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SUMMARY

With mass and flow cytometry, millions of single-cell profiles with dozens of pa-
rameters can be measured to comprehensively characterize complex tumor eco-
systems. Here, we present scQUEST, an open-source Python library for cell type
identification and quantification of tumor ecosystem heterogeneity in patient co-
horts. We provide a step-by-step protocol on the application of scQUEST on our
previously generated human breast cancer single-cell atlas using mass cytometry
and discuss how it can be adapted and extended for other datasets and analyses.
For complete details on the use and execution of this protocol, please refer to
Wagner et al. (2019).

BEFORE YOU BEGIN

Cancer is a tissue disease in which tumor cells and cells of the microenvironment form an ecosystem that

drives tumor progression and therapy response. Current single-cell technologies generate highly multi-

plexed profiles for millions of cells and up to hundreds of patients, thus allowing unprecedented insights

into the complexity of tumor ecosystem biology. However, new computational challenges arise from

large datasets with millions of cells. These datasets can be prohibitive in terms of computational re-

sources for available clustering algorithms that partition high-dimensional data into populations, thus

hindering cell type identification and annotation. Another challenge is the quantification of different as-

pects of tumor heterogeneity. Although several computational scores that quantify heterogeneity from

single-cell genomics, transcriptomics or proteomics measurements have been proposed in recent years

(Kashyap et al., 2022; Martinelli and Rapsomaniki, 2022), data-driven approaches that directly learn tu-

mor heterogeneity patterns from those measurements are largely missing.

The following protocol has been designed for mass cytometry data but can also be directly applied

to flow cytometry data. Several common mass cytometry data preprocessing steps should be per-

formed before starting this protocol, including data normalization, deconvolution of cellular barco-

des, and signal compensation (Chevrier et al., 2018). Deconvolution and signal compensation are

also important steps for flow cytometry data.

Data preprocessing

Timing: �1 day
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1. Normalization: During long mass cytometry data acquisitions, changes in instrument perfor-

mance can introduce signal variation over time (Finck et al., 2013). To address this, metal-contain-

ing polystyrene beads are measured together with the biological samples and the bead-derived

signature is then used to correct (normalize) occurring signal fluctuations post-acquisition

(Chevrier et al., 2018).

2. Deconvolution of sample barcodes: To minimize inter-sample antibody staining variation, sam-

ple multiplexing can be achieved through mass-tag barcoding or fluorescent cell barcoding

(Krutzik and Nolan, 2006; Zunder et al., 2015). Here, unique combinations of barcoding reagents

are used to stain individual samples, which can then be pooled for staining with an antibody

master mix. Computational deconvolution of barcodes allows the direct comparison of signal in-

tensities for dozens of samples (Chevrier et al., 2018).

3. Signal compensation: Current mass cytometry and flow cytometry applications allow the simulta-

neous assessment of 40 and more antibody targets per cell. As reporters, mass cytometry employs

heavy metal isotopes as antibody tags and flow cytometry uses fluorescent dyes. Both approaches

suffer from signal crosstalk between detection channels and require signal compensation prior to

data analysis. Channel crosstalk is more pronounced in flow cytometry due to the broad emission

spectra of fluorochromes that lead to spillover effects, than in mass cytometry, where it is caused

by isotopic impurities, oxidation, and instrument properties. In both approaches, single-stained con-

trols are used to generate a compensation matrix, which can be applied to the data post-acquisition

for signal compensation, e.g., using commercial software like FlowJoTM (BD Life Sciences) and Cyto-

bank (Kotecha et al., 2010), or the R package CATALYST (Chevrier et al., 2018).

KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

Install scQUEST and download dataset

Timing: 15–30 min

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Mass cytometry .fcs files (Wagner et al., 2019) https://doi.org/10.17632/gb83sywsjc.2

Mass cytometry .fcs files (Levine et al., 2015) https://doi.org/10.1016/j.cell.2015.05.047

Software and algorithms

scQUEST This work https://github.com/AI4SCR/scQUEST
https://doi.org/10.5281/zenodo.6666907

Tutorial: Application of scQUEST This work https://ai4scr.github.io/scQUEST/
scQUEST_tutorial.html

Tutorial: Application of scQUEST to AML data This work https://ai4scr.github.io/scQUEST/
scQUEST_AML_tutorial.html

Tutorial: How to customize scQUEST This work https://ai4scr.github.io/scQUEST/
Custom_models.html

Tutorial: How to process .fcs files and
create AnnData objects

This work https://ai4scr.github.io/scQUEST/
process-fcs-files-and-create-annData-object.html

Tutorial: Downsampling and clustering This work https://ai4scr.github.io/scQUEST/
tutorial_on_downsampling_and_clustering.html

Online documentation This work https://ai4scr.github.io/scQUEST

Miniconda N/A https://docs.conda.io/en/latest/miniconda.html

AnnData (Virshup et al., 2021) https://github.com/theislab/anndata

Other

Hardware:
� Memory: 8 GB required, 16GB recommended.
� Processors: 1 required, 4 recommended.

N/A N/A
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scQUEST is a Python package that runs on all operating systems (Windows, Linux, and MAC OSX)

with Python (ideally version 3.8) installed. To simplify the installation process, we recommend using

Miniconda (key resources table), as described below. The minimal hardware requirements to com-

plete this protocol largely depend on the dataset used. As an example, to successfully complete this

protocol using the supplied mass cytometry dataset of �13.5 million cells, a system with 16 GB of

RAM is recommended. A detailed Jupyter Notebook tutorial with step-by-step instructions to repro-

duce all results and figures of this protocol is supplied (key resources table). Although prior knowl-

edge of popular Python libraries (e.g., numpy, matplotlib, pandas) is a plus, it is still possible to

follow all steps of the protocol using the supplied code in the Jupyter Notebook. Furthermore, addi-

tional detailed tutorials demonstrate how users can customize the analysis to fit their dataset or

question or interest (key resources table). scQUEST runs on top of AnnData, a Python package for

handling annotated single-cell datasets. For users without prior experience with AnnData, we

strongly recommend the corresponding paper (Virshup et al., 2021) (key resources table) to famil-

iarize themselves with the structure of the AnnData object prior to executing this protocol. To

simplify the use of this protocol, a pre-uploaded version of the mass cytometry dataset measured

with the tumor epithelial cell-centric antibody panel from Wagner et al. (2019) is included in

scQUEST as an AnnData object. The dataset measured with the immune cell-centric antibody panel

from Wagner et al. (2019) is not included here and can be found in the original publication (key re-

sources table). For users interested in using scQUEST with their ownmass or flow cytometry data, we

also provide a simple tutorial that illustrates how to load and process .fcs files, and construct an

AnnData object (key resources table). We note that in our original paper Wagner et al. (2019), our

analyses focused on patient samples for which both a tumor epithelial cell-centric and an immune

cell-centric measurement was available, resulting in 144 breast tumor and 50 non-tumor tissue sam-

ples. Since the original tumor epithelial cell centric-only measurements involved 23 additional tumor

samples and nine additional non-tumor samples, we included these in the dataset provided with this

protocol (AnnData object), resulting in the final dataset of 226 samples from 163 patients. We next

outline all major steps and explain how to tailor the protocol to different datasets or analyses.

1. Installation:

a. If you are new to Python, install the latest version of Miniconda (key resources table) according

to your system specifications.

b. Once Miniconda is installed, open up your system terminal/console, create and activate a new

virtual environment by typing:

c. Install scQUEST:

d. Install Jupyter Notebook:

Download the supplied Jupyter Notebook tutorial (key resources table).

e. In your terminal/console, fire up a Jupyter Notebook by typing:

> conda create -y -n scquest python=3.8

> conda activate scquest

> pip install ai4scr-scQUEST

> pip install jupyterlab

> curl -o scQUEST_tutorial.ipynb https://raw.githubusercontent.com/AI4SCR/scQUEST/master/tutorials/

scQUEST_tutorial.ipynb

> jupyter notebook scQUEST_tutorial.ipynb
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Alternatively, you can run the notebook on a remote host (e.g., an HPC environment). To do that,

start the server on the remote:

and setup an SSH tunnel. On your local machine run:

Note: scQUEST automatically installs all dependencies, such as pandas, PyTorch, sklearn, and

AnnData.

2. Explore example dataset:

a. Load pre-uploaded mass cytometry dataset in an AnnData object by simply typing:

b. Explore the AnnData object:

c. Notice that ad contains 13,384,828 single-cell measurements of 68 channels (stored in .X)

with channel annotations (stored in .var). Cell-level annotations (stored in .obs) include

various patient metadata, such as tissue type of origin or patient ID (patient_number).

Cell type assignment

Timing: 1–2 h

Identification of cell populations of interest is a common task in cytometry-based single-cell ana-

lyses, performed traditionally through gating, or, more recently, using clustering algorithms (e.g.,

PhenoGraph (Levine et al., 2015) or FlowSOM (Van Gassen et al., 2015)). An emerging challenge

is that often, the acquired single-cell measurements are in the order of millions of cells, which

prohibits analyzing the whole dataset at once. A common solution is subsampling, which however

implies that a large part of data will be discarded. In our previous work (Wagner et al., 2019), we

were interested in detecting cells of an epithelial phenotype among our �13.5 million single-cells

dataset stained with 37 different antibodies, and designed an alternative approach to overcome

this challenge. The main idea behind our approach was to cluster and annotate a smaller, represen-

tative subset of the whole dataset, acquired by a custom down-sampling approach (Figure 1A, Tuto-

rial: Downsampling and clustering, key resources table). This smaller dataset was clustered using

PhenoGraph (Levine et al., 2015), resulting in 42 clusters, which were in turn annotated as epithelial

based on the expression of one or more of the following epithelial markers: Epithelial cell adhesion

molecule (EpCAM), E-Cadherin, cytokeratin 5 (K5), K7, K8, K14, K18, and/or a pan-cytokeratin

marker. All clusters negative for all the above markers were labeled as non-epithelial (Figure 1B).

The single-cell proteomic measurements with their class assignments were used to train a neural

network classifier (Figure 1C), that, once trained, was used to classify the remaining data into

epithelial or non-epithelial (Figure 1D). Here, we show how to perform these steps using the same

annotated dataset, which is also supplied with scQUEST.

3. Load and explore the annotated dataset, ad_anno:

a. Notice how ad_anno consists of 687,161 single-cell measurements that have been previously

clustered in 42 clusters (cluster label found in .obs[’cluster’]).

> jupyter notebook scQUEST_tutorial.ipynb –no-browser –port=8080

> ssh -L 8080:localhost:8080 <REMOTE_USER>@<REMOTE_HOST>

> ad = scq.dataset.breastCancerAtlasRaw()

> ad
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b. The 42 clusters have in turn been annotated as epithelial or non-epithelial based on marker

expression. We see that in total, there are 484,279 non-epithelial and 202,882 epithelial cells

(information included in .obs[celltype_class]).

CRITICAL: When working with your own data, you can use your algorithm of choice to

cluster and annotate the single-cell measurements. It is critical, however, that the smaller,

subsampled dataset that you will annotate is representative of the whole population of

cells you want to analyze. See also troubleshooting for more information on how to eval-

uate the quality of your annotated dataset.

4. Prepare the dataset for classification:

a. First, subset the dataset such that it only contains the features/markers relevant for the

classification (typically, the ones used for annotating the data).

b. Create a binary integer label with 0: non-epithelial and 1: epithelial:

c. Apply the inverse hyperbolic sine (arcsinh) transformation and save the transformed data in a

new layer of the AnnData object:

d. Normalize the data from 0 to 1 using a min-max scaler and save the results in a new layer of the

AnnData object:

Note: Before training the classifier, you can visualize the data distribution per channel for

epithelial and non-epithelial cells (Figure 2). Notable differences in abundance for multiple

marker channels are observed, among which are the epithelial markers (e.g., EpCAM,

E-Cadherin), as expected.

5. Train the neural network classifier:

a. Initialize themodel by setting the dimensions of the input layer equal to the number of markers

in the training data. Also set a seed for reproducibility:

b. Train the classifier:

> ad_anno = scq.dataset.breastCancerAtlas()

> ad_anno.obs[’is_epithelial’] = (ad_anno.obs.celltype_class == ’epithelial’).astype(int)

> X = ad_anno.X.copy()

> cofactor = 5

> np.divide(X, cofactor, out=X)

> np.arcsinh(X, out=X)

> ad_anno.layers[’arcsinh’] = X

> minMax = MinMaxScaler()

> X = minMax.fit_transform(X)

> ad_anno.layers[’arcsinh_norm’] = X

> clf = scq.Classifier(n_in=ad_anno.shape[1], seed=1)

> clf.fit(ad_anno, layer=’arcsinh_norm’, target=’is_epithelial’, max_epochs=20, seed=1)
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Note: By default, the model architecture consists of 1 hidden layer of 20 neurons with a ReLU

activation function and one output layer of two neurons. The dataset is split in a stratified

fashion into training (90%) and test (10%) sets. Of the training set, 10% are used to validate

the model. The classifier is trained using the Adam optimizer (Kingma and Ba, 2017) with a

learning rate of 0.001 and a batch size of 256. Its performance is evaluated using a standard

cross-entropy loss function. Training is finalized after 20 epochs; we further use an early stop-

ping criterion by terminating training when the model’s performance fails to improve for 10

consecutive runs. In our online documentation (key resources table), we provide an example

on how to create custom model architectures.

Figure 1. Workflow for cell type assignment from single-cell mass cytometry data

(A) Random subsampling step for large datasets.

(B) Clustering of the data, cluster annotation by class based on the respective marker expression profiles, and labeling of each cell according to class.

(C) Splitting the annotated data and using the training set to train a neural network to achieve an accurate class prediction for each cell. The test set is

used to evaluate the model performance.

(D) Using the trained neural network to assign the remaining cells to their respective class based on the marker expression profile. Some figure elements

have been adapted from Wagner et al. (2019).
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c. Examine model performance by assessing the performance of the classifier in the test data.

Some additional ways to evaluate the model is by observing the evolution of the loss, the

percentage of accurately predicted epithelial or non-epithelial cells in the form of a confusion

matrix and the ROC curve (Figure 3).

CRITICAL: If the model fails during training, a number of issues may be the reason. Check

troubleshooting for possible solutions. It is important to make sure that your model is not

overfitting the data. Overfitting occurs when the model fits precisely the training data, but

cannot generalize to unseen test data. To learn how to detect and avoid overfitting, check

troubleshooting.

Figure 2. Distribution of marker expression per channel for epithelial (orange) and non-epithelial cells (blue) in the annotated training dataset
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6. Once you are confident about the model performance, you can use the trained classifier to

predict all epithelial cells across in the �13.5 million cell measurements:

a. Again, prepare the whole dataset for classification by applying an arcsinh transformation and

scaling the data, as in step 4c:

CRITICAL: When scaling the unseen data, it is important to apply the min-max scaler that

was fitted on the training data without re-fitting it on the new data (use transform instead

of fit_transform).

Figure 3. Assessing the performance of the classifier

(A) Evolution of the loss during model training, with training loss indicated in blue, validation loss indicated in orange,

and test loss indicated in green.

(B and C) Confusion matrix and (C) receiver operator characteristic (ROC) curve, indicating very high accuracy in

predicting epithelial and non-epithelial cells.

> ad_pred = ad[:, ad.var.used_in_clf]

> X = ad_pred.X.copy()

> np.divide(X, cofactor, out=X)

> np.arcsinh(X, out=X)

> ad_pred.layers[’arcsinh’] = X

> X = minMax.transform(X)

> ad_pred.layers[’arcsinh_norm’] = X
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b. Feed the data to the classifier and save the results:

c. Examining the final classification results, you can see that the model classified the �13.5

million cells into �3.97 million epithelial cells and �9.4 million non-epithelial cells. The classi-

fication results can be further examined, for example by generating a dimensionality reduction

uniformmanifold approximation and projection (UMAP) plot (McInnes et al., 2018). The UMAP

plot shows the expected separation of epithelial and non-epithelial cells and at the same time,

annotated and predicted cells of each respective class are well-mixed (Figure 4).

Phenotypic abnormality score

Timing: 1–2 h

Tumor cell heterogeneity is believed to be a source of cancer aggressiveness and an obstacle for

complete elimination of tumor cells during therapy (Ramos and Bentires-Alj, 2015). Molecular

phenotypic deviation of breast tumor cells from normal mammary epithelial cells is routinely

assessed in the clinic and has prognostic value, e.g., protein levels of estrogen receptor (ER), pro-

gesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and proliferationmarker

Ki-67 (Amin et al., 2017). In our previous work, we showed how a type of unsupervised artificial neural

network called an autoencoder (Goodfellow et al., 2016; Hinton and Salakhutdinov, 2006) could be

used to comprehensively describe the phenotypic abnormality of breast tumor cells in relation to

non-cancerous mammary epithelial cells. Briefly, we first trained a ‘‘reference’’ autoencoder with

epithelial cells derived from juxta-tumoral non-cancerous mammary gland tissue so it could recon-

struct their proteomic phenotypes (Figure 5A). We then fed the trained autoencoder with a ‘‘query’’

dataset with tumor-derived epithelial cells to determine howmuch they had deviated from the refer-

ence phenotypes. The autoencoder calculated a mean squared error (MSE) of the reconstruction for

each tumor cell, which represented the phenotypic abnormality (dissimilarity) of that cell to non-

cancerous tissue-derived cells (Figure 5B). A tumor-based phenotypic abnormality score was

computed as the median score of all epithelial cells of a sample (Figure 5C), and a tissue-based

phenotypic abnormality score was computed as the median score of all cells of a tissue type

(Figure 5D). In our previous work, we observed a correlation of tumor phenotypic abnormality

with features of abnormal growth conditions within the tumor ecosystem, such as a high number

of cells positive for the proliferation marker Ki-67 and cells positive for the hypoxia marker carbonic

anhydrase 9 (Wagner et al., 2019).

Here, we explain how to follow the same approach using as example the epithelial measurements of

the supplied data.

7. Prepare dataset:

a. Select a list of patient samples (patients) that will serve as reference (optional).

b. Similarly, select a list of markers (markers) as features of the input data.

c. Subset the whole ad dataset to include only epithelial cells (ad.obs.is_epithelial == 1)

from juxta-tumoral tissue (ad.obs.tissue_type == ’N’) of the selected patient samples

(ad.obs.patient_number.isin(patients)) and markers (ad.var.used_in_abnormality):

> clf.predict(ad_pred, layer=’arcsinh_norm’)

> ad.obs[’is_epithelial’] = ad_pred.obs.clf_is_epithelial.values

> ad_train = ad[(ad.obs.patient_number.isin(patients)) & (ad.obs.tissue_type == ’N’) &

(ad.obs.is_epithelial == 1), ad.var.used_in_abnormality]
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d. Preprocess the dataset by applying the arcsinh transformation and min-max normalization, as

in step 4c.

8. Train the abnormality autoencoder:

a. Initialize the model by setting the dimensions of the input/output layer equal to the number of

markers in the training data:

b. Fit the model to the training data:

c. As in step 5c, the model performance can be evaluated in terms of the evolution of the loss.

9. Use the trained abnormality autoencoder to reconstruct all epithelial cell measurements:

a. Select markers and preprocess the data

b. Reconstruct the measurements and estimate the mean squared error (MSE):

c. Examine the results across all juxta-tumoral tissue, mammoplasty, and tumor-derived epithe-

lial cells by visualizing and comparing the min-max-normalized protein levels of the input data

(Figure 6A) with the reconstructed data (Figure 6B) and the resulting reconstruction errors,

called residuals (Figure 6C). The autoencoder nicely reconstructs the protein expression pat-

terns observed in cells derived from juxta-tumoral tissue andmammoplasty samples, resulting

in close-to-zero reconstruction errors. For tumor-derived epithelial cells, the reconstruction

errors are much more pronounced (Figure 6C – rows labeled with green).

Note: The reconstruction errors and phenotypic abnormality score are not zero for juxta-tu-

moral-derived, non-cancerous epithelial cells of the training set because data reconstruction

by the autoencoder is by definition lossy.

CRITICAL: Before drawing biologically relevant conclusions from the computed score,

make sure your data are not confounded by batch effects (troubleshooting).

Sample individuality score

Timing: 30 min

Tumor ecosystems may represent unique compositions of tumor cell molecular phenotypes. To

quantify and compare the individuality of tumors, in Wagner et al. (2019) we applied a graph-based

> Abn = scq.Abnormality(n_in=ad_train.shape[1])

> Abn.fit(ad_train, layer=’arcsinh_norm’, max_epochs=20)

ad_pred = ad[ad.obs.is_epithelial == 1, ad.var.used_in_abnormality]

X = ad_pred.X.copy()

np.divide(X, cofactor, out=X)

np.arcsinh(X, out=X)

X = minMax.transform(X)

ad_pred.layers[’arcsinh_norm’] = X

Abn.predict(ad_pred, layer=’arcsinh_norm’)

mse = (ad_pred.layers[’abnormality’] ** 2).mean(axis=1)

ad_pred.obs[’abnormality’] = mse
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approach using the epithelial single-cell data from all samples. First, a k-nearest neighbor graph was

constructed that placed phenotypically similar epithelial cells close to one another in the high-

dimensional space (Figure 7A). Then, for each cell, the respective sample origin labels of their k

nearest neighboring cells were determined, and a probability distribution was computed based

on its neighborhood proportion (Figure 7B). For each sample, the median value of the probability

distribution of all single cells belonging to that sample was computed, resulting in a sample x sample

individuality matrix that quantified whether cells were more similar to cells of the same or to cells of

other samples. Last, a sample individuality score was obtained using the diagonal of this matrix

(Figure 7C). This analysis revealed that tumors had higher individuality scores than non-cancerous

tissue. We further observed higher individuality scores for grade 3 aggressive breast cancers

compared with grade 1 and grade 2 less aggressive cancers. Here, we show how to apply this

analysis using the single-cell epithelial measurements across all samples.

To compute the sample-level individuality score, follow the steps below:

10. Prepare the dataset:

a. Subset the ad dataset to include only epithelial cells and selected markers (here, the same

markers as in step 7b):

b. Preprocess the dataset by applying the arcsinh transformation, as in step 4c.

c. Subsample 200 cells per sample (for samples that have less cells, use them all):

Figure 4. UMAPprojection of all single-cell measurements, markedwith blue hues for non-epithelial cells (dark blue:

annotated, light blue: predicted) and orange hues for epithelial cells (dark orange: annotated, light orange:

predicted)

> ad_indiv = ad[ad.obs.is_epithelial == 1, ad.var.used_in_abnormality]

ad_indiv.obs[’sample_id’] = ad_indiv.obs.groupby([’tissue_type’, ’breast’, ’patient_

number’]).ngroup()

tmp = ad_indiv.obs.groupby([’sample_id’]).indices
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11. Initialize the model and compute the individuality score:

12. Assess the results:

a. The observation-level scores, i.e., one vector per single cell, indicating a cell’s similarity to all

other samples, are saved in the .obsm attribute of the AnnData object, as a matrix of size

n_cells x n_samples:

b. The aggregated sample-level scores (one vector per sample, indicating a sample’s similarity

to all other samples) are saved in the .uns attribute of the AnnData object, as a matrix of size

n_samples x n_samples:

c. To assess a sample’s individuality, we will use the diagonal of that matrix:

d. Finally, assess the individuality score with respect to different patient clinical data (Figure 8).

CRITICAL: Ensure your data are not confounded by batch effects (troubleshooting).

EXPECTED OUTCOMES

scQUEST enables a robust discrimination of cell populations in large datasets as well as quantifica-

tion of different aspects of tumor heterogeneity for inter-patient comparisons and comparisons with

a reference tissue. All computations are done seamlessly, and the outcomes are integrated in

different components of the AnnData object to facilitate downstream analyses.

Cell type assignment

The trained classifier model (clf) can be saved and reused for cell type assignment in future

datasets:

n_cells = 200

indices = []

for key, item in tmp.items():

size = min(len(item), n_cells)

idx = np.random.choice(range(len(item)), size, replace=False)

indices.extend(item[idx])

indices = np.array(indices)

ad_indiv = ad_indiv[indices]

> Indiv = scq.Individuality()

> Indiv.predict(ad_indiv, ad_indiv.obs.sample_id, layer=’arcsinh’)

> ad_indiv.obsm[’individuality’]

> ad_indiv.uns[’individuality_agg’]

>dat=pd.DataFrame(np.diag(ad_indiv.uns[’individuality_agg’]), index=dat.index, col-

umns=[’individuality’])

torch.save(clf.model.state_dict(), PATH)

clf = scq.Classifier(n_in=ad_anno.shape[1])

clf.model.load_state_dict(torch.load(PATH))
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Figure 5. Steps to compute the phenotypic abnormality scores per cell, tumor, and tissue type

(A) Epithelial cells from juxta-tumoral tissue are used to train an autoencoder, which computes a reconstruction error for each cell.

(B) Tumor-derived epithelial cells are fed to the trained autoencoder and a reconstruction error is computed for each cell.

(C and D) From this, the median reconstruction error can be calculated per sample (C) and per tissue type (D). Some figure elements have been adapted

from Wagner et al. (2019).
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Figure 6. Evaluation of the performance of the abnormality autoencoder

(A) Normalized protein expression levels per epithelial cell and marker of the input data.

(B) Normalized protein expression levels per epithelial cell and marker after reconstruction.

(C) Reconstruction error (residuals) per cell and marker, ordered by tissue type mammoplasty (blue), juxta-tumoral (orange) and tumor (green). The

order of cells is identical across (A), (B), and (C).

(D–G) Phenotypic abnormality scores by (D) tissue type, (E) tumor grade, (F) estrogen receptor status, and (G) clinical subtype. M = mammoplasty, JT =

juxta-tumoral, T = tumor, G = grade, ER = estrogen receptor.
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The predicted labels are automatically saved as cell-level annotations in the .obs attribute of the

AnnData object.

Phenotypic abnormality score

The autoencoder model can be saved and reused in the future. The single-cell level abnormality

values can be stored in the .obs attribute of the AnnData object.

Tumor individuality score

The single-cell level and sample-level individuality scores are automatically saved in the .obsm

and .uns attributes of the AnnData object, as explained in steps 4–12.

Data export

The data can be exported to different commonly used data formats (e.g., .csv, .xls) to enable data

analysis with other tools. For example, the epithelial cell data as classified by the model can be ex-

ported together with the associated metadata:

All resulting plots in this protocol can simply be exported using the matplotlib savefig function:

LIMITATIONS

The performance of the different components of scQUEST depends on several factors, summarized

by step below:

Cell type assignment

The most crucial aspect for accurate cell type identification is the quality and size of the annotated

dataset used for training, which in turn largely depends on the use of cell type-stratifying markers. In

this example, we used epithelial lineage markers to separate epithelial cells from cells of other lin-

eages (e.g., mesenchymal and immune cells). Another important aspect is to titrate antibodies for

data generation so that they yield an optimal signal-to-noise ratio. Low signal-to-noise ratios in

marker channels used for training the neural network may result in poorer separation results for

the cell populations of interest. Concerning the dataset size, the more data available to train a neural

network for cell type identification the better, with the minimum amount depending largely on the

difficulty of the task. Typically, for training datasets, a few thousand cells should suffice. The results of

data clustering and applying the neural network to detect cell types of interest may be compared

with other approaches that do not use annotated cell populations as input for a neural network

but rather pre-specify marker profiles for cell type detection (Geuenich et al., 2021). Finally, although

the same model can be reused to classify cells from additional, unseen datasets measured with the

same panel, it is crucial that the effect of different experimental batches is minimal, or corrected for

(see also troubleshooting).

Phenotypic abnormality score

It is important to select a proper reference to serve as the basis to train the autoencoder, and one (or

more) query datasets that will be used to compute the abnormality score. Ideally, these datasets

deviate considerably in phenotypic space. For calculating a sample abnormality score for tumors,

mask=ad.obs[’is_epithelial’]==1

temp=pd.DataFrame(data=ad.X[mask], columns = ad.var[’desc’])

temp.to_csv(’all_epithelial_cells.csv’)

ad.obs[mask].to_csv(’epithelial_metadata.csv’)

> plt.savefig(’figure_name.pdf’, dpi=300)
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ideally, the corresponding normal tissue-derived cells are used as a reference. It is crucial that the

reference and query datasets are free of batch effects (see also troubleshooting), so that the esti-

mated phenotypic deviation is attributed to biological and not technical variability. The abnormality

score indicates how similar (low score) or dissimilar (high score) a tumor cell is compared with the

median of the reference. However, two tumor cells with the same abnormality score may be pheno-

typically very distant, as the score does not suggest a trajectory (i.e., it is not directional). For single-

cell trajectory reconstruction, other tools can be explored, as reviewed in (Cannoodt et al., 2016). As

mentioned in step 2, the more data available to train the autoencoder the better.

Tumor individuality score

The individuality score captures the uniqueness of the phenotypic pattern of a sample within a

cohort, and as such, is dependent on the choice of markers to describe the phenotypic pattern

and the variability of the cohort itself. Therefore, care should be taken when choosing markers to

assess cell phenotypes by mass cytometry or flow cytometry and when assembling a patient cohort.

As for phenotypic abnormality, the k-nearest neighbor graph and individuality scores do not suggest

a trajectory of disease evolution, but rather describe how rare or ubiquitous a patient-level tumor

profile is within the cohort. Finally, the sample individuality score is highly affected by the number

of cells per sample, with estimates of smaller samples being less robust. For imbalanced datasets,

we recommend re-sampling an equal number of cells per sample to circumvent this issue.

Due to the modular structure of scQUEST, individual components of the package can be used for

alternative applications beyond the dataset presented here. For example, the phenotypic abnor-

mality score approach could be applied to cells before and after drug perturbations or genetic

alterations. Alternatively, cells at different timepoints during in vitro experiments, in disease models,

or during patient disease progression can be compared.

TROUBLESHOOTING

Problem 1

The model fails to accurately classify the training dataset (step 2).

Potential solution

Step 2 may fail if the quality of your annotated dataset is suboptimal. To correct this issue, you first

need to evaluate the clustering and ensure that the identified clusters represent distinct cell pheno-

types or subpopulations. Maximize the number of cells to cluster according to your computational

Figure 7. Workflow for computing the sample individuality score

(A) A k-nearest neighbor graph is constructed using all epithelial cells.

(B) For each cell, the neighborhood proportion is computed for a chosen k.

(C) The median neighborhood proportions for all cells of a sample are determined. Scores on the diagonal represent the sample individuality score.

Some figure elements have been adapted from Wagner et al. (2019).
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resources to increase robustness. Decide which markers you want to use for the clustering step, as

this will strongly affect the result. An ideal clustering groups cells together with a very similar marker

profile, i.e., low signal variance in each marker channel. Ideally, marker channels are chosen for clus-

tering that are expressed by cells of one class and not by cells of another class and vice versa. You

may want to exclude markers from the clustering with very low signal-to-noise ratios and markers

with signal spill into other channels, which may create possible false-positive cells. Examine the

robustness of the clustering with respect to the inherent stochasticity of the algorithm (e.g., different

random initializations) or different parameter values (e.g., k number of neighbors in PhenoGraph), by

exploiting metrics such as the Adjusted Rand Index (Hubert and Arabie, 1985), the Silhouette coef-

ficient (Rousseeuw, 1987) or the adjusted mutual information score (Vinh et al., 2010) from repetitive

clustering runs. When working with imbalanced data, we recommend subsampling strategies that

balance out large discrepancies in sample sizes (see our Downsamplng and clustering tutorial,

key resources table).

Problem 2

The model fails to accurately classify the test or unseen data (step 2).

Potential solution

Even if the model achieved high accuracy in the training set, it may fail in accurately classifying the

test set. One common pitfall may be overfitting. To detect overfitting, make sure the training loss is

not getting progressively lower while at the same time the test loss is getting higher. Using a k-fold

cross validation scheme will allow you to evaluate the model performance. If you have issues with

overfitting, you can try reducing the complexity of the model, training with more data and exploiting

techniques such as regularization, dropout and early stopping. Another common pitfall may be

batch effects, addressed in problem 3 below.

Problem 3

The abnormality or individuality scores are not capturing patterns relevant to disease variability

(steps 3 and 4).

Figure 8. Association of individality score with clinical metadata

Samples individuality scores by (A) tissue type, (B) tumor grade, (C) estrogen receptor status, and (D) clinical subtype. M = mammoplasty, JT = juxta-

tumoral, T = tumor, G = grade, ER = estrogen receptor.
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Potential solution

The first factor you need to assess is whether your data is confounded by batch effects. Ideally, all

samples to be compared should be measured in the same acquisition, so that systematic biases

introduced by antibody staining variability, sample handling or machine calibration are absent. If

this is not the case, then both the abnormality and individuality scores may highlight samples as

abnormal or unique that differ in experimental setup instead of differing in biological means. To

address this issue, batch effects first need to be detected and then corrected for, e.g., by comparing

different available computational approaches (Haghverdi et al., 2018; Leek et al., 2010).

Problem 4

The Classifier model always converges to the same solution, which makes it hard to test its

robustness.

Potential solution

In the current tutorial, we are using a fixed seed both in the initialization and fitting of the Classifier

module for reproducibility reasons. To test how different stochastic initializations of the model affect

the results, change the value of the seed, and compare the outcomes. The same process can be fol-

lowed for the Abnormality module as well.

Problem 5

My dataset is highly unbalanced, resulting in low prediction accuracy of the underrepresented class.

Potential solution

This is a common problem in real world cytometry datasets, which can be circumvented by using

class weights, as we show in step 2: Train the neural network classifier of our scQUEST AML tutorial

(key resources table).

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Maria Anna Rapsomaniki (aap@zurich.ibm.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The code generated during this study is available at https://github.com/AI4SCR/scQUEST. Original

data used in this protocol were generated as described in Wagner et al. (2019) and are deposited in

Mendeley data: https://doi.org/10.17632/gb83sywsjc.1. The single-cell measurements of the tumor

epithelial cell-centric panel (raw and pre-annotated) are also pre-uploaded in scQUEST as AnnData

objects. The AnnData object contains 23 additional tumors and 9 additional non-tumor samples

which were not previously included in the Wagner et al. dataset deposited on Mendeley data.
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