side effects including toxicity and hypersensitivity.
Latent, encysted parasites are not eliminated by these treat-
ments.2 Therefore, development of a potent, safe, effective
vaccine is greatly needed.

One approach for toxoplasmosis vaccine development is an
epitope-based vaccine designed to enhance host immunity.
Protection is achieved through stimulation of CD4" helper T
lymphocytes and CD8" IFN-y producing T lymphocyte responses.
These CD8* T cells recognize octamer/nonamer peptides pre-
sented on HLA supermotif molecules on infected cells. Previously,
our laboratory (RM, KE) identified epitopes eliciting CD8* T cells
derived from proteins expressed during different phases of the
Toxoplasma life cycle. HLA-A02, A03-11 and B07 human, super-
motif, major histocompatibility complex (MHC) molecules are
present in ~90% of humans,>° and therefore are capable of
presenting these epitopes. As the discovery of such protective
peptide epitopes accumulates, mechanisms are needed to
effectively present these epitopes to the immune system of the
host.

We have pioneered a platform known as Self-Assembling Protein
Nanoparticles (SAPNs).” "2 SAPNs induce a strong immune response due

to the repetitive display of antigens.”” ' '? They promote immune
responses by CD4" as well as CD8" T cells by incorporating the T cell
epitopes into the core architecture of the nanoparticle® * ' They
trigger a strong innate immune response by activating the TLR5
pathway through the adjuvant flagellin.'® Because of their size
and shape they have the potential to reach follicular dendritic cells
that are critical for antigen presentation and processing.'*
Although macrophages play a role in immunity, interactions
between SAPN and macrophages were not studied. SAPNs induce
immune response that are orders of magnitudes stronger than
Keyhole limpet hemocyanin, which is a standard vaccine carrier.
We previously designed SAPN-based vaccine candidates for
various infectious diseases including malaria,'® " % '3 Hv,'®
SARS,'” and influenza.'®

Earlier findings, and recent parallel work with a recombinant
polypeptide, SAPNs, and GLA-SE (Fig. 1 and unpublished data [DL])
provide the foundation for our present studies. These earlier findings
provide a basis for use of immunosense selected peptides
from different genetic isolates of T. gondii (Fig. 1a), a flagellin
scaffold,”” & ' '° and adjuvanting with GLA-SE.>°%* Earlier studies
from the Walter Reed Army Institute of Research with malaria based
SAPNs demonstrated that flagellin molecules improved immuno-
genicity (DL, PB, unpublished work). Initially, this was the basis for
using flagellin as a SAPN scaffold in our T. gondii studies (Fig. 1b).
This approach was also used in our work with influenza.®* This work
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Fig. 1 Assembly of CD8-SAPNs. a Phylogenetic tree showing 62 genetic isolates of Toxoplasma analyzed herein. These are in the multi-
sequence alignments of proteins, and peptides derived from them, utilized to create our artificial immunogenic (“smart”) protein. b Flagellin is
used as a scaffold into which epitopes are intercalated from Toxoplasma. Earlier logic for inclusion of flagellin as adjuvant and scaffold
came from work with malaria (http://www.internationalinnovation.com/build/wp-content/uploads/2016/05/David_Lanar_Intl_Innovation_
Infectious_Diseases_Research_Media_LR.pdf),' as well as with influenza.>* Computer model of the prototype. The core particle composed of
the pentameric and trimeric coiled coils is shown in green and blue, respectively. The following are attached to the trimeric coiled coil: the
TRL5 agonist flagellin (DO and D1 domains) (purple) with the A11 epitopes (yellow) and a CD4 epitope string (magenta). ¢ SDS-PAGE of the
purified protein. Lanes are as follows: Lane 1: MW (molecular weight markers). Lane 2-5: Elution fractions were from 19 to 22. Samples derive
from the same experiment and the gels/blots were processed in parallel. d Transmission electron microscopy of the nanoparticle preparation.
e SDS-PAGE 4-20% of the purified protein. Lane 1: MW (molecular weight markers). Lane 2: CD8-SAPN. Lane 3: Empty-SAPN. Samples derive
from the same experiment and the gels/blots were processed in parallel

<

suggested that flagellin would be helpful as a scaffold and
immunogen in our newest T. gondii work.

In experiments that provided a significant part of the
foundation for our approach with SAPN to protect against
toxoplasmosis, we (DL, PB, unpublished work) found the following:
1) GLA-SE or GLA-SE-like adjuvant was needed to produce
significant titers of anti-nanoparticle antibody; 2) Purified IgG
from immunized monkeys completely protected naive mice
(100%), when they were challenged with a lethal dose of
5000 sporozoites that express full-length Plasmodium. falciparum
Circumsporozoite protein. Purified IgG from a control monkey did
not protect any mice; 3) Purified I1gG from immunized monkeys,
mixed with P. falciparum sporozoites, prevented the sporozoite
from infecting primary hepatocytes from human liver in tissue
culture. IgG from control monkeys did not. Thus, we used this
preliminary, foundational data when we chose GLA-SE as the
adjuvant for our studies herein. GLA-SE has two components, GLA
and SE. GLA is too hydrophobic to be used alone and any
formulation of GLA would have other excipients making the
formulation nonequivalent to GLA. Earlier studies demonstrated
that the emulsion, called “SE”, did not adjuvant most proteins
when administered alone. At present, GLA-SE is in pre-clinical
studies or clinical trials as an adjuvant to prevent cancer, herpes,
Leishmania, and Mycobacterium tuberculosis infections. Our earlier
studies also demonstrated that GLA-SE was superior to ALUM as
an adjuvant for our polypeptide.®> GLA-SE was also superior to
ALUM in primates immunized with SAPN. In fact, ALUM
diminished the response to GLA-SE plus SAPN (DL, PB, unpub-
lished work).

In our previous studies with T. gondii, we constructed SAPNs
displaying the dense granule epitope (GRA7,9_,8) and pan-DR
binding epitope PADRE.?® We evaluated these vaccine compo-
nents in HLA-B*0702 transgenic mice.® Immunization of these
mice activated GRA7-specific CD8" T cells that produced IFN-y.
Thereby, these mice were protected against subsequent challenge
with high inocula of Type | and Type Il parasites. These initial
results highlighted the potential to protect against toxoplasmosis
with a SAPNs vaccine approach.

In the present study, five epitopes which bind to HLA-A11-01
were evaluated for their efficacy in a SAPN-vaccine in HLA-A11-01
transgenic mice.’> These included epitopes from the surface
antigen (SAG1), the dense granule proteins (GRA5 and GRA6),
and the surface antigen-1-related sequences (SRS52A).° In these
constructs, the CD8" HLA-A03-11 supertypes-restricted epitopes
were linked by N/KAAA spacers. They were conjugated with
PADRE, a universal CD4" helper T lymphocyte epitope.?® This
synthetic polypeptide is effective in mice and more effective than
the pooled peptides separately.> 2> PADRE binds promiscuously to
MHC class Il variants, and augments effector functions of CD8 +
T cells through stimulation of IL2 production by CD4* T helper
cells.?”” %8 Epitopes eliciting both CD4" and CD8" T cells are
important components in the formulation of successful vaccines
that drive protective responses.?® Our data show that incorporat-
ing PADRE into the SAPN constructs and delivering it in TLR4
ligand emulsion adjuvant (GLA-SE), resulted in activation of CD8*
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T cells. This vaccine formulation led these cells to produce IFN-y.
They protected against subsequent challenge with Type |l
parasites given as a high inoculum. Thus, our work highlights
the potential for the use of SAPN as a platform for the delivery of
CD8* and CD4"-restricted epitopes, formulated with the GLA-SE
adjuvant, to protect against toxoplasmosis.

RESULTS
Preparation and characterization of CD8*-SAPN and empty-SAPN

The SAPN constructs were expressed, purified and folded to form
nanoparticles (Fig. 1c-e). The protein has a relative molecular
weight of about 48 kDa on a Sodium dodecyl sulfate polyacryla-
mide gel electrophoresis (SDS-PAGE) (Fig. 1c, e). Transmission
electron microscopy (Fig. 1d) showed a relatively uniform
distribution of non-aggregated nanoparticles of about 30 nm in
diameter.

In vivo immunogenicity of CD8" T cell-eliciting SAPNs

HLA-A*1101-transgenic mice were immunized intramuscularly
with CD8* T cell-eliciting SAPNs combined with GLA-SE. Mice
were immunized three times intramuscularly at 2 week intervals.
Empty-SAPNs plus GLA-SE or PBS were used in sham immuniza-
tions of control mice. CD8*-T cell-eliciting SAPN-GLA-SE vs. Empty-
SAPN-GLA-SE were compared in HLA-A*1101 transgenic mice as
described. Spleen cells were obtained from immunized HLA-
A*1101 transgenic mice 2 weeks after final immunization. IFN-y
produced by splenocytes cultured with the pool of peptides was
measured. Figure 2 shows IFN-y secretion is high in mice
immunized with CD8*-T cell-eliciting SAPN plus GLA-SE when
stimulated with PADRE or the GRA6 peptide. The other peptides
also elicited IFN-y production. In our earlier work,>® and herein,
effects of the separate peptides were additive (Figs. 2b and 3). The
polyepitopes elicited the best response earlier® and herein
(Fig. 3). Figure 3a and b indicate that IFN-y secretion in cultures
with the SAG1, GRA6, GRA3, and SRS52A peptides was signifi-
cantly enhanced by immunization with these peptides but not
Empty-SAPN or PBS. Significantly more IFN-y secretion was
observed when cells were stimulated with these pooled peptides
plus PADRE. Thus, the association of CD8" T cell- and CD4* T cell-
restricted peptides contributes to IFN-y production in HLA-A*1101
transgenic mice.

In vitro TLR5 stimulation

The SeaPorter TLR5 cell-line was exposed to varying concentra-
tions of the SAPNs. The SAPN included: Empty-SAPN that do not
contain the CD8" epitopes but still have flagellin; CD8*-SAPN
containing the polypeptide with the five restricted CD8" epitopes;
recombinant polypeptide; and recombinant flagellin (as control).
The concentrations of SAPNs used were 0.01, 0.1, 1, 10, 100, and
1000 ng/ml. Fold increase in SEAP expression for each protein
sample over non-treated controls reflected level of
TLR5 stimulation. As shown in Fig. 4a-c, TLR5 activity was
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Fig. 2 CD8-SAPNs elicit restricted CD8" T and CD4™ T cell peptide-specific immune response. ELISpot showing IFN-y spot formation. Mouse
splenocytes from Empty-SAPN, CD8-SAPN, and CD8-SAPN + GLA-SE were tested using GRA6 peptide (GRA6;64_172) Oor PADRE. GLA designates
GLA-SE in this figure. All peptides elicited IFN-y (p <0.05) compared to unstimulated cultures. Pooled peptides®® appeared additive. The
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Fig. 3 CD8-SAPNs are potent inducers of cell-mediated immunity. a IFN-y ELISpot assay stimulated with a group of 5 peptides HLA-A*1101. b
Graph shows the count of spots for splenocytes of untreated, Empty-SAPN + GLA1 CD8-SAPN + GLA-SE group of mice. GLA designates GLA-SE in

this figure. *p < 0.05 for all IFN-y ELISpots compared to controls

significantly enhanced by the Empty-SAPNs and the CD8*-T cell-
eliciting SAPNs, but not the control polypeptide. Surprisingly,
flagellin in Empty-SAPN particles have higher TLR5 activity than
recombinant flagellin alone.

SAPNs with GLA-SE adjuvant confer robust protection against

T. gondii in HLA-A*1101 transgenic mice

In the results shown in Fig. 5, we had immunized mice with either
CD8" T cell-eliciting SAPN with GLA-SE adjuvant, or Empty-SAPN
with GLA-SE adjuvant, or adjuvant alone, or PADRE alone, or PBS.
We then challenged 2 weeks after the last immunization with Type
Il strains of T. gondii expressing luciferase. Brains from these mice
were imaged with a Xenogen camera 21 days after challenge with
2000 Me49-Fluc tachyzoites. Figure 5a and b show that
luminescence from T. gondii in mice immunized with CD8" T
cell-eliciting SAPN plus GLA-SE was significantly lower than in
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mice immunized with control Empty-SAPN plus GLA-SE, GLA-SE
alone, PADRE alone, or PBS. This finding correlates with a
reduction of the number of cysts per brain in mice that received
CD8*-T cell-eliciting SAPN plus GLA-SE adjuvant (Fig. 5¢).

DISCUSSION

Improved vaccination and delivery approaches to elicit cellular
immune responses against T. gondii are needed. In our previous
studies we defined a panel of octamer/nonamer peptides
restricted by MHC class | molecules. These peptide epitopes bind
to and elicit IFN-y responses from CD8" T cells isolated from HLA
A02, A03, and B07 individuals. These class | supermotifs are
present in essentially all the human population worldwide, but
with different frequency in different regions. When given with the
GLA-SE adjuvant, these pooled peptides were able to protect

Published in partnership with the Sealy Center for Vaccine Development
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protein sample over non-treated controls, error bars are standard error of the means. A two-way ANOVA model was fit with protein
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concentrations, the Empty-SAPN was significantly different (greater than) from the CD8-SAPN. There was a significant concentration effect for

all protein types (p < 0.001) except 5A11 Restricted CD8 + (p > 0.9)

haplotype specific HLA supermotif transgenic mice. This protec-
tion was measured as survival and reduced parasite burden.

Our capability to control the ability of peptides and proteins to
self-assemble into particles which have a well-defined size and
shape allows us to design mechanically and chemically stable
particles. These SAPNs combine strong immunogenic effects of
live attenuated vaccines with high specificity in eliciting immune
responses of protein-based vaccines because they resemble virus
capsids. It is apparent that the SAPNs have a great potential to
serve as a platform for vaccines beyond their ability to present
antigens in a repetitive manner. In contrast to live attenuated
vaccines, SAPN-derived vaccines pose no significant risk of
infection. They are very versatile and flexible in their design
leading to better biophysical and immunologic properties.
Furthermore, bacterial protein expression, purification, and self-
assembly into nanoparticles reduces the time needed for large-
scale vaccine production.

Herein, we used the SAPNs to present immunogenic peptide
epitopes to a host's immune system based on the assembly of five
protective CD8" CTL HLA-A03-11 restricted supertypes in addition
to the universal helper epitope, PADRE. All epitopes were flanked
at the C-terminus by N/KAAA spacers, which promote optimal
immunogenic processing. Our data showed potent immunogeni-
city (high IFN-y secretion) when splenocytes were stimulated by
these peptides through immunization in vivo, and then exposure
in vitro. In separate studies,?* we found that SAPN, which contains

Published in partnership with the Sealy Center for Vaccine Development

flagellin, protected better against influenza than SAPN without
flagellin. This flagellin scaffold then became our SAPN platform
going forward. In our TLR5 activity assay, the SAPN with the
flagellin scaffold shows good stimulation of TLR5. However, the
activity is reduced compared to the Empty-SAPN. This could be
due to some interference with TLR5-binding and the presentation
of the CD8" T cell-restricted epitopes because the CD8" epitopes
string was engineered into the flagellin molecule to replace the D2
and D3 flagellin domains.

Thus, our future work will utilize this approach to engineer
different SAPN constructs with optimized processing and immu-
nogenicity for all our vaccine constituents. The proposed
mechanisms for inducing innate immunity by our SAPN is the
ligation of TLR4 by GLA in an emulsion®* and TLR5 by flagellin on
the surface of the SAPN.'® McCoy et al’s data suggested cross
presentation'* of CD8" stimulating epitopes in SAPNs (Fig. 1a).
GLA-SE has been used with SAPN to successfully immunize against
P. falciparum by eliciting antibody and T cells, whereas SAPN
without GLA-SE was not effective (DL, PB, unpublished results).
The adjuvant was safe in primates and now is entering clinical
trials in humans. Despite remarkable protection provided by our
SAPN vaccination in this study, some brain cysts were still
detected. Thus, potential improvements in induction of protective
immune responses could be made with the addition of separate
nanoparticles with other CD4" and CD8" T cell-eliciting epitopes
of various T. gondii proteins from several parasite life stages and

npj Vaccines (2017) 2
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potentially B-cell epitopes to stimulate a potent antibody
response. Cell-mediated immunity, with cytolytic T cells and IFN-
y production, is considered to be the desired primary, protective,
immune response.”® 3" Nonetheless, antibodies may contribute to
protection. Addition of the micronemal proteins (MICs) or other
proteins that induce antibodies that are neutralizing, adhesion or
invasion blocking, or complement fixing, could further improve
protection, if they play a significant part in attachment to or
penetration of the host cell by the parasite. MICs have recently
been used as recombinant vaccines and showed promising
protection levels.3> MIC1 also stimulates IL 12 production in mice.
Possibly, these proteins could also be engineered in separate
SAPNs to yield a multi-SAPN vaccine to protect against
toxoplasmosis.

Earlier studies provide support for using GLA-SE as an adjuvant
for a wide variety of protein vaccines, including our own. We
evaluated a P. falciparum SAPN vaccine and demonstrated GLA-SE
was essential, or improved immunogenicity, vs. a related SAPN
(DL, PB, unpublished). This study involved presenting antigens to
protect against the phylogenetically related apicomplexan malaria
parasite in non-human primates. It was found that GLA-SE was
needed for immunization of primates even when this was not the
case in mice. In other earlier work, separate constituents of GLA-SE
were used. GLA alone was called “GLA-AF” when it was prepared
in an aqueous formulation. This formulation did not contain an
emulsion or extra excipients so it is not equivalent to the GLA in
GLA-SE. GLA-AF, SE alone and GLA-SE formulations were
compared in some of these earlier studies. In almost all of these
different systems the value of using both GLA and SE together was
proven (Table 1).2°* 33736 This work has been advanced to the
clinic, demonstrating both efficacy and safety in studies with GLA
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and SE formulated and administered together. We leveraged this
extensive, earlier experience to produce our GLA-SE adjuvanted
SAPN vaccine for T. gondii.

In our work with this new SAPN-design, the flagellin molecule
itself is an integral part of the SAPN scaffold (Fig. 1b), with or
without the A11 CD8" T cell-eliciting epitopes. This SAPN scaffold
lacking the CD8+ epitopes conferred only a small amount of
protection compared with the scaffold with the inclusion of the
A11 peptides. It is not possible to create a relevant separate
control without flagellin because in this scaffold the HLA A11
binding peptides are intercalated into the flagellin molecule itself
as shown in Fig. 1.

The location of CD8" epitopes within a protein sequence has
been shown to be critical. Our arrangement of peptide epitopes
into a polypeptide induced robust immunity.>> Deconvolution of
peptide components has shown that certain epitopes alone may
have different toxicity when separated from other peptides (El
Bissati, McLeod, et al., in preparation). We already know that the
adjuvanted polypeptide can protect in studies that are described
in a separate manuscript.®®> We also found that the HLA Class 1,
A*1101 interacting peptides are specific for HLA A*1101 and not
to other HLA supermotifs B7 or A2.>> Further, we demonstrated
that the mouse C57BI6 macrophages cannot present these
peptides to HLA A*1101 T cells.?

Further, these five CD8" epitopes, as well as full-length proteins
from which they originate, were characterized to determine how
well conserved the proteins, and especially the specific peptides
we included, are across multiple strains of genetically divergent
parasites from different geographic regions (Tables 2-4. Octamer/
nonamer peptides; Supplementary figures S1 [SAG1], S2 [GRA6],
S3 [GRAS5], S4 [SAG2E], and S5 [SRS52A]). This analysis of 62
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genetically divergent strains (Fig. 1a) supports the use of an
immunosense approach. This approach creates a single protein
which contains the relevant epitopes but does not include
extraneous epitopes that are potentially harmful, as certain T.
gondii epitopes are known to be. There were far fewer
polymorphisms in our smaller octamer nonamer peptides
(Tables 2-4) than in the full-length proteins (Table 3, Figs. S1-S5).
There were good binding octamer/nonamers for three A11
epitopes among all the different genetic isolates (Table 4). The
predicted binding scores for the peptides from the many
genetically polymorphic strains were high for all but two peptides
(Table 4). In contrast, it would take many full-length variants to
obtain good geographic coverage of either of these polymorphic
proteins if peptides other than our octamer/nonamer were critical
to that protection. This provides further conceptual support for
using an immunosense approach to make a vaccine with,
potential to work well, and most parsimoniously, in many
geographic areas. There are recent data concerning the unique
processing of T. gondii proteins in human cells. Quite remarkably,
there are longer (likely decoy) peptides that bind HLA-A2 in the
natural infection of THP1 cells?” This makes our targeted
immunosense approach, beginning with human cells, then using
HLA transgenic mice, especially valuable in creating a vaccine for
people, rather than mice. These are critical considerations
important beyond a vaccine protective against just this organism,
when one wants to have broad utility across different demo-
graphics, worldwide. This is what we are working toward because
of the substantial disease burden of toxoplasmosis as a global
clinical problem.®

Data from studies of human cells and mice, in our work,
considered together, demonstrate the robust and practical use of
this model system.>™® 2> Antigen processing and presentation in
humans and mice have differences that are well known. For
example, as shown elegantly, recently,>*® human and murine
tapasin diverge in sequence. These tapasins are chaperones of

Reference
19

GLA-SE and GLA-AF elicited similar IgG1 and IgG2a antibody titers but higher IgG2a 20

titers compared to SE; only GLA-SE enhanced IFN-y and IL-17 levels compared to

antigen alone whereas SE elicited IL-5
GLA-AF, induced significant levels of Th1-type cytokines (IFN-y, TNF-a, IL-2); only GLA-

GLA-SE and GLA-AF enhanced IgG2a antibody titers to similar levels; GLA-SE, but not 22
SE provided protection from TB challenge

GLA-SE induced higher IgG2a antibody titers compared to GLA-AF, and both GLA-AF 21

and GLA-SE induced higher IgG2a than SE; SE and especially GLA-SE elicited enhanced
HI titers compared to GLA-AF, and GLA-SE induced higher IFN-y and IL-2 production

GLA-SE elicited higher 19G2a/lgG1 antibody ratio compared to GLA-AF or SE
compared to GLA-AF or SE
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Table 2. Rationale for construction of immunogenic preparation: Multisequence alignment of octamer/nonamer epitopes demonstrates
conservation and variability®
Current Clade Current Haplogroups Strain SAG1 (224-232) GRAG6 (164-172) GRAS (89-98) SAG2C (13-21) SRS52A (250-258)
A 1 RH KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
A 1 GT1 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
A 1 RH-88 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
A 1 RH-JSR KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
A 1 TgDogCol7 KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
A 1 TgCkCrl KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
A 6 FOU KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
A 6 BOF KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
A 6 TgCATBr9 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
A 6 TgCatBr26 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
A 6 TgCatBr72 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
A 6 GAB3-2007-GAL-DOM2 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
A 6 GABS5-2007-GAL-DOM1 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
A 7 CAST KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
A 7 TgCkBri141 KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
A 14 GAB2-2007-GAL-DOM2 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
A 14 GAB3-2007-GAL-DOM9 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
A 14 GAB1-2007-GAL-DOM10 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
A 14 GAB5-2007-GAL-DOM6 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
A 15 TgCtCo5 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
A 15 TgCkCr10 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
A 15 TgRsCrl KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
B 4 MAS KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
B 4 TgCatBrl KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
B 4 TgCatBr34 KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
B 4 TgCatBrd4 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
B 4 TgCatBr18 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
B 8 TgCATBrS KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
B 8 TgCatBr25 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
B 8 TgCatBr10 KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
B 8 TgCatBr64 KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
C 2 SOU KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
C 3 VEG KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
C 3 G662M KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
C 3 TgShus28 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
C 3 TgCkGy2 KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAYVFSVK
C 3 ROD KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
C 3 M7741 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
C 9 p89 KSFKDILPK AMLTAFFLR AVVSLLRXXX SMFWPCLLR SSAHVFSVK
C 9 TgCatBr15 KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
C 9 TgCatBr3 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
D 2 TGME49 KSFKDILPK AMLTAFFLR AVVSLLRLLR STFWPCLLR SSAYVFSVK
D 2 PRU KSFKDILPK AMLTAFFLR AVVSLLRLLR STFWPCLLR SSAYVFSVK
D 2 B73 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
D 11 couG KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
D 11 GUY-2004-JAG1 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
D 12 ARI KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
D 12 RAY KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
D 12 B41 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAYVFSVK
D 13 TgCatPRC2 KSFKDILPK AMLTAFFLR AVVSLLRLLR STFWPCLLR SSAYVFSVK
E 16 CASTELLS KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
E 16 TgH26044 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
E 16 BRC_TgH21016 KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
E 16 BRC_TgH20005 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
F 5 RUB KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
F 5 BRC_TgH18002 KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
F 5 BRC_TgH18003 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
F 5 GUY-2003-MEL KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
F 5 GUY-2004-ABE KSFKDILPK AMLTAFFLR AVVSLLRLLK SMFWPCLLR SSAHVFSVK
F 10 VAND KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
F 10 BRC_TgH18001 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
F 10 BRC_TgH18021 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
F 10 BRC_TgH18009 KSFKDILPK AMLTAFFLR AVVSLLRLLK STFWPCLLR SSAHVFSVK
@ Current haplogroups are shown in column 2. Gray and absence of shading shows demarcation between the haplogroups. The bolded values show the
octamer/nonamer epitopes. The red letters show variability in those octamer/nonamer epitopes

5

Table 3. Rationale for construction of immunogenic preparation:
Number of isoforms identified per protein or oligopeptide for GRAS5,
GRA6, SAG1, SAG2C, and SRS52A encoding genes

GRA5 GRA6 SAGT SAG2C SRS52A
Protein 10 14 8 13
Oligopeptide 2 0 0 2 2

approach permits one to conclude that the vaccine is safe and
‘active’, even if the animal model is not absolutely predictive of
precise human correlates, although that would be ideal. We have
found that our approach appears to provide insight and to work
effectively.> 2° This approach includes using bioinformatics,
testing human cells for immunogenicity, and then testing those
down-selected peptides re-assembled into a protein with linkers
designed for proper cleavage.*' This is followed by testing for
efficacy and safety using HLA transgenic mice.>™ 2> This approach
is shown in our data herein, in our previous foundational
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experiments,”> and also by many others using other systems.
This is for both immunogenicity of peptides or polypeptides or
DNA or RNA in human cells first. This is then extended to murine
cells, followed by protection measured as reduced parasite burden
and enhanced survival. Although imperfect, there is considerable
prior support, and support in these recent studies. The use of HLA
transgenic mice can obviate problems of heterogeneity, both for
MHC supermotifs, and parasite isolates. This is in a proven
practical manner in vaccine development.'® 37 #2°2 The issues of
genetic polymorphism, as well as potential harmful constituents,
are amplified in full-length natural proteins (Tables 1-4; Fig. 1, S1-S5).
Thus, the choice of peptides that are sufficient to interact with
HLA molecules that are present in more than 90% of the human
population can be made using bioinformatics in a rational and
parsimonious manner. This approach considers parasite genetic
variation in an inductive, immunosense manner that is proving to
be valuable for development of vaccines for humans.

The inclusion of flagellin into immunogens can serve as a
potential adjuvant.”*>’ There is experience where flagellin has
been safe and effective as an adjuvant in pre-clinical animal
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Table 4. Rationale for construction of immunogenic preparation: Predicted binding affinity of worldwide octamer/nonamers
Predicted 1C50 nM Stability prediction

Pair Origin Peptide Length Median ANN SMM NetMHCpan Pred Thalf(h) %Rank_Stab
1 SAG2C (13-21) STFWPCLLR 9 13 13 19 10 0.846 4.15 0.50

1 SMFWPCLLR 9 18 17 40 18 0.309 0.59 4.00

2 SRS52A (250-258) SSAHVFSVK 9 14 14 18 7 0.806 3.22 0.70

2 SSAYVFSVK 9 13 13 19 8 0.739 2.30 0.90

3 GRAS5 (89-98) AVVSLLRLLK 10 17 18 15 17 0.948 12.86 0.12

3 AVVSLLRLLR 10 128 81 128 132 0.730 2.20 1.00
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Fig. 6 SAPN adjuvanted with GLA-SE have peptides that are presented by MHC molecules on the follicular dendritic cells' to T lymphocytes.
GLA-SE and flagellin are ligands of TLR-4 and TLR-5 receptors, respectively. Ligating these receptors leads to the production of
proinflammatory cytokines (IL-12, IL-6, TNF-a) and the expression of co-stimulatory molecules on the antigen-presenting cell surface. It
remains to be determined whether the GLA-SE emulsion independently ligates TLR4 or whether SAPN are entrapped in the emulsion when
this occurs, so both possibilities are shown. Original diagram for polyepitope for 5 A11 peptides® provide a foundation to which concepts

demonstrated in studies herein were added

studies.”®>™’ It also has been effective when used for immuniza-
tions of both younger and older persons in clinical trials for
influenza vaccines.>*™>” There is a robust literature which describes
studies of the mechanisms whereby this TLR5 ligand functions as
an adjuvant.>*>”

In summary, our study showed that a SAPN-protein chain with
five CD8" T cell-eliciting MHC class | epitopes from T. gondii, and
the MHC class Il epitope PADRE, can be refolded to form a
nanoparticle. Using HLA-A*1101 transgenic mice, we demonstrate
that the SAPN emulsified in GLA-SE adjuvant elicits a protective
MHC class | response. Thus, our work demonstrates that we have
developed an improved assembly of peptides for cross presenta-
tion of CD8™ T cell eliciting epitopes (Fig. 6) in vaccines to prevent
toxoplasmosis.

MATERIALS AND METHODS

Peptides

KSFKDILPK ~ (SAG1254.232), STFWPCLLR  (SAG2C;5_51),  AVVSLLRLLK
(GRA5g9_0g), SSAYVFSVK (SRS52A550_255), AMLTAFFLR (GRA664_172)>> and

Published in partnership with the Sealy Center for Vaccine Development

PADRE, a universal CD4* helper epitope (AKFVAAWTLKAAA)?® were used in
the vaccine constructs.?> > Infectious Diseases Research Institute (Seattle,
Washington)  synthesized the TLR4 agonist adjuvant called
GLA-SE3™® 29723 25 Thjs was prepared and used as a stable oil-in-water
emulsion.

Molecular biology

The methods using DNA coding for the nanoparticle constructs were
similar to those described in our earlier work.'® Briefly, they were prepared
using standard molecular biology procedures as described in our earlier
work from our laboratory by Babapoor et al.'® Specifically, plasmids
containing the DNA coding for the protein sequence were used.'® They
were constructed by cloning into restriction sites in the SAPN expression
plasmid.'® We used a SAPN construct we had developed and described
earlier.'® Briefly, this construct is composed of a pentameric coiled-coil
tryptophan zipper.'® This zipper is linked by a glycine residue to a trimeric
de-novo designed leucine zipper coiled coil.'® In this construct, a flagellin
construct composed of the DO and D1 domains (residues 1-177 and
249-372) of Salmonella enterica flagellin from the structure with pdb-code
3V47 from the RCSB protein data bank is used to extend the protein chain
at the C-terminus'® (Fig. 1).
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The CD8"-peptide sequence AVVSLLRLLKNAMLTAFFLRNAAAKSFKDILPK-
KAAASSAYVFSVKKAAAKFVAAWTLKAAAKSTFWPCLLR with the five CD8*
epitopes® also containing PADRE®> ?° was next inserted into the D1
domain of flagellin.'® This polypeptide completely replaces the D2 and D3
domains to generate the CD8" T cell-eliciting SAPN called “CD8-SAPN".'®
Overall, the positive charge of this epitope string is balanced with stretches
of negative charges at both ends of the epitope sequence.'® Our Empty-
SAPN was generated using the short linker KYKDGKGDDK to replace the D2
and D3 domains of flagellin.

Protein expression

This was performed exactly as we had performed and described in our
earlier work from our laboratory by Babapoor et al:'® Plasmids were
transformed into Escherichia coli BL21 (DE3) cells.'® E. coli were grown at
37°C in Luria broth with ampicillin.'”® We induced expression using
isopropyl 3-D-thiogalacto-pyranoside. Cells were removed from 37°C 4 h
after induction.'® They were harvested by centrifugation at 4000 x g. We
stored the cell pellet at —80 °C. We then thawed the cell pellet, keeping it
on ice.’® We then suspended the pellet in a lysis buffer consisting of 9 M
urea, 100 mM NaH,PO,4, 10 mM Tris pH 8, 20 mM imidazole, and 0.2 mM
Tris-2-carboxyethyl phosphine (TCEP). SDS-PAGE was used to assess our
protein expression level.'®

Protein purification

The same methodology we used earlier was used.'® Briefly, sonication was
used to lyse cells, as described from our laboratory earlier.'® Centrifugation
at 30,500 x g for 45 min'® was used to clarify the lysate. Then, for at least 1
h, our cleared lysate was incubated with Ni-NTA Agarose Beads (Qiagen,
Valencia, CA, USA). Next, the column was washed with lysis buffer. This was
followed by a wash with a buffer containing 9 M urea, 500 mM NaH,PO,,
10 mM Tris pH 8, 20 mM imidazole, and 0.2 mM TCEP. A pH gradient was
used to purify the protein while bound to the column. The pH gradient for
these wash steps was created as follows: 9 M urea, 100 mM NaH,PO,, 20
mM citrate, 20 mM imidazole, and 0.2 mM TCEP,'® with subsequent washes
performed at pH 6.3, 5.9, and 4.5."® To elute the protein, we used the lysis
buffer, after the pH gradient, with a gradient of increasing imidazole
concentrations.'®

Protein refolding

We used methodology we have described in our earlier work.'®
Specifically, for refolding, our protein was first rebuffered to the following
conditions: 9 M urea, 20 mM Tris pH 8.5, 50 mM NaCl, 5% glycerol, 2 mM
EDTA.'® 4 ul of a solution with a concentration of 1.8 mg/ml protein was
added to the same buffer solution without urea to a final concentration of
0.05 mg/ml for quick refolding of a first screen.'® We used this because this
quick dilution from denaturing (urea) to native (no urea) buffer conditions
triggers refolding of protein.'® We then used negative stain transmission
electron microscopy at different resolutions to analyze our solution.'® Next,
we used further screens for optimal refolding conditions.'® These were
performed with smaller sampling sizes of the pH and ionic strength.'®

In vitro TLR5 response assay

The methods were the same as those used in our recent work.?® Activation
through TLR5 was assessed for SAPN as we described recently.?* Testing
was done using TLR/NF-kB/SEAPorter™ Stably Transfected HEK 293 Cell
Lines (Novus Biologicals, Littleton, CO; tested for Mycoplasma but not
authenticated by STR profiling) as follows: All cell lines were stably co-
transfected cell lines which express TLR5 and have a secreted alkaline
phosphatase (SEAP) reporter gene under transcriptional control of an NF-
KB response element. Fourteen thousand cells per well were seeded in a
96-well plate at passages 5-9. 20-4 h later, we removed growth media.
Growth media was replaced with DMEM high glucose (Hyclone, Logan,
UT). This contained either a SAPN, or recombinant flagellin (Novus
Biologicals), at concentrations of 0.1, 1, 10, 100, 1000 ng/mL, each in
triplicate. Media alone was present in control wells. Wells were exposed to
the stimulus for 24 h. Then, supernatant was collected and used to
determine whether SEAP was present. This was determined with a
Reporter Assay kit for SEAP (Novus Biologicals). This was done using the
manufacturer’s instructions. Media- only controls were used to normalize
SEAP activity. This was used to determine each construct’s EC50. Triplicate
determinations were utilized for each experimental condition.

npj Vaccines (2017) 2

Mice

The mice were those we created and described earlier.> 2> The methods
were identical to those used in our earlier work>™® 23 Specifically, “HLA-
A*1101/K® transgenic female mice were generated and then bred/
produced at Pharmexa-Epimmune (San Diego, CA)B They were then
embryo-rederived at Taconic and JAX laboratories.?® Colonies were then
expanded and they were then maintained and produced in isolators at the
University of Chicago.”> These mice express a chimeric gene called HLA-
A*1101/K® transgene.?® This chimeric gene consists of the 1st and 2nd
domains of HLA-A*1101 and the 3rd domain of H-2k°?* Mice were
between 10 and 14 weeks of age in experiments. Mice were maintained in
SPF conditions throughout.?® All of our studies were performed with the
Institutional Animal Care and Use Committee at the University of Chicago’s
review, approval, and oversight.

Immunizations of mice and challenge

To assess the immunogenicity of the SAPNs, mice with the HLA-A*1101
transgene were inoculated intramusculary. In this injection, 20 ug SAPN
was emulsified in the TLR4 agonist, i.e., 5 ug of GLA-SE. The immunizations
were administered three times at 2 weeks intervals. For the experiments in
which these mice were challenged, challenge was at 14 days post-
immunization.® Specifically, they were challenged intraperitoneally using
2000 Type Il (Me49-Fluc) parasites.?®

ELISpot assay to determine murine splenocyte immune responses

This was performed as described in our earlier work which provided the
foundation for our own present studies>® 2* Specifically, spleens were
harvested 14 days after immunization®™® 2 as follows: initially, they were
pressed through a 70 um screen.>® > This allowed for formation of a
suspension of single-cells. Erythrocytes were depleted from this suspen-
sion. AKC lysis buffer (160 mM NH,Cl, 10 mM KHCOs, 100 mM EDTA) was
used to deplete the RBCs.>® 2° Hank’s Balanced Salt Solution (HBSS) was
used to wash splenocytes twice>® 2° Then the splenocytes were
resuspended in RPMI-1640 supplemented with 2 mM L-GlutaMax.>~® 2°
Murine splenocyte ELISPOT assays were performed as described earlier>® 2
This was done using anti-mouse IFN-y mAb (AN18) and biotinylated anti-
mouse IFN-y mAb (R4-6A2).3"% 2> In each well, 2.5-5x 10° splenocytes
were plated.>® 2> Mabtech (Cincinnati, OH) was the source of all of the
antibodies and all of the reagents used to perform ELISPOT assays.3™® 2> A
minimum of three replicate wells were used to plate cells for each
condition,>™® ?* as described earlier, to measure spot-forming cells per 10°
murine splenocytes>™® 2

Bioluminescence imaging to determinine outcomes of type I
parasite challenge

We imaged mice infected with 2000 Fluc tachyzoites of the Me49 strain of
T. gondii as described in our earlier work?* Twenty-one days after
challenge, an in vivo imaging system (IVIS; Xenogen, Alameda, CA)*®
allowed us to visualize luciferin injected retroorbitally interacting with
luciferase in the parasites.”® These mice were anesthetized. Anesthesia was
performed in an O,-rich induction chamber with 2% isoflurane.® Imaging
took place 12 min after receiving luciferin.?® Living Image” 2.20.1 software
(Xenogen) was used for assessment of photonic emissions.?> Pseudocolor
representations of light intensity and mean photons/region of interest
represent parasite burden in the imaging.?> All these mouse experiments
were replicated a minimum of two times, as in our earlier work.?> In each
group we used five mice.

Enumeration of cysts in mouse brains after type Il parasite
challenge

Mouse brains were collected at day 21, homogenized in 1 ml of saline
(0.85% NaCl), and 50 pl of the homogenate was used to count the tissue
cysts, microscopically, as described earlier?® Cyst count was then
multiplied by 20. This product then was used to determine the number
of tissue cysts per brain.

Statistical analyses and additional detail concerning animal
models

Data were compared for each assay by ANOVA and a Student’s t-test.
GraphPad Prism 5 software (GraphPad Software, San Diego, CA) was used
as described.® ANOVA and multiple comparison procedures identified
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differences between the groups, as we previously described.® Means + SD
are used to express data. A p value <0.05 was considered to be statistically
significant for our results.® Sample size in the in vivo studies was selected
to be able to detect significant differences in luminescence based on our
prior studies.”® With 5 per group, there is 80% power to detect a 2-
standard deviation difference between groups. With 3 per group, there is
80% power to detect a 2.7-standard deviation difference between groups.
All female mice we bred were utilized. They were randomly selected for
the different groups but age-matched in the different groups within the
experiment. There was no blinding in this experiment. In all in vivo
experiments, there were 5 mice per group. In all in vitro experiments, there
were 3 mice per group that provided splenocytes. All experiments were
replicated at least twice. Representative experiments, of at least 2 separate
trials, are shown. There was no data excluded from analyses.

Data availability

The data that support the findings of this study are available from ToxoDB
(http://toxodb.org/toxo/) and the corresponding author on reasonable
request.
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