
����������
�������

Citation: Rodrigues, A.C.M.;

Barbieri, M.V.; Chino, M.; Manco, G.;

Febbraio, F. A FRET Approach to

Detect Paraoxon among

Organophosphate Pesticides Using a

Fluorescent Biosensor. Sensors 2022,

22, 561. https://doi.org/10.3390/

s22020561

Academic Editors: Zhen Cao, Hao Jin

and Shurong Dong

Received: 8 December 2021

Accepted: 9 January 2022

Published: 12 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A FRET Approach to Detect Paraoxon among Organophosphate
Pesticides Using a Fluorescent Biosensor
Andreia C. M. Rodrigues 1,*,† , Maria Vittoria Barbieri 1,† , Marco Chino 2 , Giuseppe Manco 1,‡

and Ferdinando Febbraio 1,*,‡

1 Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy;
mariavittoria.barbieri@ibbc.cnr.it (M.V.B.); giuseppe.manco@cnr.it (G.M.)

2 Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy;
marco.chino@unina.it

* Correspondence: rodrigues.a@ua.pt (A.C.M.R.); ferdinando.febbraio@cnr.it (F.F.)
† These authors contributed equally to this work.
‡ These authors contributed equally to this work.

Abstract: The development of faster, sensitive and real-time methods for detecting organophosphate
(OP) pesticides is of utmost priority in the in situ monitoring of these widespread compounds.
Research on enzyme-based biosensors is increasing, and a promising candidate as a bioreceptor
is the thermostable enzyme esterase-2 from Alicyclobacillus acidocaldarius (EST2), with a lipase-like
Ser–His–Asp catalytic triad with a high affinity for OPs. This study aimed to evaluate the applicability
of Förster resonance energy transfer (FRET) as a sensitive and reliable method to quantify OPs at
environmentally relevant concentrations. For this purpose, the previously developed IAEDANS-
labelled EST2-S35C mutant was used, in which tryptophan and IAEDANS fluorophores are the
donor and the acceptor, respectively. Fluorometric measurements showed linearity with increased
EST2-S35C concentrations. No significant interference was observed in the FRET measurements due
to changes in the pH of the medium or the addition of other organic components (glucose, ascorbic
acid or yeast extract). Fluorescence quenching due to the presence of paraoxon was observed at
concentrations as low as 2 nM, which are considered harmful for the ecosystem. These results pave
the way for further experiments encompassing more complex matrices.

Keywords: biosensor; thermostable enzyme; organophosphates; Alicyclobacillus acidocaldarius EST2;
fluorescence resonance energy transfer (FRET)

1. Introduction

Organophosphates (OPs) are a class of neurotoxic compounds including molecules
with diverse applications from insecticides to herbicides or nerve agents [1]. OPs’ high
efficiency against target plagues and their low persistence has led to their wide use in urban
and agricultural areas, and they are commonly found in environmental samples [2–5]. OPs
act by inhibiting the activity of acetylcholinesterase (AChE) enzymes, leading to muscular
dysfunction in target organisms [6]. Nevertheless, due to similarities in the AChE family
among diverse groups of organisms, OPs also pose a risk to non-target animals, including
humans [7,8]. The neurotoxic action in children is of special concern to the whole of
society, as children are generally more vulnerable because their brains are still developing.
The adverse effects may also be intensified because the ratio of pesticide dose to body
weight is higher than in adults, and children have lower detoxification rates [9,10]. The
widespread presence of OPs in the environment has led to a common effort to monitor
their concentrations in environmental (water, soil, air and food) and human (urine, blood
and tissue) samples.
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The detection of OPs in different environmental samples is usually achieved via
powerful analytical techniques such as gas and liquid chromatography combined with
mass spectrometry measurements (GC- and LC-MS) [11–13].

However, there are several alternative approaches that have been developed in the past
decades to support the current technologies, in order to increase the use of, and speed up,
OP monitoring. In particular, the development of sensors and biosensors for the detection
and quantification of OPs in different environments (water, soil, food, etc.) and human
samples (blood, urine, tissue, etc.) is growing [14].

Among these, enzymatic biosensors could be promising as one of the methods pro-
posed as a faster, cheaper and simpler technique [15]. Some attractive features of these
biosensors can be summarised in a few points: (i) less sample required, (ii) fast response
time, (iii) high sensitivity, (iv) high specificity, (v) the possibility of being used in the field
and (vi) the possibility of real-time measurement of samples. In particular, fluorescence-
based sensors provide high sensitivity, robust signal-to-noise ratios and rapid response
times, even in real-world environments (see review in [16]).

However, some limitations have also been observed, such as the specificity and the
thermal dependence of the enzymatic activities proposed as bioreceptors [14]. Hence,
there is a constant need for new, more efficient and stable enzymatic activities for use as
bioreceptors. Esterase 2 from Alicyclobacillus acidocaldarius (EST2) is a carboxylesterase
belonging to the hormone-sensitive lipase family, which has recently been explored for
applications as bioreceptors for the detection of OPs due to its thermostability and specificity
with respect to these compounds [17,18].

Using a fluorogenic substrate, we were able to measure with high efficiency the resid-
ual activity of EST2 after covalent binding to the OPs [19,20], improving the measurements
carried out with colorimetric substrates [18]. However, this approach remains an indirect
determination of the binding of OPs to the protein. Thus, it presents a limitation due
to the need to add the EST2 substrate into the analysis, making it difficult to apply for
real-time measurements. This limitation can be overcome by exploiting the quenching
of the intrinsic protein fluorescence, which is shown by the protein tryptophan residues
due to their electronic delocalisation of the indole aromatic ring. The intrinsic fluores-
cence of EST2 tryptophan was previously explored to detect the binding of OPs using
fluorescence-based methods [21]. However, fluorescence quenching is highly dependent
on substrate concentration. Therefore, a mutant of EST2 with the serine 35 replaced by a
cysteine residue (EST2-S35C) was developed to bind an extrinsic fluorescent probe. The
addition of a fluorescent probe has several advantages. It increases the sensitivity of the
bioreceptor to slight environmental changes, allowing for the detection of conformational
variations of macromolecules or their interactions and allowing binding with other analytes
through the measurement of the displacement of the dyes [22].

Fluorescence-based biosensors have been proved to have a high degree of sensitivity
and specificity, allowing for real-time detection of target molecules in solution at envi-
ronmentally relevant levels. We previously proposed their use in a flow cell of labelled
EST2-S35C for real-time detection of OPs [23]. Nevertheless, these biosensors may be
limited due to the high concentration of fluorophore required, leading to quenching due
to aggregation [24], or by the complexity of the environmental sample with other organic
compounds emitting fluorescence at similar wavelengths. Förster resonance energy transfer
(FRET)-based sensors may be an effective alternative to overcome these problems.

That said, the main objective of this study was to evaluate the use of labelled EST2-S35C
as an enzymatic bioreceptor, coupled with FRET measurements for the detection of OPs in
complex mixtures. To achieve this, we assessed: (1) the stability of the bioreceptor under
different pH conditions; (2) the efficacy of FRET measurements in avoiding interference
from other organic compounds in the medium; (3) the selectivity of EST2-S35C towards
paraoxon, compared with thio-OPs.

Briefly, good stability and replicability of FRET measurements applied to the studied
bioreceptor were observed. Furthermore, the specificity of EST2-S35C towards paraoxon
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was also clearly observed in the presence of thio-OPs. Therefore, applying FRET mea-
surements using EST2-S35C as a bioreceptor is promising regarding the complexity of
biological matrices.

2. Materials and Methods
2.1. Reagents

Diethyl-p-nitrophenyl phosphate (paraoxon), diethyl p-nitrophenyl thiophosphate
(parathion), isopropylmethylpyrimidyl diethyl thiophosphate (diazinon), tributylphos-
phine (TBP), tris(hydroxymethyl)aminomethane hydrochloride (Tris/HCl), dimethyl sulfox-
ide (DMSO), glucose, ascorbic acid and selected yeast extracts were purchased from Sigma-
Aldrich (Merck & Co., Inc., Kenilworth, NJ, USA). Bio-Rad dye reagent was purchased
from Bio-Rad Laboratories, Inc., Hercules, CA, USA. 5-((((2-iodoacetyl)amino)ethyl)amino)
naphthalene-1-sulfonic Acid (1,5-IAEDANS) was purchased from Molecular Probes (Thermo
Fisher Scientific, New York, NY, USA). All the reagents were of analytical grade.

2.2. Over-Expression and Purification of EST2-S35C

The mesophilic host E. coli strain BL21 (DE3), already available in our lab [25], was
selected to over-express EST2-S35C, and was extracted and purified as previously detailed
by Carullo et al. [23], with slight modifications. As previously described, TBP was added as
a reducing agent to preserve the mutated cysteine in the reduced form. In addition, minor
modifications to the extraction and purification steps were implemented. In particular,
the protein was extracted using a sonication step performed on a Branson Sonifier Sound
Enclosure Model SSE-1 (3 cycles of 40 s ON/30 s OFF, pulses at 50% power output intensity),
in a water/ice bath at 4 ◦C. This step was followed by ultracentrifugation (80,000 g at 4 ◦C
for 30 min) to remove the cell debris. After the thermo-precipitation/ultracentrifugation
steps, gel filtration was performed using a Sephadex G-25 column (GE Healthcare Bio-
Sciences AB, Uppsala, Sweden), achieving >95% purity of the enzyme. The final protein
concentration was calculated after the Bradford method with bovine G-globulin as the
standard [26].

2.3. EST2-S35C Labelling and Inhibition Efficiency

The polar solvent DMSO was used to dissolve IAEDANS at a final concentration of
20 mM. As described in Carullo et al. [23], EST2-S35C (15 × 10−9 moles), in 25 mM Tris/HCl
buffer at pH 7.5 and 1 mM TBP, was conjugated with IAEDANS (from 10- to 200-fold molar
excess), and incubated overnight in the dark at room temperature. The excess of the probe
was removed by dialysis against a 25 mM Tris/HCl buffer at pH 7.5 at room temperature
in the dark, using a QuixSep Micro Dialyzer (Creative Biomart, New York, NY, USA). The
protein probe concentration was determined using the Bio-Rad dye reagent, as described
by Bradford et al. [26].

The inhibition efficiency of paraoxon on EST2-S35C was determined as described
in Carullo et al. [23]. Briefly, aliquots of 2.1 pmol of EST2-S35C were incubated at room
temperature in 25 mM Tris/HCl at pH 7.4 in the presence of increasing concentrations of
paraoxon in the range from 0 to 2 pmol. The residual enzymatic activity was measured by
assaying sample aliquots on 0.2 mM p-nitrophenyl-hexanoate in 40 mM sodium phosphate
buffer at pH 7.0, monitoring the increase in absorbance at a wavelength of 405 nm by the
release of p-nitrophenol as a reaction product.

2.4. Förster Resonance Energy Transfer Measurements

In brief, the Förster theory presents FRET as the transference of an exciton from a
donor to an acceptor at a proximity of 0–10 nm, as a molecular non-radiative process. For
this process to occur, a superposition is necessary between the donor absorbance spectrum
and the acceptor emission spectrum [27].
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Aliquots of a stock solution of 1.0 µg/µL (~30 pmol) EST2-S35C, labelled with
IAEDANS, were used for FRET measurements at different labelled-protein amounts (0, 3, 9,
12, 15, 30, 90, 120 and 150 pmol) in a 450 µL final volume of 25 mM Tris/HCl (pH 7.5) buffer.

Fluorescence spectroscopy measurements were performed on a Jasco FP-8200 (JASCO,
Tokyo, Japan) spectrofluorometer. All experiments were performed in triplicate. The emis-
sion spectra of the fluorescent probe conjugated with EST2-S35C were recorded in a 1 cm
optical path length cuvette, in the range from 300 to 550 nm using an excitation wavelength
of 290 nm, 1 nm step resolution and 500 nm/min scan speed, with 3 accumulations. Data
were acquired using Spectra Manager 2.09 software (JASCO, Tokyo, Japan).

2.5. Interference in FRET by pH and Chemicals

The stability of the EST2-S35C FRET signal intensity was evaluated under different pH
values. For this purpose, 25 mM NaH2PO4 buffer at pH 7.0 and 25 mM Tris/HCl buffer at
pH 7.5 and 8.5 were used to individually incubate 67 nM (30 pmol/450 µL) EST2-S35C for
1 min at room temperature. In addition, to evaluate the possible interference with respect
to the FRET intensity of organic compounds present in complex samples, glucose (in the
range from 1 to 6 mM), ascorbic acid (in the range from 1 to 6 mM) and yeast extracts (in
the range from 1 to 3 mg/mL) were individually tested with EST2-S35C (67 nM) in the
FRET measurements.

2.6. Detection of Paraoxon by FRET

Measurements of the FRET quenching of inhibited EST2-S35C (67 nM) were performed
by adding increasing concentrations of OPs to the solution. In particular, stock solutions
(10 mM) of paraoxon, parathion and diazinon in DMSO were used. To set up the quenching
measurements, increasing concentrations of paraoxon (0, 2.2, 11.1, 22.2, 33.3, 44.4, 55.6,
66.7 and 77.8 nM), were tested in the solution (450 µL) containing 67 nM EST2-S35C, by
incubating for 1 min before acquisition of the emission spectra. FRET measurements on
single or complex solutions of OPs (450 µL) were performed by adding to EST2-S35C
(67 nM) increasing concentrations (in the range from 0 to 26.7 nM) of paraoxon, parathion
and diazinon, individually, in a 1:1 mixture of parathion/diazinon and in a 1:1:1 mixture of
paraoxon/parathion/diazinon.

2.7. Data Analysis

The linearity of the data was assessed, and the robustness of replicates was tested
using the F test with p < 0.05. The limit of detection (LOD) and limit of quantification (LOQ)
were calculated using the equations LOD = 3 × (SD/slope) and LOQ = 10 × (SD/slope),
respectively. One-way ANOVA was used to test for the pH effect on bioreceptor stability.
The relative standard deviation (RSD) was calculated for each data set and presented in
Table S2. Statistical analysis was performed using the GraphPad Prism version 7.0 software
for Microsoft Windows (GraphPad Software, La Jolla, CA, USA).

2.8. In Silico Preparation of Mutated and Labelled EST2-S35C 3D Structure

The 3D crystallographic structure of EST2, resolved at 2.6 Å (PDB-ID 1EVQ), was
retrieved from the RCSB PDB online database (https://www.rcsb.org/ (accessed on
7 December 2021)) [28] and repaired using the PyMOL software [29], by: (i) replac-
ing the seleno-methionine derivative, (ii) removing the 4-(2-hydroxyethyl)-1-piperazine
ethanesulfonic acid molecule bound to the catalytic serine 155 and (iii) removing the
other heteroatoms, such as water molecules. The web-based platform CHARMM-GUI
(http://www.charmm-gui.org (accessed on 7 December 2021)) was used to prepare the
S35C mutant of the EST2 3D structure, replacing the serine residue in position 35 with
a cysteine residue. The generated structure was optimised using the CHARMM soft-
ware [30], performing a basic energy minimisation through an initial 25–50 steps of the
steepest descent (SD) algorithm (to remove bad van der Waals contacts) and subsequently
1,000,000 steps of the Newton–Raphson method (ABNR) to remove potential problems

https://www.rcsb.org/
http://www.charmm-gui.org
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such as collisions and non-physical contacts/interactions. Using the Avogadro software
(https://avogadro.cc (accessed on 7 December 2021)), the 3D structure of the fluorescent
IAEDANS probe was manually added to the sulfur group of the cysteine 35.

2.9. Docking Analysis

The molecular docking analyses were carried out on the optimised 3D structure of
EST2-S35C bonded to IAEDANS, using AutoDock Vina software [31], employing the
Broyden-Fletcher-Goldfarb-Shanno algorithm, significantly improving the average accu-
racy of the binding mode predictions compared to AutoDock 4. In order to determine the
grid size and add polar hydrogen atoms to the 3D structure of EST2-S35C, the AutoDock
Tools (ADT) software package was used [32]. A box of about 90 Å3 was used to include
the catalytic protein pockets. The 3D structures of paraoxon, parathion and diazinon were
retrieved from the online database PubChem (https://pubchem.ncbi.nlm.nih.gov/ (ac-
cessed on 7 December 2021)) and used individually as the ligand of the EST2-S35C receptor.
The protein was considered rigid during the docking procedure due to the thermophilic
proteins’ rigidity at room temperature. The structures were analysed, and the images were
produced using PyMOL [29] molecular graphics software.

3. Results and Discussion
3.1. EST2-S35C Purification and Labelling

The over-expression and biochemical characterisation of EST2-S35C were described in
detail in Carullo et al. [23], confirming that the serine-to-cysteine residue mutation does
not affect the catalytic site structure, and the structure–function relationship is unchanged.
In addition, similarly to EST2, EST2-S35C remains sensitive to paraoxon inhibition [23].
Furthermore, using a single chromatographic step of molecular-sieve chromatography, it
returns a more active and stable protein, because EST2-S35C is subjected to fewer noticeable
electrostatic and chemical impairments after ion-exchange or affinity chromatography.

In order to improve the efficiency of the IAEDANS labelling in the EST2-S35C, we
incubated the protein in the presence of increasing molar excesses of the fluorescent probe,
from 10- to 200-fold, and evaluated the fluorescence intensity of the conjugated IAEDANS.
We observed the best binding efficiency at a protein:probe ratio of 1:100 (Table S1), and this
ratio was therefore used for all the other experiments.

In accordance with Carullo et al. [23], the activity of EST2-S35C conjugated with
IAEDANS remained unchanged with respect to the free enzyme, and it continued to be
fully inhibited by paraoxon in a 1:1 ratio (Figure S1).

3.2. Fluorescence Resonance Energy Transfer (FRET) Measurements

In order to apply FRET to detecting low-concentration analytes, such as OP in solution,
using the EST2-S35C mutant labelled with a fluorescent probe, we analysed the 3D structure
of the protein in silico. The cysteine 35 is located in a loop near the entrance of the alcohol-
binding pocket of EST2, fully exposed to binding with the IAEDANS (Figure 1a). The high
accessibility on the protein surface of the cysteine 35 residue places the fluorescent probe
outside the protein surface. In agreement with the Förster critical distance value, typically
falling within a range of 20 to 60 Å, the fluorescent probe is close enough (between 20 and
30 Å) to the tryptophan residues 85 and 213 to enable resonance energy transfer to occur
(Figure 1b). As expected, we observed an increase in the maximum fluorescence emission at
457–460 nm after tryptophan excitation at a wavelength of 290 nm (Figure 2a), confirming
the energy transfer from these residues to the fluorescent probe. A significant linear
increase in the fluorescence intensity of IAEDANS after energy transfer from tryptophan
was observed for both low (Y = 29.12X + 8.916, R2 = 0.99, F(1,3) = 899.9, p < 0.0001, Figure 2b)
and high (Y = 12.57X + 98.1, R2 = 0.99, F(1,3) = 2437, p < 0.0001, Figure 2c) protein amounts.
Our results agree with previous results, where linear behaviour of the labelled EST2-S35C
was obtained with different fluorescence-based methods [33].

https://avogadro.cc
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3.3. pH Influence on FRET Measurements

The stability of labelled EST2-S35C at different pH values was tested in the range from
7.0 to 8.5, which covers important liquid samples such as blood (pH 7.4) and drinking
water (pH 7.0). We used two buffers with different properties. In particular, Tris/HCl is
a widely used buffer suitable for the solubilisation of molecules with organic properties,
while the inorganic NaH2PO4 is more appropriate for ion solubilisation. No significant
differences (F(2,6) = 2.36, p = 0.18, R2 = 0.44) were observed when applying FRET for
measuring the fluorescence intensity of 67 nM labelled EST2-S35C (Figure 3). The pH is
one of the major factors that can imply changes in enzyme conformations, impairing their
activity. These results are not surprising, since EST2 is known to tolerate a certain range
of pH fluctuations without compromising its activity [18]. However, due to the moderate
to extremely acidic nature of fruit juices, any measurements of these samples must be
performed in a buffered solution.
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residues and the IAEDANS of 67 nM of labelled EST2-S35C, using 25 mM NaH2PO4 at pH 7.0 and
25 mM Tris/HCl at pH 7.5 and 8.5 as media.

3.4. Effects of Organic Compounds on FRET Measurements

Another factor that must be considered when developing a biosensor for field appli-
cations is the complexity of the components present in the liquid sample. For instance,
complex samples such as fruit juices can contain a variety of other molecules such as sug-
ars, vitamins and other proteins. Therefore, measurements were performed to determine
the possible interference of other non-target organic compounds in solution in the FRET
measurements. No significant changes in the fluorescence ratios were observed when
increasing concentrations of glucose (Y = −0.012X + 0.987, R2 = 0.89, F(1,2) = 15.32, p = 0.06,
Figure 4a), ascorbic acid (Y = 0.004X + 0.997, R2 = 0.33, F(1,2) = 0.99, p = 0.42, Figure 4b) or
yeast (Y = −0.017X + 0.999, R2 = 0.28, F(1,2) = 0.78, p = 0.47, Figure 4c) were added to the
labelled EST2-S35C solution (67 nM). The replicability of the FRET measurements and the
stability of the bioreceptor in the solutions containing the different organic compounds
were good, with RSD values ranging from 3.36 to 4.63% (Table S2). Previous experiments
evaluated the EST2 activity in solutions containing serum from juice fruit, detecting some
interference at concentrations as low as 5% of organic load [18]. Thus, our data suggest that
directly measuring the FRET between the tryptophan residues and the extrinsic probe may
help to overcome these issues. In agreement with our results, Wu et al. [34] did not detect
any interference of glucose in FRET measurements using the activity of a cholinesterase as
the bioreceptor.
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the tested substances: (a) glucose (mM); (b) ascorbic acid (mM); (c) yeast extract (mg/mL).

3.5. FRET Quenching by Paraoxon Addition

A significant linear decrease in the fluorescence transfer was observed with increasing
amounts of paraoxon addition to the solution containing 67 nM of the labelled EST2-S35C
(Y = −0.002953X + 0.9597, R2 = 0.95, F(1,7) = 129.6, p < 0.0001, Figure 5). The fluorescence
is quenched due to the paraoxon binding in the catalytic site of EST2 and decreasing
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the FRET between the EST2 tryptophan donor and probe IAEDANS acceptor. As previ-
ously shown [21], the addition of paraoxon to the enzyme solution does not change the
micro-environment of the tryptophan residues. Thus, we can exclude the interference of
nonspecific interactions and associate the quenching of the fluorescence transfer with the
steric bulk of the pesticide in the EST2-S35C catalytic site. The high precision and repro-
ducibility of the paraoxon detection using FRET are demonstrated by the low values of RSD,
ranging from 0.38 to 6.01% (Table S2). These values are similar to values obtained using
classical techniques for pesticide residues detection, such as GC-MS [13]. A LOD of 0.57 nM
and a LOQ of 2.0 nM were derived, though it should be taken into account that the dynamic
linear range starts from 2.0 nM paraoxon. These values agree with our previous studies
using fluorescence-based methods to evaluate EST2 sensitivity towards paraoxon [19] and
are comparable with those of biosensors based on other methodologies. In fact, Zhang
et al. proposed an AChE-based biosensor immobilised on a functionalised graphene oxide
electrode, obtaining a LOD for paraoxon of 0.65 nM [35]. Similarly, Lang et al. obtained a
LOD for paraoxon of 0.70 nM, using a sensitive amperometric AChE biosensor based on
gold nanorods [36]. Arduini et al. evaluated the use of an electrochemical biosensor, using
butyrylcholinesterase as the biosensor to detect paraoxon, and achieved a limit of detection
of 22 nM and a linear range observed between approximately 70 and 360 nM [37]. The
same study evaluated the recovery of paraoxon from a spiked biological matrix using the
biosensor and high-performance liquid chromatography (HPLC), obtaining comparable
recovery values of 60 and 63%, respectively. Combining nanomaterials with enzyme inhi-
bition methods has also been an important topic of research. For instance, Zhai et al. [38]
reviewed the use of Au nanomaterials decorated with enzymatic bioreceptors and found
that limits of detection as low as 1 pmol/L were frequently reported. Nevertheless, the
more complex technology involved in this type of biosensor makes it more expensive than
the one proposed in this study.
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Figure 5. Ratios of the fluorescence intensity (mean ± SD, n = 3) of 67 nM IAEDANS-labelled
EST2-S35C in the presence (I) and the absence (I0) of increasing concentrations (nM) of paraoxon at a
maximum wavelength of emission of 458–460 nm. Dotted lines represent the 95% confidence interval
for the linear regression.

3.6. EST2-S35C Specificity towards Paraoxon Detection by FRET Measurements

To evaluate the selectivity of the bioreceptor towards paraoxon, the influence of
other pesticides such as the thio-OPs parathion and diazinon were investigated. A linear
inhibition of fluorescence intensity ratio was observed with increased concentrations of
paraoxon (Y = −0.005X + 0.993, R2 = 0.99, F(1,2) = 135.5, p = 0.007, Figure 6a). No significant
alterations in fluorescence intensity ratios were observed for parathion (Y = 3.146e − 0.005X
+ 0.993, R2 = 0.003, F(1,2) = 0.007, p = 0.94) or diazinon (Y = 0.001X + 0.997, R2 = 0.88,
F(1,2) = 14.33, p = 0.06, Figure 6a). When a mixture of parathion and diazinon was added
to the bioreceptor, no alterations were measured regarding fluorescence intensity ratio
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(Y = 4.038e − 0.005X + 1.012, R2 = 0.002, F(1,2) = 0.004, p = 0.95, Figure 6b, brown squares).
When a mixture of all three studied pesticides were added to the solution with the labelled
EST2-S35C, a significant linear inhibition was observed with increasing concentrations of
pesticides (Y = −0.004X + 0.991, R2 = 0.97, F(1,2) = 66.21, p = 0.01, Figure 6b, green triangles).
Similarly to other cholinesterases, EST2 presents lower affinity towards thio-OPs, which
explains the lack of FRET quenching observed at the tested levels.
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EST2-S35C in the presence (I) and the absence (I0) of increased concentrations (nM) of: (a) individ-
ual OPs paraoxon (Px, maximum of emission 458–462 nm), parathion (Pa, maximum of emission
452–462 nm) and diazinon (D, maximum of emission 451–462 nm); (b) paraoxon (repeated for com-
parison purposes), mixture of 1:1 parathion:diazinon (maximum of emission 458.5–462.5 nm) and
mixture of 1:1:1 paraoxon:parathion:diazinon (maximum of emission 459–462.5 nm).

Wu et al. [34] reported a FRET-based sensor to determine paraoxon using carbon
quantum dots encompassing the inhibition of the butyrylcholinesterase activity, with
a LOD of 0.2 nM. Similarly, Yan et al. [39] presented a FRET-based approach using a
butyrylcholinesterase–acetylthiocholine–MnO2–carbon dots system for paraoxon detection
ranging from 0.2 to 18 nM with a detection limit of 0.05 nM. CdTe-quantum-dot-based
FRET sensors, using porphyrin bound to the surface of CdTe, reached a detection limit of
0.032 nM for paraoxon under optimal conditions [40], but with low specificity. FRET-based
biosensors have also been used to detect other OPs, such as diazinon. Using aptamers
conjugated with graphene oxide, different authors obtained a limit of detection for diazinon
of 0.13 nM [41] and 0.08 nM [42]. Other FRET-based non-enzymatic sensors have been
used for malathion detection. Exploiting the quenching in the FRET between a chemical
fluorescent probe (energy donor) and β-cyclodextrin-coated silver nanoparticles (receptor),
Wang et al. [43] obtained a limit of detection of 36 nM. Similarly, Chen et al. [44], using a
fluorescent aptasensor and cationic-polymer-encapsulated gold nanoparticles, obtained a
detection limit of 1.42 nM for malathion.

Compared to these FRET-based biosensors, our study has the advantage of presenting
a simpler system that is less expensive and more specific, with a comparable detection limit
in the nM range.

3.7. In Silico Analysis

The absence of competitive effects between the thio-OPs and the paraoxon was inves-
tigated using an in silico approach. In particular, we performed docking measurements
to evaluate their placement in the protein and the extent of their influence on the energy
transfer from tryptophan residues and the IAEDANS. Two binding pockets were experi-
mentally identified in the EST2 structure [45]. The main one accommodates the acyl chains,
while the secondary one recognises the alcohol groups (Figure S2). After minimisation, the
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docking analysis was performed on the EST2-S35C structure (with the cysteine mutation)
obtained from the CHARMM-GUI online platform. The structures obtained from at least
three different predictions for each OP ligand located the paraoxon in both the acyl- and
alcohol-binding sites of the mutated protein, with a better affinity for the acyl site (Table 1).
In contrast, parathion and diazinon were exclusively located in the alcohol-binding site
(except for two wrong locations for diazinon, with a very low affinity of ≤4.6 kcal/mol in
the opposite part of the protein in just one prediction), with the best affinity values in the
range from −6.2 to −6.1 and −6.2 to −5.2 kcal/mol, respectively (Table 1).

Table 1. OPs best affinity values for each of the predicted binding pockets in EST2-S35C 3D structure.

Compound Name Affinity (kcal/mol) Pocket Binding

Paraoxon −6.5 to −6.1 acyl

−6.1 to −5.6 alcohol

Parathion n.d. acyl

−6.2 to −6.1 alcohol

Diazinon n.d. acyl

−6.2 to −5.2 alcohol

These results are in agreement with a similar docking analysis carried out on the
EST2 3D structure, which highlighted the presence of paraoxon in both catalytic pockets
and diazinon in the alcohol-binding pocket only [21]. However, parathion was previously
predicted to bind in both catalytic pockets. Thus, we can hypothesise that the mutation
and the protein minimisation result in a different prediction.

However, these predictions are in complete accordance with the FRET measurements,
supporting the different results observed for paraoxon (fluorescence quenching). In fact,
only paraoxon was predicted to bind in the acyl pocket, affecting the energy transfer from
Trp 85 to the IAEDANS probe. In contrast, the two thio-OPs (parathion and diazinon),
although showing similar affinity for binding to EST2-S35C, did not affect the FRET because
they were located only in the alcohol-binding site.

4. Conclusions

In this work, we demonstrated the use of FRET measurements to improve the efficiency
of paraoxon detection. Our findings suggest that the binding of fluorescent probes, such as
IAEDANS, near the alcohol-binding site, does not affect the enzyme’s binding or function
in the acyl-binding site. More importantly, we achieved two interesting goals: (i) to
reduce the interference in the fluorescence measurements due to the presence of other
organic molecules in complex solutions; (ii) to increase the protein specificity, as the use
of FRET measurements permitted observation of changes affecting only the acyl-binding
pocket, strongly reducing possible interferences from nonspecific interactions at the alcohol-
binding site.

In conclusion, this study paves the way to applying this bioreceptor for FRET mea-
surements of real samples such as food and/or biological fluids, eventually combined with
solid-state fluorescence measurements [33].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s22020561/s1. Figure S1: Plot of residual activity of EST2-S35C conjugated with IAEDANS
against increasing concentrations of paraoxon; Figure S2: Mesh representation of the cavities inside
of the EST2-S35C which shape the catalytic site; Table S1: Fluorescence intensity of the IAEDANS
probe after coupling reaction at different EST2-S35C:IAEDANS ratios.; Table S2: Relative standard
deviation (RSD) of the performed FRET measurements.

https://www.mdpi.com/article/10.3390/s22020561/s1
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