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Abstract: Premature infants born after less than 25 weeks’ gestation are particularly vulnerable
at birth and stabilization in the delivery room (DR) is challenging. After birth, infants born after
<25 weeks’ gestation develop respiratory and hemodynamic instability due to their immature phys-
iology and anatomy. Successful stabilization at birth has the potential to reduce morbidities and
mortalities, while suboptimal DR care could increase long-term sequelae. This article reviews current
neonatal resuscitation guidelines and addresses challenges during DR stabilization in extremely
premature infants born after <25 weeks’ gestation at the threshold of viability.
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1. Introduction

The impending birth of periviable infants born after 22 + 0 to 24 + 6 weeks’ gestation
is associated with anxiety and uncertainty for family members and healthcare teams [1].
Parental beliefs and values need to be incorporated into the decision-making process to
provide the optimal approach and outcome for the parent–infant dyad. These options
include active or comfort (palliative) care. The decision of active management leaves
clinicians in a challenging position. Despite the advances that have been achieved in
perinatal and neonatal care, there is a lack of strong evidence in delivery room (DR) studies
which have included infants at 22 + 0 to 24 + 6 weeks’ gestation [2].

In recent decades, gestational age has continuously shifted lower. However, the
stabilization of premature infants born after <25 weeks’ gestation in the DR remains
challenging [3]. The current neonatal resuscitation guidelines are designed for term and
premature infants born after <32 weeks’ gestation [4–7], thereby potentially not provid-
ing the optimal DR management for infants born after <25 weeks’ gestation. The aim
of this narrative review was to address the available evidence including current recom-
mendations regarding DR stabilization and resuscitation in premature infants born after
<25 weeks’ gestation with a focus on respiratory and cardio-circulatory support.

2. Decision Making at <25 Weeks’ Gestation

Decision making about active or comfort (palliative) care in infants to be delivered
between 22 + 0 to 24 + 6 weeks’ gestation is challenging. Gestational age (despite the
uncertainty of the accuracy of an infant’s gestation determined by fetal ultrasound) is used
as the main determinant for decision-making due to its association with outcomes [8,9].
Current recommendations vary widely and decision making should use a guided approach
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including parents and care-givers at each hospital. Factors that might influence the decision-
making process include birth weight, multifetal pregnancy, sex [10], presence of intra-
amniotic infection [11] or the presence of congenital anomalies. In addition, antepartum
corticosteroid [12,13] and magnesium sulfate [14] administration could influence outcomes.
Survival predicting tools such as the Neonatal Research Network Extremely Preterm Birth
Outcome Model are widely used for prediction by care-givers and thereby may support
the decision-making process [15]. However, systematic analyses investigating the impact
on neonatal outcome by incorporating survival predicting tools into the decision-making
process are lacking.

Survival rates among periviable infants born after 22 + 0 to 24 + 6 weeks’ gesta-
tion increase for deliveries that occur in hospitals with NICUs that have both a high
level of care and a high volume of such patients [16]. Different perinatal management
among hospitals and countries may have a further impact on outcome. In centers
with a more proactive perinatal resuscitation strategy in premature infants born after
<25 weeks’ gestation, the number of live births increased and survival rates improved
when compared to those with a more selective approach, potentially resulting in in-
creased morbidity among survivors [17,18]. Most importantly, there is an open discus-
sion about the parents’ wishes, the capability of the perinatal center and NICU and
their outcomes to provide the best decision-making options for the parents.

3. Umbilical Cord Clamping
3.1. Delayed Cord Clamping

Immediate cord clamping (ICC) has been used for several decades. However, evidence
suggests that ICC might cause an acute reduction in left atrial filling, leading to an abrupt
drop in left ventricular output [19]. In contrast, delayed cord clamping (DCC) might
improve blood pressure stability and placental transfusions in premature infants [19,20]. A
meta-analysis including 3514 premature infants born after <34 + 0 weeks’ gestation from
23 studies reported that DCC may improve neonatal survival or reduce neonatal mortality
with a survival risk ratio of 1.02, a 95% confidence interval (CI) of 1.00–1.04 with a number
needed to benefit: 50, 95% CI: 25 to no benefit [21]. However, most studies included in the
meta-analysis only enrolled infants born between 32 and 34 weeks’ gestation. The trial by
Tarnow-Mordi et al. included 518 premature infants born after < 27 + 0 weeks’ gestation
and reported no differences in the composite of death or major morbidity (p = 0.23) [22].
While the evidence is limited in premature infants born after <25 weeks, recent guidelines
recommend that DCC be performed irrespective of gestational age [4–6].

3.2. Umbilical Cord Milking

Intact umbilical cord milking (I-UCM) has been advocated as an alternative to DCC,
particularly in infants who do not breathe at birth [19]. Animal studies reported that
I-UCM promotes placental transfusion, however, this causes large fluctuations in mean
carotid artery pressures and carotid artery blood flows (with each milking along 10 cm
of cord, carotid artery blood flow increased and decreased by 15% ± 2% and 8% ± 1%,
respectively) [23]. A pilot trial comparing I-UCM with DCC reported higher superior
vena cava flow and right ventricular output during the first 12 h of life [24] with higher
cognitive composite score (100 ± 13 vs. 95 ± 12, p = 0.031) and language composite score
(93 ± 15 vs. 87 ± 13, p = 0.013) at 22–26 months of corrected age compared with those
randomized to DCC [25]. However, a recent large randomized trial comparing I-UCM
with DCC reported a significant increase in the rates of severe intraventricular hemorrhage
(IVH) after I-UCM in a subgroup of 182 premature infants born after <28 weeks’ gestation
(20 vs. 5; p = 0.02) [26]. This led to an early termination of the trial, and currently I-UCM is
not recommended in premature infants born after <28 weeks’ gestation [6].

An alternative approach of umbilical cord milking is cut-umbilical cord milking (C-
UCM), which is performed by early cord clamping and retaining a long segment of the
umbilical cord that then can be milked while initiating ventilation [27]. In extremely low-
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birth-weight (ELBW) infants, C-UCM increases the mean blood volume by 17.7 (±5.5)
mL/kg birthweight per 30 cm of umbilical cord [28] and has similar effects on placental
transfusion and the need for red blood cell transfusions compared to I-UCM [27]. In
premature infants, C-UCM may increase peak hematocrit within 24 h after birth compared
to ECC, but the study population only included six (10%) ELBW infants [21,29]. Prospective
trials in premature infants born after <25 weeks’ gestation are warranted to prove the safety
and effects of C-UCM on short- and long-term outcomes.

3.3. Intact Cord Resuscitation

Animal models demonstrated that hemodynamic transition improves when respira-
tory support is provided while preterm lambs remain attached to the cord (i.e., intact cord
resuscitation). Randomized trials have compared intact cord resuscitation with ECC [30],
DCC [31,32], or I-UCM [33], and reported the feasibility of 59–100% [33–36]. However,
these trials have not reported improved outcomes and did not include a sufficient number
of ELBW infants.

4. Temperature Control

Thermal care to maintain body temperature between 36.5 and 37.5 ◦C is crucial to
reduce morbidity and mortality in premature infants [37,38]. Admission temperature is a
strong prognostic factor in low-birth-weight infants [39,40]. Placed under a preheated radi-
ant heater, the premature infant should be completely covered with polyethylene wrapping
(apart from the face) without prior drying [6,7,37,38]. The temperature should be regularly
monitored after birth to prevent hypo- and hyperthermia [6]. Further interventions might
be beneficial, including the use of warmed humidified gases in infants receiving respiratory
support, increased room temperature > 25 ◦C, warm dry blankets, thermal mattress and a
head cap [6,7,37,38,41,42].

5. Respiratory Support in the Delivery Room
5.1. Spontaneous Breathing

Approximately 80% of ELBW infants initiate spontaneous breathing at birth. However,
all of them require CPAP and/or PPV after birth due to their weak respiratory drive, low
respiratory muscle strength and lung immaturity [43]. The presence of spontaneous
breathing seems to be essential, since larynx adduction during apnea can impede gas
from entering the lungs during non-invasive respiratory support [44]. Thus, the larynx in
premature infants needs to be opened after birth to establish lung aeration. This occurs in
newborns who achieve spontaneous breathing [44,45].

Tactile maneuvers might stimulate breathing and thereby improve oxygenation in
premature infants [32,46,47]. Katheria et al. have shown that gentle tactile stimulation in
premature infants during DCC promotes the establishment of spontaneous breathing and
provides a similar placental transfusion compared to CPAP and/or PPV during DCC [32].
Baik-Schneditz et al. reported that oxygenation improved after tactile stimulation (before
61.9 (53.1–76.0) versus after stimulation 67.8 (58.1–77.1), p < 0.001) in late premature
infants [47]. Repetitive tactile stimulation compared with standard stimulation (based on
clinical indication) in premature infants 27–32 weeks’ gestation resulted in significantly
improved oxygenation with a lower fraction of inspired oxygen (FiO2), but did not result
in differences in respiratory effort between groups [46]. Several additional studies reported
on tactile stimulation in premature infants >30 weeks’ gestation. However, only the study
by Katheria et al. included premature infants at <25 weeks’ gestation. Future trials are
required to assess whether tactile maneuvers improve respiratory function as well as to
identify the best tactile stimulation strategy (i.e., stimulation area, duration, frequency, etc.)
with a special focus on premature infants born after <25 weeks’ gestation [48].

Another strategy to improve the breathing effort after birth in premature infants is
the postnatal administration of intravenous caffeine. Caffeine administration was asso-
ciated with increased diaphragmatic activity and tidal volume within five minutes of its



Children 2021, 8, 882 4 of 12

administration in infants born between 26 and 34 weeks’ gestation [49]. A randomized trial
comparing caffeine with no caffeine in the DR reported an increased minute ventilation in
spontaneous breathing premature infants 24–30 weeks’ gestation [50]. However, the use of
caffeine in the DR needs further exploration in terms of clinical outcomes.

More controversial might be the effect of oxygen on the initiation of spontaneous
breathing in premature infants [51]. A randomized controlled trial compared an initial FiO2
of 1.0 versus 0.3 and reported significantly higher breathing efforts, improved oxygenation,
and a shorter duration of PPV with a FiO2 of 1.0, while an increased risk of hyperoxemia
or oxidative stress was not observed [51]. Additionally, higher initial FiO2 resulted in
improved tonic diaphragmatic activity [42]. This strategy requires further studies, as
current neonatal resuscitation guidelines [4–7] recommend low initial FiO2 as discussed in
Section 5.3. Oxygen titration.

Oropharyngeal or nasopharyngeal suctioning immediately after birth may delay the
onset of spontaneous breathing, and therefore, should only be considered in the case
of visible airway obstruction [7,52]. Suction should be performed in the case of airway
obstruction during ventilation [5,6].

The presence of spontaneous breathing after birth has an enormous effect on successful
lung aeration and on the establishment of functional residual capacity [44,45]. It can
be stimulated by strategies such as tactile stimulation or intravenous postnatal caffeine
administration and may be impeded by hypoxia or suctioning [5–7,32,46–52].

5.2. Initial Respiratory Support

The goal of respiratory support in the DR is to create a functional residual capacity,
establish gas exchange, and initiate spontaneous breathing while minimizing acute
lung injury [4]. Current neonatal resuscitation guidelines recommend a peak inflation
pressure of 20–25 cmH2O [4–6]. However, a peak inflation pressure of 20 cmH2O might
be too low to effectively recruit the lungs in extremely premature infants [53–55] due to
their small airways and high airway resistance following the Hagen–Poiseuille equation.
The European resuscitation guidelines recommend “five inflations maintaining the
inflation pressure for up to 2–3 s” [6], while the North American resuscitation guidelines
recommend PPV [5]. Several trials comparing sustained inflations, in which an inflating
pressure is held for a prolonged duration greater than 5 s with PPV demonstrated no
differences in the primary outcome of death before hospital discharge or secondary
outcome parameters [56–58]. The SAIL trial, which enrolled 426 infants (23 to 26 weeks’
gestation), was terminated early due to a higher rate of death within the first 48 h of
life in the sustained inflation group. The subgroup of premature infants born between
23 and 24 weeks’ gestation was predominantly affected [59].

During respiratory support, applying a face mask might induce a trigeminocardiac
reflex provoking apnoea and bradycardia in a large proportion (54%) of premature in-
fants [60]. This may compromise the capacity of premature infants to breathe and hereby
may increase the necessity of applying PPV. Interestingly, this effect was inversely asso-
ciated with gestational age (OR = 1.421 (1.281–1.583), p < 0.001) [60]. Applying bi-nasal
prongs compared to a face mask for initial respiratory support did not result in a different
incidence of apnoea among ELBW infants. However, the apnoea incidence was rather high
for both interfaces (43/65 (66%) versus 46/65 (71%), p = 0.70) [61,62].

In addition to face masks and bi-nasal prongs, nasal tubes might be equivalent alter-
native interfaces for PPV at birth in ELBW infants [63]. Other supraglottic airways such
as oropharyngeal airways or laryngeal masks are currently not recommended in prema-
ture infants born after <25 weeks’ gestation, since oropharyngeal airways significantly
increased the incidence of airway obstruction and appropriately sized laryngeal masks are
not available for those patients [6,64,65]. Administering ventilation at birth with a T-piece
resuscitator compared with a self-inflating bag reduces the duration of PPV and the risk of
bronchopulmonary dysplasia [66].
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5.3. Oxygen Titration

Premature infants are highly susceptible to oxygen toxicity due to a deficient anti-
oxidative capacity, exacerbating morbidities such as bronchopulmonary dysplasia (BPD),
retinopathy of prematurity, IVH and necrotizing enterocolitis [1,67]. Alternatively, hypox-
emia during postnatal transition is a significant risk factor for brain injury in the premature
infant such as IVH and periventricular leukomalacia [68]. Blended oxygen and pulse oxime-
try monitoring enables titrating oxygen delivery to reduce hyperoxemia and hypoxemia
during stabilization after birth [4,5].

A meta-analysis of seven trials (<500 total patients) in premature infants born after
≤28 weeks’ gestation reported no differences in mortality, major morbidity, or neurodevel-
opmental outcomes when respiratory support was started with low (0.21–0.3) compared
with higher oxygen (0.6–1) [69]. Recent resuscitation guidelines recommend an initial FiO2
of 0.21–0.3 [5,7] or 0.3 [4,6] for premature infants born after <28 weeks’ gestation, which
reflects a preference to prevent exposure to additional oxygen beyond what is necessary
to achieve oxygen saturation targets. However, a subgroup analysis of premature infants
born after <25 weeks’ gestation is not available. Since the current recommendations for
oxygen therapy in premature infants come from low-quality evidence, the optimal FiO2
to initiate respiratory support in those patients after birth remains a hot topic for future
research [67]. In particular, studies of intermediate oxygen concentrations (e.g., 0.4–0.5%)
to initiate resuscitation in premature infants are urgently required.

During postnatal stabilization, FiO2 adjustments should be guided by pulse oximetry.
Oxygen titration should be attempted every 30 s to meet predefined oxygen saturation
targets [70]. Not achieving an oxygen saturation of at least 80% by 5 min after birth
is associated with adverse outcomes including major IVH [71]. A meta-analysis with
data from eight trials demonstrated that, in the subgroup of premature infants born after
<25 weeks’ gestation, only 14 of 46 (30%) subjects exceeded the oxygen saturation target
of 80% by 5 min after birth [71]. It remains uncertain whether this was due to insufficient
oxygen administration or poor pulmonary function. Optimal oxygen saturation, optimal
oxygen titration in the DR, and the use of near-infrared spectroscopy during the stabi-
lization of premature infants born after <25 weeks’ gestation needs further research with
the aim to generate higher quality evidence adequately powered for neurodevelopmental
outcomes [70,72].

5.4. Continuous Positive Airway Pressure

Spontaneously breathing premature infants demonstrating respiratory distress should
receive respiratory support by continuous positive airway pressure (CPAP) with at least
5–6 cmH2O via either a face mask or nasal prongs rather than endotracheal intubation
and mechanical ventilation [4,6,73,74]. A meta-analysis by Schmölzer et al. [74] included
four trials with 2782 infants born after <30 weeks’ gestation. The pooled analysis showed
a significant benefit for the combined outcome of death or BPD, or both, at 36 weeks
corrected age for babies treated with nasal CPAP (relative risk 0.90 (95% confidence interval
0.83–0.98, risk difference −0.04 (95% confidence interval from −0.08 to −0.00), the number
needed to treat of 25). However, only the SUPPORT trial [75] included premature infants
born after <25 weeks’ gestation, and none included infants born after <24 weeks’ gestation.
In a subgroup of premature infants born between 24 and 25 weeks’ gestation, rates of
death during hospitalization and at 36 weeks were significantly lower in the CPAP group
compared to the mechanical ventilation one [75].

The optimal CPAP levels for initiating respiratory support in the DR in spontaneously
breathing premature infants born after <25 weeks’ gestation should be addressed in future
trials. Interestingly, a recent animal study has shown that higher initial CPAP levels
(15 cmH2O) compared to 5 cmH2O resulted in higher pulmonary blood flow levels when
applied from birth, without causing pulmonary overexpansion, cardiovascular compromise
or increased risk for IVH [76]. Indeed, while higher PEEP levels during mechanical
ventilation enhance lung aeration and oxygenation and reduce intubation rates, they reduce
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pulmonary blood flow and may increase the risk of pneumothorax [77,78]. Nevertheless,
physiology might be immediately different after birth when the high resistance lungs need
to be cleared from fluids. A new, promising, ‘physiological’ approach that needs further
investigation is a dynamic (high) CPAP level during the first minutes after birth (e.g.,
15 decreasing to 8 cmH2O at ~2 cmH2O/min) which takes into account the changes in lung
function during stabilization in the DR [76].

5.5. Surfactant Administration

Surfactant administration to treat the respiratory distress syndrome can improve
survival in premature infants by preventing alveoli collapse and increasing lung compli-
ance [4,73]. There are different methods of surfactant administration including (i) less inva-
sive surfactant administration (LISA); (ii) minimally invasive surfactant therapy (MIST); or
(iii) intubate–surfactant–extubate (INSURE) [79]. Their overall aim is to provide surfactant
as early as possible once it is deemed necessary while avoiding invasive ventilation [4].

A meta-analysis including six trials of premature infants born between 23 and
34 weeks’ gestation reported a reduced composite outcome of death or BPD at 36 weeks’
gestation with LISA compared to INSURE [80]. One trial included 211 very premature
infants born between 23 and <27 weeks’ gestation but was unable to prove an improvement
in BPD-free survival [81]. However, in this trial, LISA was associated with lower rates
of severe IVH [81]. A further systematic review compared mechanical ventilation and
different non-invasive strategies, and LISA was associated with the lowest likelihood of
death or BPD at 36 weeks [82]. LISA has been successfully used in infants born as prema-
turely as 22 weeks [79]. Some centers routinely use LISA in the DR in infants born after
<25 weeks’ gestation when they have increased oxygen requirements or respiratory distress.
However, this ‘quasi-prophylactic’ approach has not been studied in any trials [79]. There
are limited data on neurodevelopmental outcomes at 18–24 months in premature infants
born after <32 weeks comparing LISA and INSURE. However, no differences in respiratory
morbidities, sensorineural deficits, or adverse neurodevelopmental outcome have been
reported [83,84].

Alternatively, INSURE comprises endotracheal intubation, surfactant administration
followed by a (brief) period of PPV, and subsequent early extubation [85]. INSURE, com-
pared with delayed selective surfactant administration and ongoing mechanical ventilation,
reduces the need for and duration of mechanical ventilation [86]. However, none of the
trials included premature infants born after <25 weeks’ gestation. The need for sedation
and associated adverse effects such as bradycardia or hypotension, and the potential harm
associated with endotracheal intubation and brief periods of mechanical ventilation are
concerns of the INSURE technique [73,87].

Endotracheal intubation and the subsequent invasive ventilation should be reserved
for premature infants not responding to PPV during DR stabilization, and they should then
receive surfactant via the endotracheal tube [4].

6. Cardio-Circulatory Support
6.1. Chest Compressions and Epinephrine Administration

None of the international resuscitation guidelines endorse withholding chest compres-
sions and/or epinephrine administration from the subgroup of premature infants born
after <25 weeks’ gestation [5–7], although there are concerns over whether extensive car-
diopulmonary resuscitation should be performed in such premature infants, as both have
been associated with high mortality and neurodevelopmental impairment rates [88–91]. A
Canadian cohort study included 190 ELBW infants with a mean (SD) gestational age of
25.4 (1.7) weeks and 29% of subjects born after ≤24 weeks’ gestation who received chest
compressions and/or epinephrine administration in the DR. Overall, 60% survived with
78% of the survivors not severely impaired at 18–24 months corrected age [91]. A Vermont
Oxford Network study reported a higher survival rate in a subgroup of premature infants
weighing between 401 and 500 g who received extensive cardiopulmonary resuscitation
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compared to neonates who did not receive chest compressions and/or epinephrine admin-
istration. These findings were attributed to a more aggressive ventilation and resuscitation
approach in the investigated cohort [92]. In the absence of evidence to justify a different
approach in ELBW infants, the standard newborn resuscitation algorithms, including chest
compressions and/or epinephrine administration, should also be used in premature infants
born after <25 weeks’ gestation, if advanced resuscitation was considered appropriate prior
to birth [93].

6.2. Vascular Access

The current neonatal resuscitation guidelines recommend vascular access if infants
require chest compressions or fluid administration [6]. Vascular access could be achieved
with either umbilical venous catheterization, peripheral, or intraosseous access [6,7]. While
umbilical venous catheterization is most commonly used, the success rates and adverse
effects attributable to emergency umbilical venous catheterization are unknown. Periph-
eral venous access has been described in premature infants (mean gestational age of
31 ± 2 weeks) with a high success rate at 5 (IQR 4–9) minutes after birth [94]. However,
the study did not include premature infants born after <25 weeks’ gestation, which might
result in lower success rates.

More recently, intraosseous access has been advocated as an alternative to umbilical
venous catheterization [6]. A total of 80 newborns have been described in case series [95,96],
with varying success rates and severe complications such as bone fracture, osteomyelitis,
compartment syndrome, and amputation [95]. There have been reports on the successful
use of a Cook needle (Cook Medical, Bloomington, IN, USA) or butterfly needle in five
infants at 25 weeks’ gestation and a lowest birth weight of 515 g [97,98], but none in
premature infants born after <25 weeks’ gestation. While there are currently no data to
support intraosseous lines in premature infants born after <25 weeks’ gestation, it might
be considered during neonatal resuscitation if other access routes have failed.

7. Conclusions

Once the decision to provide full life support in premature infants born after
<25 weeks’ gestation is made, the active management of such infants remains challeng-
ing due to the fact that evidence for periviable neonates is lacking and guidelines are
mainly based on expert consensus, physiologic plausibility, as well as data derived
from more mature low-gestational-age infants. In recent years, there has been growing
evidence for providing gentle, less invasive support in the DR to reduce mortality and
short- and long-term morbidities. Further research into all the aspects of stabiliza-
tion and resuscitation focusing on the subgroup of premature infants born <25 weeks’
gestation is urgently warranted.
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