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Abstract: Antibiotic resistance is a serious global health concern that may have significant social and
financial consequences. Methicillin-resistant Staphylococcus aureus (MRSA) infection is responsible for
substantial morbidity and leads to the death of 21.8% of infected patients annually. A lack of novel
antibiotics has prompted the exploration of therapies targeting bacterial virulence mechanisms. The
two-component signal transduction system (TCS) enables microbial cells to regulate gene expression
and the subsequent metabolic processes that occur due to environmental changes. The YycFG
TCS in S. aureus is essential for bacterial viability, the regulation of cell membrane metabolism, cell
wall synthesis and biofilm formation. However, the role of YycFG-associated biofilm organization
in S. aureus antimicrobial drug resistance and gene regulation has not been discussed in detail.
We reviewed the main molecules involved in YycFG-associated cell wall biosynthesis, biofilm
development and polysaccharide intercellular adhesin (PIA) accumulation. Two YycFG-associated
regulatory mechanisms, accessory gene regulator (agr) and staphylococcal accessory regulator (SarA),
were also discussed. We highlighted the importance of biofilm formation in the development of
antimicrobial drug resistance in S. aureus infections. Data revealed that inhibition of the YycFG
pathway reduced PIA production, biofilm formation and bacterial pathogenicity, which provides a
potential target for the management of MRSA-induced infections.
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1. Introduction

Staphylococcus aureus (S. aureus) is a life-threatening, opportunistic pathogen [1]. The
social and financial burdens caused by S. aureus-related infections continue to increase glob-
ally [2]. S. aureus may infect host sites via implantable medical devices, including tubes and
orthopedic or cardiac prostheses [3,4]. Evidence indicates that bacteria growing in biofilms bet-
ter tolerate the action of antimicrobial drugs than planktonic cells, because biofilms facilitate
cell–cell contact and concentrate nutrients, such as carbon and nitrogen [5,6]. Bacterial cells
adjust their metabolism in response to environmental stress, such as exposure to antibiotics
or extremes of temperature and pH. The two-component signal transduction system (TCS)
enables microbial cells to regulate gene expression and the subsequent metabolic process
associated with environmental changes [7].

YycFG, also designated as WalRK or VicRK, is a highly conserved TCS in Gram-
positive bacteria with a low G-C content [8]. The YycFG system was first identified as part
of a system that is essential for the survival of temperature-sensitive mutants of Bacillus
subtilis [9] and S. aureus [10]. The YycFG TCS in S. aureus is essential for bacterial viability,
the regulation of cell wall synthesis and physiological metabolic processes, but attempts
to construct viable YycFG deletion mutants were not successful [11]. The histidine kinase
YycG/WalK/VicK is anchored by a cytoplasmic membrane, and it monitors environmental
stimuli. YycG responds to extracellular changes by transferring the phosphoryl group
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to activate the response regulator YycF/WalR/VicR, which results in modification of the
expression of downstream target genes to adapt to environmental changes [12].

Biofilms are primarily protected by the extracellular matrix (ECM), which is composed
of lipids, proteins, exocellular DNA (eDNA) and polysaccharides (EPS) [13]. Staphylococ-
cal biofilm formation is mediated by polysaccharide intercellular adhesin (PIA), which is
synthesized by the ica operon [14]. The icaADBC locus contains icaA, icaD, icaB and icaC
genes, which are arranged into the operon [15]. Notably, enzymes that degrade PIAs were
not found in staphylococci [16]. Recent data suggested a role for the S. aureus YycFG TCS in
PIA matrix-associated drug resistance [17]. The ica-independent biofilms are more com-
monly observed in methicillin-sensitive S. aureus (MRSA) [18], whereas SarA-regulated PIA
are more commonly observed in methicillin-resistant S. aureus (MSSA) biofilms. Previous
studies investigated the mecA gene, which is responsible for methicillin resistance [19], but
the potential mechanisms of the role of the mecA gene in PIA biosynthesis and biofilm
formation in MRSA remain largely undetermined. Our previous data showed that YycF di-
rectly bound to the promoter regions of icaA genes and may regulate icaA expression, which
suggests that biofilm polysaccharides and the subsequent antimicrobial drug resistance of S.
aureus are targeted via the YycFG pathway [20]. We reviewed the bacterial factors involved
in YycFG-dependent biofilm development, the impact of YycFG two-component systems
in antibacterial agent resistance and the strategies for targeting S. aureus two-component
systems in the management of this human pathogen.

2. Regulation of S. aureus YycFG Two-Component Systems
2.1. S. aureus Two-Component Systems

Fifteen TCSs in the whole genome of S. aureus are involved in the regulation of
bacterial physiological metabolism [21,22]. The regulation of the S. aureus TCS inextri-
cably affects bacterial antimicrobial resistance [23]. The TCS system is comprised of two
components: (i) histidine protein kinase (HPK) receptor proteins, which are anchored to
the cell membrane and sense external environmental stimuli, and (ii) response regulators
(RRs), which regulate downstream target gene expression. After physical or chemical
stimulation by the external environment, HPKs undergo phosphorylation. The phosphate
group is transferred to the response regulator (RR). Phosphorylated response regulators
directly bind to the promoter regions of downstream target genes and enhance the adaptive
viability of bacteria [24,25].

2.2. Regulatory Roles of the YycFG TCS in Cell Wall Biosynthesis and Biofilm Formation

The yyc operon in S. aureus is comprised of four genes, yycF, yycG, yycH, yycI
and yycJ. The membrane-associated regulator YycHI is an activator of YycG function
in S. aureus [26]. Despite its essential role in bacterial viability, the physiological or
mechanical signals sensed by YycG are not well understood. Recent structural analysis of
the YycG PASCYT domain revealed a metal-binding site that binds zinc ions (Zn2+). The
abrogation of metal binding increased YycG kinase activity and YycF phosphorylation,
which indicates that Zn2+ binding negatively regulates YycFG [27]. The response regulator
YycF participates in the regulation of cell wall synthesis and binds promoter regions that
contain a conserved motif sequence [5′-TGT(A/T) A(A/T/C)-N5-TGT(A/T)A(A/T/C)-3′]
of target genes via the helix-turn-helix domain of YycF [12,20].

The specific binding of YycF to promoter regions, including icaA, agr, sarA and sarX,
modifies biofilms in an ica-dependent manner [8]. The ArlRS regulon is a global regulator of
relevant genes, including cell wall-anchored adhesins, polysaccharide synthesis genes, cell
wall remodeling genes, the urease operon and a large number of virulence factors [28,29].
The accessory gene regulator (agr) system greatly contributes to the formation of S. aureus
biofilms [30], and the staphylococcal accessory regulator (SarA) drives biofilm organization
by altering ica transcription and producing PIA [31,32]. The sarA gene in Staphylococcus
epidermidis is an essential regulator of ica operon activation in biofilm formation [33].
The sarA gene in S. aureus is associated with bacterial oxidation sensing and virulence
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factors [34,35]. Notably, our recent study revealed that YycF directly regulated the predicted
promoter regions of sarA, and YycFG TCS sensitized S. aureus biofilm formation to H2O2
exposure via the sarA pathway [20].

2.3. Regulatory Roles of the YycFG TCS in Response to Host Immunity

S. aureus is a major opportunistic human pathogen. S. aureus interacts with its human
host as an innocuous member of the microbiota, or it breaks immune barriers to become an
invasive pathogen [36]. Because YycFG TCS positively regulates certain virulence genes, in-
cluding genes associated with host–matrix interactions (efb, emp, fnbA, and fnbB), cytolysis
(hlgACB, hla, and hlb) and innate immune defense evasion (scn, chp, and sbi), its activity
is closely linked to the host inflammatory response that is induced during infection [37].
However, virulence gene modulation is achieved via the coordination of another TCS,
SaeSR (short for S. aureus exoprotein expression). YycF positively activates SaeSR TCS.
SaeSR is a virulence factor regulation system that promotes lysis of polymorphonuclear
leukocytes (PMNs) after phagocytosis, and it plays an essential role in S. aureus evasion
of innate immunity [38]. During host cell–pathogen interactions, the innate and adaptive
immune systems respond to S. aureus. Adaptive immunity amplifies the activity of innate
immune cells and influences host susceptibility to S. aureus, and it is associated with
chronic persistent infections [39]. S. aureus also developed evasion mechanisms from the
adaptive immune response using virulence strategies. A second immunoglobulin binding
protein (Sbi) is a cell wall-anchored surface protein that binds with the Fcγ portion of
IgG, or it is secreted as a virulence factor that interferes with soluble complement factor
C3, which manipulates adaptive immune responses to S. aureus [40]. Aurélia et al. [41]
found that YycFG triggered cell wall turnover and degradation. Degradation of the cell
wall via the NF-κB system resulted in the clearance of bacterial cells by the host immune
system. Activated YycF stimulated the SaeSR TCS to increase the virulence gene expression
involved in human–pathogen interactions and innate immune system evasion. There-
fore, the fine tuning of YycFG plays an important role in determining the conditions of
S. aureus infection.

3. The Impact of YycFG Two-Component Systems on Antibiotic Resistance
3.1. S. aureus Biofilms and Antimicrobial Drug Resistance

After biofilm formation due to intercellular aggregation, bacterial cell detachment
caused by the action of bacterial products is critical for subsequent bacterial dissemina-
tion [42]. Staphylococcus biofilms are mediated by polysaccharide intercellular adhesin
(PIA), which is synthesized by the ica operon [14]. PIA contributes to the facilitation of
initial biofilm adherence [43]. PIA is a major component of the extracellular matrix that
fixes staphylococcal cells within the biofilm mass, which increases resistance to mechanical
force [44]. The classical and predominant adaptive modules from the TCS systems [45]
modulate mechanisms associated with antibiotic resistance in most bacteria, including
increased drug efflux, upregulation of antibiotic-degrading enzymes, biofilm production
and enhanced cell permeability, which depend on the expression of corresponding down-
stream effectors [25]. Therefore, an understanding of the YycFG two-component system
contributed to developments in our ability to combat S. aureus infections.

An animal study using co-infection models demonstrated that ica-positive S. aureus
showed better in vivo survival than their corresponding ica mutants in wild-type mice [46].
The significant contribution of the ica genes toward S. epidermidis infection was confirmed
using a C. elegans infection model, which indicated that ica genes were required for a lethal
infection [47]. PIA, produced by S. aureus in vivo, significantly affected S. aureus systemic
infections in mice [48]. S. aureus could grow synergistically with Candida albicans within
biofilms [49]. These studies suggest that PIA production is important for infection and/or
co-infection in vivo, especially S. aureus. Biofilm organization decreases the susceptibility
to antimicrobial agents and/or antibiotics [25]. The potential mechanisms include persister
cell formation, altered metabolic conditions and a decreased penetration into the biofilm
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extracellular matrix [50]. S. aureus persister cells were first observed in 1942 and demon-
strated that non-growing dormant cells were resistant to penicillin [51]. Biofilms exhibit
characteristics similar to persisted cells, and the biofilm matrix contributes to persistent
infection by protecting bacterial cells from the immune system and antibiotics [52,53]. PIA,
which accounts for most of the extracellular matrix, affects susceptibility to antibiotics by
impairing penetration through the biofilm matrix. PIA likely enhances the horizontal trans-
fer of drug resistance genes via its effect on cell-to-cell contact in biofilms [50] because S.
aureus within biofilms was 1000 times more resistant than the bacteria in a planktonic state.
Previous studies showed that ica-positive S. aureus strains had increased resistance to a va-
riety of antibiotics, such as oxacillin, gentamicin, ciprofloxacin, levofloxacin, erythromycin
and vancomycin, compared to ica-negative strains [54,55].

3.2. YycFG TCS-Associated Cell Membrane and Cell Wall Biogenesis Involvement in
Drug Resistance

Antibiotic-resistant strains, particularly MRSA, are increasing in prevalence in hospital-
and community-acquired infections and pose a significant threat to public health [56,57].
MRSA infections are responsible for substantial morbidity and lead to the death of 21.8%
of infected patients annually [58]. To understand the mechanisms of resistance in MRSA
strains, recent genomic studies demonstrated that antibiotic resistance in MRSA was pri-
marily due to extensive modification of bacterial cell wall biogenesis [59,60]. These studies
used a clinical MRSA strain to demonstrate that exposure to certain antibiotic combinations
was associated with the development of mutations in specific genes, including yycFG [61].
Wu et al. isolated clinical MRSA strains from chronic osteomyelitis tissues. These MRSA
strains demonstrated an accelerated growth rate compared to the MSSA strains and an
accumulation of PIA matrix in the biofilms with the increased expression of the yycF/G/H
and icaA/D genes [17]. The YycFG system is essential for S. aureus viability. Therefore, a
recombinant plasmid shuttle vector was used to overexpress an antisense RNA and inhibit
target gene expression, which led to the construction of antisense yycG RNA (ASyycG)-
overexpressing MRSA strains. The ASyycG strains showed a reduction in biofilm formation
and an increased antibiotic sensitivity to cefoxitin compared to MRSA strains, which may
be attributed to altered PIA production [62]. To further investigate the regulatory roles of
ASyycG in the pathogenicity of MRSA strains in vivo, a rat model of tibial osteomyelitis
was developed and infected with MRSA- or ASyycG-overexpressing strains. The ASyycG
strains exhibited suppressed invasive ability and pathogenicity in vivo, and the production
of pro-inflammatory cytokines was reduced compared to MRSA strains [63].

To explain the potential mechanisms of ASyycG in regulating S. aureus biofilms,
transcriptome analyses showed that ASyycG overexpression influenced the pathways
associated with biofilm metabolism, virulence and glycolysis/gluconeogenesis utiliza-
tion in S. aureus, including the sarA and icaA genes [20]. For the potential role of the
response regulator YycF in biofilm formation and pathogenicity, endogenous antisense
yycF RNA (ASyycF) was detected using a 5′ RACE assay. The over-production of ASyycF
reduced YycF production and biofilm formation. Antibiotic sensitivity to vancomycin
was significantly improved in ASyycF-overexpressing strains compared to MRSA strains.
ASyycF-overexpressing MRSA strains exhibited suppressed invasion in a rat tibial infection
model [63], which supports ASyycF as a supplementary strategy for the management of
S. aureus and MRSA infections. Taken together, these data indicate that inhibition of the
YycFG pathway reduced PIA production, biofilm formation and bacterial pathogenicity,
which provides a potential target for the management of MRSA infections. The YycFG TCS
was identified in the process of cell wall biosynthesis. Cell wall thickening and an aberrant
division of septa are closely associated with YycFG [64]. LytM and SsaA play crucial roles
in cell wall peptidoglycan crosslinking relaxation during the cell division process and
are regulated by the YycFG system, which is required for cell viability. A previous study
revealed lipid II as an essential component of the cell wall and a signal that is sensed by
YycG kinase. Antibiotics, such as β-lactams, which characteristically target lipid II, activate
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YycFG TCS [65]. However, the efficacies of last resort agents, such as vancomycin, linezolid
and daptomycin, in the treatment of serious MRSA infections are controversial.

Vancomycin is a glycopeptide antibiotic that inhibits cell wall synthesis via binding
to the D-alanyl-D-alanine residue on the bacterial cell wall [66]. Ten types of vancomycin-
intermediate resistance in S. aureus (VISA) were analyzed, and three types of heterogeneous
vancomycin-intermediate S. aureus (hVISA) strains were sequenced using high-throughput
techniques. Site mutations in the yycFG gene were detected in eight types of VISA and two
types of hVISA strains, which exhibited the highest mutation frequency [67]. These results
suggest that the yycFG gene plays an important role in the generation of VISA and hVISA
strains. Jansen et al. reported that the insertion of an enhanced promoter sequence in the
promoter region of the yycFG gene of the S. aureus VISA strain increased the expression
of its downstream target genes and up-regulated bacterial cell wall biosynthesis, which
increased antimicrobial drug resistance [68]. Domains of the yycFG gene of the VISA strain
are affected by the mutation of a single nucleotide, such as the A96T mutation in the yycF
gene, which is a mutation from base G to base A at site 24673 of the S. aureus genome.
This mutated base is located in a conserved region of the yycF gene, and it is associated
with a conformational change to protein phosphorylation regulation. These mutations
decrease the activity of the YycFG protein and down-regulate the expression of bacterial
autolytic enzymes, which inhibits the bacterial autolytic process [67]. The yycHI genes are
downstream of yycFG and bind to the YycG histidine kinase receptor to interact with the
YycFG pathway [26]. Auxiliary YycH and YycI are ‘connector’ proteins that physically
interact with the YycG sensor kinase to form a ternary protein complex that activates
the YycFG TCS. Mutation of these auxiliary proteins disrupted the integration of YycFG
two-component networks and reduced vancomycin susceptibility in clinical VISA strains.
The mutation rate of the yycHI gene in these strains was significantly higher than the
vancomycin-sensitive S. aureus strain. Mutation of yycHI may lead to the enhancement
of cell wall synthesis and enhance antimicrobial resistance [67], but further investigation
is required.

Membrane-bound receptors and cognate cytosolic response regulators, such as the
YycG receptor and the YycF regulator, are closely associated with a phospho-relay mech-
anism on initiation. Upon phosphorylated, the YycF response regulator plays a role in
transcription factor binding to DNA and modulates associated gene expression to or-
chestrate several physiological functions involved virulence, cell wall metabolism and
biofilm formation [37,69]. Daptomycin (Dap) is a cell membrane-targeting lipopeptide
antibiotic that exhibits excellent antibacterial activities against susceptible Gram-positive
pathogens [70]. The combination of Dap with calcium significantly reduced cell viability
via cell membrane depolarization and permeabilization [71]. Because the YycFG TCS
regulates the cell envelope and lipid metabolism-associated genes, including atl, lytM, sceD,
isaA, and ssaA, it plays a fundamental role in cell membrane metabolism [8,65]. Because
S. aureus extracellular genomic DNA (eDNA) is released from bacteria via cell lysis, the
role of S. aureus autolysin, Atl, may be implicated in biofilm development, especially in
initial attachment [72]. YycFG TCS maintains cell membrane fatty acid homeostasis [73],
confers resistance to depolarization and/or permeabilization and contributes to dapto-
mycin resistance (DAP-R). The development of DAP-R in S. aureus was observed clinically
during therapy, and it is often associated with treatment failure [74]. DAP-R strains acquire
a progressive accumulation of single nucleotide polymorphisms in the YycFG TCS of the
yycFGHI operon, which is involved in key cell membrane events, and the yyc operon is
involved in the generalized response to antimicrobials [71]. Clinical MRSA strains that
emerged with daptomycin non-susceptibility were isolated to examine the influence of
certain antibiotic combinations, including daptomycin with or without adjunctive clar-
ithromycin, linezolid, or oxacillin, on the development of mutations in specific genes,
including the multi-peptide resistance factor gene (mprF) and yycFG. Daptomycin alone or
combined with other antibiotics resulted in mutations in mprF and yycFG, which suggests
that combining daptomycin with different antimicrobials affects the mutational space
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required for daptomycin nonsusceptibility development [61]. These results indicate that
the use of adjunctive antibiotic therapy in a clinical setting alters the mutational space per-
mitted for drug resistance development, which warrants the exploration of novel targeted
molecular treatments.

4. Targeting the S. aureus Two-Component Systems
4.1. Molecular Targets

Two-component systems integrate with other signaling molecules in bacteria via cross-
activation with other transcription factors [75]. The staphylococcal accessory regulator
(SarA) is a global regulator that controls the transcription of a wide range of virulence
genes [76]. A novel inhibitor of SarA was designed to prevent S. aureus biofilm formation,
and it was developed as a potential antimicrobial strategy in prosthetic joint infections [77].
Global SarA expression is linked to the YycFG TCS, which binds to the promotor region of
the sarA gene [20]. This activation affects biofilm formation and the pathogenic and antimi-
crobial resistance potential of S. aureus, which offers a supplementary therapeutic target.

4.2. Non-Coding RNA Regulation

Two-component systems are integrated with other signaling molecules in bacteria,
such as regulatory RNAs. RNA III is a “small” regulatory RNA (sRNA) in S. aureus, which
is controlled by the AgrAC TCS, and participates in quorum sensing and pathogenicity “an-
tisense regulation” via spa, rot or hla at the post-transcriptional level [78]. The formation of
double-stranded RNA structures via base pairing of the 5’ or 3′ terminal sequences of target
mRNAs with corresponding antisense RNAs provides positive translation initiation and
mRNA stability and stimulates RNA degradation by RNase for transcription interference
and attenuation [79,80]. Endonuclease RNase III plays a critical role in the latter effect via
the cleavage of double-stranded RNA structures [81]. Our previous study showed that pro-
moter regions of the RNase III–encoding gene (rnc) bound and were directly regulated by
the YycF ortholog gene VicR in S. mutans [82]. Antisense regulation mechanisms were used
to inhibit antibiotic resistance in bacterial infections using antisense oligonucleotides [83].
Notably, an endogenous antisense RNA base paired with yycF mRNA was identified in S.
aureus [84], which belongs to a trans-encoded sRNA [79]. The length of the ASyycF operon
is approximately 400 bp, and because endogenous ASyycF significantly downregulated the
expression of YycFG TCS, it may restrict biofilm formation and reduce antibiotic resistance
and pathogenesis. Therefore, this pathway should be considered as a supplementary
strategy for the management of S. aureus and MRSA infections.

5. Concluding Remarks

YycFG TCS is the only essential TCS for S. aureus to adapt to a wide variety of
environments. Many other resistance mechanisms, including cell wall peptidoglycan
metabolism, cell membrane lipid metabolism and innate immune system evasion, are
directly or indirectly regulated by YycFG (Figure 1). S. aureus acquired a collection of
virulence factors that enabled the bacterial cells to colonize biotic and abiotic surfaces
and form a biofilm. This biofilm structure allows S. aureus to sense and resist harsh
environmental conditions, physical and chemical stimuli and antimicrobial drugs, thereby
enabling S. aureus to contribute to chronic and recalcitrant infections. The S. aureus
YycFG TCS and several global gene regulators coordinate important functions during
the establishment and maturation of the biofilm. Despite recent advances in this field,
the available data are generally limited to in vitro studies using laboratory strains. Most
of the studies on S. aureus biofilms were performed under static conditions and do not
account for environmental signals that may variably affect biofilms. The development
of new models that mimic the processes during biofilm growth in human infections is
critical for the study of the mechanisms that drive S. aureus biofilm production. Future
novel and effective anti-infection therapies will likely include antimicrobial agents that
exhibit antibiofilm properties. Exploration of the molecular targets present in S. aureus
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two-component systems and their gene regulators, such as the ica operon, sarA, atl, lytM,
sceD, isaA, and ssaA, is worthwhile. Non-coding RNAs elucidated the post-transcription
regulation of biofilm growth and bacterial resistance to antimicrobials. The designing of a
nucleotide delivery system with high transfection efficiencies, favorable biocompatibility
and safety are needed to target RNA interference and as a novel strategy to treat infections
and tackle drug resistance.

Figure 1. The only essential YycFG two-component regulatory system (TCS) is a large operon that comprises yycFGHIJ and
influence antibiotic resistance in S. aureus. YycG is a sensor histidine-kinase compromised by two transmembrane sequences
and a periplasmatic loop [37,85]. To sense and respond to specific environmental cues, YycG can auto-phosphorylate and
transfer phosphoryl group to its cognate response regulator YycF inducing activities of biofilm formation, susceptibility to
antibiotics such as vancomycin and daptomycin and innate immune system evasion. The icaADBC-encoded polysaccharide
intercellular adhesin (PIA) or polymeric N-acetyl-glucosamine (PNAG) from UDP-N-acetylglucosamine (UDP-GlcNAc)
contributes to ica-dependent biofilm development [16]. Besides ica-dependent biofilm, ica-independent extracellular matrix
significantly contributes biofilm formation [86]. eDNA released by the major autolysin of S. aureus Atl in the lysis of bacteria
and leads to enhanced biofilm formation [87]. The major global regulators, staphylococcal accessory regulator (sarA) is
driven by three different promoters (P1, P2 and P3) [88]. SarA is a positive regulator of agr (Accessory gene regulator)
quorum-sensing system including four genes, agrBDCA. Under the YycFG TCS control, SarA results in downregulation
of proteases and the thermostable nuclease such as aur, sspAB (Staphylococcal serine proteases), scpA (Staphylococcal
cysteine protease operon), splA-F (Serine protease-like proteins) and nuc (Thermostable nucleases), allowing for biofilm
maturation [76,88]. This biofilm formation causes a relationship with methicillin resistance status [89]. Auxiliary proteins
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YycH and YycI play a positive role with YycG for a ternary protein complex to activate YycF activity triggering an
increased gene expression of atlA (Autolysin), sle1(N-acetylmuramyl-L-alanine amidase), lytM (Lysostaphin-type peptidase),
ssaA (Staphylococcal secretory antigen A), which contributes to cell wall (CW) metabolism and associated with clinical
vancomycin-intermediate S. aureus (VISA) [26]. Peptidoglycan is an essential component for the bacterial cell wall. It is
assembled from Lipid II. By “sensing” different levels of lipid II, YycFG TCS plays a fundamental role in peptidoglycan
crosslinking relaxation associated genes, including lytM, ssaA. Cleavage sites for YycFG regulated cell wall hydrolases
are indicated (black arrow) [64,71]. In addition, YycFG has been shown to regulate cell membrane (CM) lipid metabolism
including atl, sceD (Staphylococcus epidermidis D protein), isaA (Immunodominant staphylococcal antigen A) to alter CM
dynamics [71]. Both CW and CM mechanisms contribute to the development of daptomycin-resistance (DAP-R). SaeP and
SaeQ are two auxiliary proteins from the sae (S. aureus exoprotein) operon involving in phosphatase activity of histidine
sensor kinase SaeS and activated SaeS phosphorylates its cognate response regulator SaeR [90]. YycFG can trigger a response
on SaeRS leads to higher virulence genes expression of chp (Chemotaxis-inhibiting protein), scn (Staphylococcal complement
inhibitor) and sbi (Second binding protein of immunoglobulin), involving innate immune system evasion [41]. Therefore,
YycFG play an important role in the state of commensal S. aureus as a pathogen. Trans-encoded sRNAs antisense yycF base-
paired with yycF mRNA constructs as a double-stranded RNA structure and interferes YycFG TCS at the post-transcriptional
level [79,84]. Created with BioRender.com.
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