
proteins
STRUCTURE O FUNCTION O BIOINFORMATICS

A less-biased analysis of metalloproteins
reveals novel zinc coordination geometries
Sen Yao,1,2 Robert M. Flight,3,4,5 Eric C. Rouchka,1,2 and Hunter N. B. Moseley3,4,5*
1 School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, Kentucky 40292

2 Department of Computer Engineering and Computer Science, University of Louisville, Louisville, Kentucky 40292

3 Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40356

4 Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40356

5 Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, Kentucky 40356

ABSTRACT

Zinc metalloproteins are involved in many biological processes and play crucial biochemical roles across all domains of life.

Local structure around the zinc ion, especially the coordination geometry (CG), is dictated by the protein sequence and is

often directly related to the function of the protein. Current methodologies in characterizing zinc metalloproteins’ CG con-

sider only previously reported CG models based mainly on nonbiological chemical context. Exceptions to these canonical

CG models are either misclassified or discarded as “outliers.” Thus, we developed a less-biased method that directly handles

potential exceptions without pre-assuming any CG model. Our study shows that numerous exceptions could actually be fur-

ther classified and that new CG models are needed to characterize them. Also, these new CG models are cross-validated by

strong correlation between independent structural and functional annotation distance metrics, which is partially lost if these

new CGs models are ignored. Furthermore, these new CG models exhibit functional propensities distinct from the canonical

CG models.
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INTRODUCTION

Since the first report of zinc’s necessity for carbonic
anhydrase activity in 1939,1 zinc has never failed to sur-
prise with its versatility. Zinc ions have many different
roles in proteins, including structural, where zinc holds
protein folds together, as in various zinc fingers2–4;
enzymatic, where zinc directly or indirectly facilitates
many enzymatic reactions thanks to its Lewis acid prop-
erties5,6; and regulatory, where zinc serves as a second
messenger or signaling ion and regulates other proteins’
functions.7,8 Moreover, zinc-utilizing enzymes span all
major Enzyme Commission (EC) groups: oxidoreduc-
tases, transferases, hydrolases, lyases, isomerases, and
ligases. Cellular zinc homeostasis is also crucial to
life.9–11 Because zinc has essential roles across all
domains of life, the number of studies published on zinc
metalloproteins keeps increasing significantly, especially
those using modern characterization technologies such as
inductively coupled plasma mass spectrometry,12 and
immobilized-metal affinity chromatography.13

On average, approximately 10% of whole proteomes

are predicted to bind at least one zinc ion.14,15 It is

anticipated that more zinc metalloproteins may exist

than are currently known, with functions in sensing,

transporting, and buffering of zinc ions.16 Thus, thou-

sands of zinc metalloproteins exist in any given eukaryo-

tic proteome, requiring bioinformatics tools and

methods to gain any kind of global analysis and perspec-

tive of these zinc metalloproteins.17,18 Traditional
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bioinformatics analyses of protein sequence have uncov-

ered the ubiquity of zinc metalloproteins and many of its

functional roles.14,15 However, structural bioinformatics

can provide even stronger connections between zinc met-

alloprotein sequence and function. Among resources for

structural information, the worldwide Protein Databank

(wwPDB)19 serves as the central repository of atom-

resolved biological macromolecular structures. Structural

databases dedicated to metalloproteins, such as MDB,20

Mespeus,21 and MetalPDB,22 also exist in order to assess

metal sites in biological macromolecules.

Zinc generally binds to proteins via coordination with

electronegative atoms in the protein, such as nitrogen, oxy-

gen, and sulfur. One of the most important structural

aspects of zinc binding is its coordination geometry (CG)

or the spatial arrangement of coordinating atoms around

the zinc ion. In this context, the coordinating atoms are

known as ligand atoms or ligands; however, the amino

acid residues that contain these atoms are often referred to

as “ligands” as well. A metal’s CG, defined by the set of

proper ligands and their spatial orientation to the metal,

often has functional implications.14,23

Zinc is also a transition metal, and binds to proteins

in its 12 state, which enables a stable full 3d10 and

empty 4s2 and 4p6 orbitals. This electron configuration

allows zinc to stably bind four, five, and six ligands.24 As

a result, zinc ions often adopt one of three major canon-

ical CGs (cCG): tetrahedral (Tet), trigonal bipyramidal

(Tbp), and octahedral (Oct), as shown in Figure 1, where

the magenta balls represent zinc, and the white balls rep-

resent ligands. Because of biological variation and miss-

ing substrates, 10 minor CGs (Fig. 1) have been reported

as well.18 Studies have shown that different CGs exhibit

very distinct ligand compositions and functional propen-

sities.14,23 Thus, exploration of zinc metalloprotein

structure–function relationships requires structure-based

analyses that include adequate CG representations. Clas-

sifying ligand-type as a property of zinc coordination

and not CG per se, the two most important properties

that define a CG are ligand–zinc–ligand angle (angle)

and zinc–ligand bond length (bond length). Also, the

CGs can be classified into three-, four-, five-, and six-

ligand CG based on the number of ligands coordinating

the zinc ion. For a given number of ligands, there is usu-

ally only one major CG. The ideal angles of the three

canonical zinc CGs are shown in Table I.

CGs provide a bridge between the sequence space and

functional space of metalloproteins, and therefore,

knowledge about them is potentially valuable. The chal-

lenge is how to characterize a zinc’s CG given its x, y,

Figure 1
Three major (in red) and 10 minor canonical CGs of zinc metalloproteins. Magenta balls represent zinc ion, and white balls represent coordination

ligands. The abbreviations and number of ligands are in parenthesis. From the lower left to the upper right, the CGs are separated by the lines
with six, five, four, and three ligands, respectively.
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and z coordinates, which are available from structural

databases such as wwPDB. The prevailing methodology

is to first obtain all possible CG models of a metal from

the literature, and then score a given metal site for how

well it matches known CG models. The model with the

highest “score” will be classified as the metal’s CG.

Alberts et al.25 were among the first to classify the CGs

of zinc metalloproteins. They compared 111 zinc sites

with ideal geometries manually, and only identified three

major and one minor CG. Patel et al.26 used the devia-

tion from the ideal CGs to classify zinc’s structure. They

examined 228 structures and classified them into four

CGs. Liu et al.27 developed a method to identify three-

ligand and four-ligand major CG of zinc by calculating a

potential zinc center from the ligand coordinates and

measuring its distance from the real zinc center. Andreini

et al.18,22 determined given PDB entries’ metal CGs by

first superimposing the structure to ideal CG templates,

and then calculating the root-mean-square-deviation

value for each template.

However, in all of these studies, only known major

and minor CG models are considered. Thus, if a previ-

ously unreported CG existed, specific instances of it

would either be misclassified into an expected model or

considered as outliers and not classified at all. In our

initial analysis of CGs using only known models, we

observed abnormally high variance in the angles charac-

terizing classified groups of CG (Table II). As we

explored the factors that would cause such high var-

iance in CG angles, we detected the existence of signifi-

cant numbers of abnormally compressed angles when

plotting the minimum angles of all zinc sites (Fig. 2).

Normally, a minimum expected angle in any previously

reported zinc CGs is 908. However, these minimum

angles center around 328 and 538, each with a normal-

like distribution, and have not yet been investigated in

any previous studies. Thus, if forcibly classified into

one of the known CGs, these instances with a com-

pressed angle will cause the high variance observed in

Table II. These initial results prompted us to develop a

less-biased method for classifying zinc CGs. Using this

less-biased analysis, we discovered previously uncharac-

terized zinc CGs. As far as we know, no previous study

has tried to explain the high variability after classifica-

tion in terms of possibly unknown CGs. Most studies

simply remove “outliers” to have “acceptable” variance

in their results. We have tried to directly handle and

understand the reasons for high variability in zinc CG.

Our efforts also include analyses of the functional

annotation of these new structural classifications, which

indicate distinct functional relationships for these previ-

ously uncharacterized CGs.

Table I
Expected Angles of the Three Major Canonical CGs

Name Total number of angles Ideal angles and the corresponding counts

Tetrahedral (Tet) 6 109.58—6
Trigonal bipyramidal (Tbp) 10 908—6, 1208—3, 1808—1
Octahedral (Oct) 15 908—12, 1808—3

Figure 2
Histogram of minimum angles with respect to: (A) the number of ligands in the zinc fc-shells and (B) ligand type for four-ligand zinc fc-shells. aa
represents standard amino acid, nonaa represents nonstandard amino acid or any substrates from the protein, and bi represents bidentation.
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Table II
Ligand–Zinc–Ligand Angles Statistics when Forcibly Classified into Canonical CG Models [Color table can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Model Count Ideal angle (8) Mean angle (8) Standard deviation Coefficients of variation

Tetrahedral (Tet) 10,077 109.5 109.1 8.66 0.079
Tetrahedral vacancy (Tev) 493 109.5 105.2 10.9 0.104
Trigonal bipyramidal (Tbp) 597 90 93.60 13.2 0.141

120 116.2 13.8 0.119
180 146.9 45.7 0.311

Trigonal bipyramidal vacancy axial (Bva) 884 90 92.56 13.9 0.150
120 115.7 19.5 0.169

Trigonal bipyramidal vacancy planar (Bvp) 1,597 90 90.27 16.8 0.186
120 120.8 10.7 0.089
180 140.1 37.6 0.268

Octahedral (Oct) 325 90 89.96 6.66 0.074
180 169.4 9.02 0.053

Square planar (Spl) 18 90 89.80 6.30 0.070
180 168.9 5.68 0.034

Square pyramidal (Spy) 632 90a 91.84 7.23 0.079
90p 90.97 11.0 0.121
180 164.4 19.4 0.118

Square pyramidal vacancy (Pyv) 1,178 90a 95.02 7.86 0.083
90p 92.71 10.1 0.109
180 157.0 24.2 0.154

Trigonal planar (Tpl) 51 120 117.1 12.1 0.103
Overall 15,852 – – 10.4

Figure 3
Workflow of the less-biased analysis for novel CG detection.
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METHODS

Figure 3 is an analysis flow diagram showing an over-

view of the analyses performed and the methods used in

this work. In the end, this integrated set of analyses cre-

ates a “less-biased” overall analysis of zinc CGs of non-

cluster zinc metalloproteins in the wwPDB. All analyses

were completed by in-house code written in the Perl pro-

gramming language, unless noted otherwise.

Defining zinc first coordination shells

As shown in Tables II and III, the angle statistics vary

widely based on CG, whereas bond length statistics are

rather CG agnostic and very stable (monomodal with

coefficients of variation less than 0.139). Thus, we devel-

oped a less-biased method to define zinc first coordina-

tion (fc) shells, that is, only the directly coordinating

ligands, where coordinating ligands are defined primarily

from bond length statistics.

Acquire zinc metalloproteins from PDB and create list
of potential zinc ligands

We acquired structural data from the wwPDB on

March 13, 2013. Our initial data filtering tools identified

all PDB entries with at least one zinc atom in the

HETATM record and removed entries with fewer than 20

amino acids in the SEQRES record. Next, zinc clusters

were identified and removed, using two zinc atoms

within 3 Å as the filter. For each remaining zinc site, we

generated a list of potential zinc ligands based on non-

C/H atoms within 1.3–3.2 Å of the zinc atom.

Acquire zinc–ligand bond length statistics
of major CGs (empirical bootstrapping)

For each list of potential zinc ligands, our CG evalua-

tion tools computed the ligand–zinc–ligand angles and

compared them with the ideal angles of the three major

CGs, Tet, Tbp, and Oct as shown in Figure 1. Next, our

tools evaluated all possible permutations of four, five,

and six ligands with respect to their correspondence to

each major CG. For example, if the list contained at least

four potential ligands, all nonequivalent permutations of

these four ligands were mapped to the ideal tetrahedral

four ligands, and the corresponding angles compared

with the ideal. For a potential zinc fc-shell, our tools cal-

culated the angle variance of a possible ligand permuta-

tion p to its corresponding CG model s (Tet, Tbp, or

Oct):

r2
p ¼

1

A

XA

i¼1

ai2 es;i

� �2
;

p ¼ 1; 2; 3; . . . ; possible permutations (1)

where ai is the ith observed ligand–zinc–ligand angle, A

is the total number of angles (6 for Tet, 10 for Tbp, and

15 for Oct), and es,i is the ith ideal (expected) angle of

the corresponding CG model s (see Table I for ideal

angles of different CGs). For each potential zinc fc-shell,

our tools calculated one variance for each permutation p.

The permutation with the smallest variance was then

identified as the initial zinc fc-shell. The corresponding

model s was assigned the given zinc as an initial best-

fitted major CG.

From all initial zinc fc-shells identified as CG s, our

tools calculated the angle statistics (mean and variance),

l̂s;i ¼
1

M

XM
j¼1

aij ;

r̂2
s;i ¼

1

M21

XM
j¼1

aij2 l̂s;i

� �2
for CG model s (2)

where aij is the observed angle i for fc-shell j. From the

identified binding ligands of all initial fc-shells, our tools

calculated element-specific bond length statistics (mean

and variance),

l̂t ¼
1

N

XN

j¼1

btj ;

r̂2
t ¼

1

N21

XN

j¼1

btj2l̂t

� �2
for element t (3)

where btj is the jth Zn-t bond length derived from all ini-

tial fc-shells, and t is the given ligand element (e.g., O,

N, S, . . .).

Define best zinc fc-shells using bond length statistics

We then reexamined all lists of potential zinc ligands

to define the final fc-shells. All nonequivalent combina-

tions of potential ligands were considered. We define the

Table III
Zinc–Ligand Bond Length Statistics when Forcibly Classified into Canonical CG Models [Color table can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Zn–X Count Mean bond distance (�) Standard deviation Coefficients of variation

Zn-S 26,770 2.34 0.16 0.068
Zn-O 25,417 2.25 0.31 0.138
Zn-N 23,582 2.14 0.18 0.084
Zn-Cl 354 2.38 0.33 0.139
Zn-P 182 2.97 0.12 0.040
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term v2 probability (v2 P-values) as 1 minus the cumula-

tive distribution function of a v2 distribution. Our tools used

this v2 probability, Pq(B), as a goodness of fit measure for

comparing each potential zinc fc-shell q for any given list,

where Pq(B) 5 1 2 P(v2 Bð Þ � v2
q;obsÞ and B is the degrees

of freedom, which is the same as the number of ligands in

combination q. The v2 statistic was calculated using:

v2
q;obs ¼

XB

j¼1

btj2 l̂t

r̂t

� �2

for potential combination q

(4)

where btj is the jth observed bond length with the ligand

being element t, l̂t , and r̂t are the corresponding means

and standard deviations of element t as calculated in

bootstrapping. The ligand combination q with the high-

est v2 probability Pq(B) was defined as the less-biased

best zinc fc-shell for later clustering analyses. Although

this approach identified four-, five-, and six-ligand fc-

shells, we mainly explored four-ligand zinc fc-shells in

this study, which represented the vast majority (95.7%)

of the final fc-shells identified.

Iterative algorithm for mixture canonical CG models

With the aim of both identifying the best fitting

known CG based on angles and bond lengths as well as

refining the parameters (means, variances of angles, and

bond lengths) associated with each CG, we performed

the following iterative algorithm (IA). This algorithm is

in the spirit of an Expectation–Maximization algorithm.

A workflow of this IA process is illustrated in Figure 4.

The bootstrapping step served as the initialization step

for the iteration process. It provided the initial guess of

the unknown parameters (l̂s; r̂2
s ; l̂t ; and r̂2

t Þ.
Mixture canonical models are the major and minor CGs

in Figure 1. Our IA algorithm employed a v2 probability,

Pp(k), to determine the best fitting CG at each iteration,

based on the following v2 statistic:

v2
p�s ¼ Y 2l̂s1tð ÞT C21

s Y 2l̂s1tð Þ
for permutation p and CG model s

(5)

where, Y is the observed angle, and bond length vector

of a given zinc site, l̂s1t (l̂s and l̂t Þ is the mean vector

of corresponding angles and bond lengths generated

from the initialization or previous iteration, and Cs is the

covariance matrix of CG model s. The corresponding v2

probability was computed as Pp*s(k) 5 1 2 P(v2 kð Þ
� v2

p�sÞ, where the degrees of freedom k is the same as

the rank of the covariance matrix.

For each zinc, our IA tool defined the fc-shell and

assigned the best-fitting CG s based on highest v2 proba-

bility. Then, the IA tool updated the means and variances

of both angles and bond lengths for each CG based on

estimates from those zinc fc-shells classified into that CG

at the given iteration and using Eqs. (2) and (3).

To prevent the actual CG models’ angle means drifting

markedly from the ideal ones over iterations, we used

the means of major CG, l̂s; major, in the v2 calculation

for all associated minor CGs. And to prevent any of the

CG models to become statistically greedy and attract a

large number of “outliers,” a pooled angle variance

r̂2
po ¼

Ps
i¼1 ni�r̂2

iPs
i¼1 ni

(6)

was used for all CG models’ individual angle variance,

where s is the total number of CG models, r̂2
i is the

angle variance of model i, and ni is the corresponding

number of instances of model i. The covariance matrix

Cs for each CG model s was updated each iteration as

well. The angle part of the Cs, was updated using r̂2
po

and a simulated correlation matrix Rs, representing the

spatial restriction of the ideal CG model s. The bond

length part of the matrix was updated using r̂2
t on the

diagonal and 0 everywhere else, because bond lengths are

independent from each other and from all angle varia-

bles. The angle correlation matrix (Rs) was estimated via

simulation at the outset using an R script and simply

reused in the iteration process. Our IA tool repeated the

iterative process until statistics converged, providing each

zinc fc-shell with a converging CG classification and final

angle and bond length statistics for later steps of the

overall analysis.

Figure 4
Flowchart for iterative algorithm (IA) of mixture canonical CG models.
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As the starting point for the simulation of Rs, our R

simulation script located the zinc atom at (0,0,0), and

placed the ligands in corresponding positions based on

bond lengths l̂t from the bootstrapping step and ideal

angles ls for each CG s. A spherical normal distribution

was assumed for each ligand with (0, r̂2
t ) on each of the

x, y, and z dimensions, where variance r̂2
t was acquired

from the bootstrapping step as well. The simulation gen-

erated 1000 random and independent Euclidian points

for each ligand. The simulation R script then calculated

correlations between angles from the simulated data and

arranged these correlations in a matrix with regard to

the angles’ relations to each other, with respect to shared

atom(s). The correlation matrices of major CGs are

shown in Supporting Information Tables S1–S3, and

minor CGs are shown in Supporting Information Tables

S8–S12.

Separating zinc fc-shells into normal,
compressed, and super-compressed angle
groups using randomForest

As shown in Figure 2(A), there exist a large number of

abnormally compressed minimum angles. We denote

these angles significantly below 908 as compressed angles.

Zinc sites with a compressed angle should be treated sep-

arately to prevent interference between normal and com-

pressed zinc site clustering. A further analysis of the

minimum angles is presented in Figure 2(B), showing

the ligand propensities of the minimum angle with

respect to bidentation (i.e., two atoms are from the same

amino acid residue) and regular amino acid type (i.e.,

whether the ligand is one of the 20 standard amino

acids). Bidentation status and ligand type are clearly

illustrated as key factors for distinguishing zinc CGs with

a normal minimum angle (normal group), a 538 com-

pressed minimum angle (compressed group), or a 328

compressed minimum angle (super-compressed group).

The randomForest package in R28,29 (randomForest

4.6–7 in R version 3.0.2) was used to separate the

defined final zinc fc-shells into normal, compressed, and

super-compressed groups. Features for the randomForest

analysis included angles, bidentation status, and ligands.

Here is an example feature vector used, with elements of

the vector separated by semicolons: 149.3; 85.8; 90.5;

103.6; 121.4; 86.7; 000100; CYS.SG.S; CYS.SG.S;

CYS.SG.S; and HIS.ND1.N. For four-ligand zinc CGs,

the first six elements are angles, which are ordered in

“largest-sorted-middle-opposite” order: first is the largest

angle of the six ligand–zinc–ligand angles; followed by

the middle four angles, which share one of the two

ligands composing the largest angle, sorted from smallest

to largest; and last is the angle sharing no ligand with

the largest angle. Ideal angles in this ordering of the

four-ligand CGs are shown in Table IV. This ordering

makes the largest angle, and the opposite angle the dis-

criminating angles. The next element is a string with the

six 0/1 digits corresponding to the bidentation status of

the six angles, where 0 means no bidentation and 1

means bidentation of that angle. Ligands take the last

four elements and are represented as residue.atom.ele-

ment. The first two ligands comprise the largest angle,

ordered alphabetically. The second two ligands are

ordered alphabetically as well. We sorted angles and

ligands in this way so that they are comparable through

all zinc fc-shells without introducing any artificial

scrambling.

The smallest angle was used to identify sites as super-

compressed (<388), compressed (388–588), or normal

(>688) groups for training. The default settings of ran-

domForest were used to build the classifier that was then

be applied to the overlapping part of the data, where the

smallest angle is between 588 and 688, as well as the

training data itself.

Clustering zinc fc-shells using k-means and
assigning known and novel CGs to each
cluster

Determine optimal cluster number k

k-means is one of the most popular clustering meth-

ods and is good at clustering numeric data. As with all

clustering methods, determining the numbers of clusters

(k) is crucial for achieving a successful and meaningful

clustering result. We approached this problem by testing

the stability of the final cluster centers while varying k.

The k-means function from the stats package in R was

used with default settings, except that iter.max was set to

30. By default, the package uses the Hartigan–Wong

Table IV
The largest-sortedMiddle-opposite Ordering of Ideal Angles for Four-Ligand Major and Minor CGs

Largest (AOB)
Sorted middle four (AOC, AOD, BOC, and BOD)

Opposite (COD)
Tetrahedral (Tet) 109.5 109.5 109.5 109.5 109.5 109.5

Trigonal bipyramidal vacancy axial (Bva) 120 120 120 90 90 90
Trigonal bipyramidal vacancy planar (Bvp) 180 90 90 90 90 120
Square pyramidal vacancy (Pyv) 180 90 90 90 90 90
Square planar (Spl) 180 90 90 90 90 180

The ligand notation is as shown in Supporting Information Figure S5.
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algorithm.30 For each value of k from k 5 1 to k 5 30,

we ran 500 repetitions of k-means clustering with differ-

ent cluster initializations. For each value of k, we calcu-

lated the average of the sum of absolute differences of all

pairwise best matching cluster centers:

Dk ¼
1
R
2

� � XR

q¼p11

XR21

p¼1

XK

j¼1

XA

i¼1

jcapj;i2caqj;ij (7)

where i is the angle position, j is the matching cluster

numbers between two repetitions, A is the total number

of angles (A 5 6 for four-ligand CGs), K is the number

of clusters as the k in k-means, p and q are the repetition

numbers, R is the number of repetitions (500), and capj,i

is the cluster center angle at position i and clustered as

cluster j in repetition p. The sum of absolute difference

measures the distance of the cluster centers from each

other between the R repetitions. We took the

max(Dk) 2 Dk as the final measure so that a larger value

is preferred.

We also measured the average Jaccard index of all the

pairwise best matching cluster centers:

Jk ¼
1
R
2

� � XR

q¼p11

XR21

p¼1

XK

j¼1

J Sjp; Sjq

� �
(8)

where Sjp is the set of zinc fc-shells clustered as cluster j

in repetition p, and

J Sjp; Sjq

� �
¼ jSjp \ Sjqj
jSjp [ Sjqj

(9)

The average Jaccard index measures how well the same

set of zinc sites are clustered into the same cluster

between repetitions. It can take a value between 0 and 1,

with a smaller value indicating better performance.

Assign each cluster by known and novel CG using different
methods

After the optimal number of clusters was determined

for the normal and compressed groups separately, we re-

ran k-means with the optimal k’s to obtain the final cluster

results. We assigned a CG to each cluster by (1) comparing

the cluster centers with ideal angles of each CG models;

(2) finding the representative zinc fc-shell that is the clos-

est to the cluster center and checking its 3D structure; and

(3) calculating the average v2 probability for the zinc fc-

shells in each cluster for each canonical CG model using

Eq. (5) and statistics acquired from the IA process. For

zinc sites with a compressed angle, we left out the com-

pressed angle in calculating the v2 probabilities to mini-

mize the effect of the angle in comparing with canonical

CGs. The v2 probabilities were used as a mathematical

characterization of each cluster to each canonical CG.

Assignments of clusters were based on cluster centers, 3D

structures, and v2 probabilities together.

Functional analysis

Determine nonredundant set of zinc sites

As the best fc-shell was defined in terms of ligands

derived from ATOM records, these ligands were first

mapped to the corresponding SEQRES sequence by align-

ing ATOM record-based sequences to SEQRES sequences.

Then for each zinc site, we defined the binding domain as

a five-residue extension of the minimum sequence range

that includes all ligands identified in the best fc-shell. For

example, if the ligand residues positions are 11, 24, 45, and

123 on a protein sequence, the binding domain will be

defined as residues 6–128 of the sequence. For ligands that

are scattered over multiple chains, we extracted the

sequence section from each chain and consider them

together. We then removed all duplicate domain–ligand

combinations, keeping either the best resolution or most

recently deposited entry for each redundant group. Out of

the nonredundant set, we kept those with a resolution bet-

ter than (i.e., less than) 3 Å.

Acquire functional annotations from InterProScan

We ran InterProScan 5.7.48.031 using the current ver-

sions of TIGRFAM, ProDom, SMART, HAMAP, Prosite-

Patterns, SuperFamily, PRINTS, Panther, Gene3d, PIRSF,

PfamA, PrositeProfiles, and Coils hidden Markov models

on the nonredundant sequences previously determined.

We retained only those results with an InterProScan

(IPR) annotation mapping and overlapping at least one

ligand.

Derive and evaluate consistency
of CG-basedstructure and sequence-
based function annotation relationships
between k-means clusters

We first calculated both CG-based structural and

sequence-based functional distance matrices between

pairwise k-means clusters and then compared these two

matrices with respect to two different measures of consis-

tency: hierarchical clustering and Spearman’s correlation.

To construct the CG-based structural distance matrix, we

calculated a root-mean-square-deviation-like distance

matrix between each cluster based on angles:

Mstruct ¼

m11 � � � mk1

� . .
.

�

m1k � � � mkk

0
BBBB@

1
CCCCA;

with mxy ¼
Xs yð Þ

q¼1

Xs xð Þ

p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

A

XA

i¼1

axp;i2ayq;i

� �2

vuut (10)
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where, k is the clustering number k in k-means, A is the

number of angles (A 5 6 for four-ligand CGs), and s(x)

and s(y) are the size of clusters x and y, axp,i is the ith

(1�i�A) angle of fc-shell p in cluster x (1�p�s(x)).

To construct the sequence-based function annotation

distance matrix, we first calculated the proportional rep-

resentation of functional annotation from each cluster:

proptn ¼
number of entries in cluster n annotated as term t

size of cluster n

(11)

proptn is normalized across all clusters so that
P

n

proptn 5 1. We then constructed a k*k (k being the cluster-

ing number k in k-means) matrix for each annotation t:

Mt ¼

m11 � � � mk1

� . .
.

�

m1k � � � mkk

0
BBBB@

1
CCCCA;

where mxy ¼ min proptx ; propty

� �2

(12)

Next, the intercluster values across all annotations t

are summed to create the matrix Msim and then normal-

ized by the max value in Msim to create Msim_norm, repre-

senting functional similarity between clusters. Finally, we

took 1 – Msim_norm as the distance matrix Mfunc. In other

words, we represented functional annotations across clus-

ter members as a rational vector space of proportional

functional annotations, which we then transformed into

a pseudo-continuous metric space represented by the

resulting distance matrix Mfunc. This works much better

than a covariance or correlation matrix, because the large

number of zero proportions are ignored and not inter-

preted in terms of functional similarity or dissimilarity.

In our R script, we calculated Spearman’s correlations

of the between-cluster structural and functional distances

(m11 . . . mkk) and computed rho’s and p-values com-

puted for k 5 3 to 30 as biological validation in selecting

the optimal k. Ward’s hierarchical agglomerative cluster-

ing was constructed using the standard hierarchical clus-

tering function in the R32,33 stats package for structural

and functional distance matrices separately. We then

compared the two distance matrices using Spearman’s

correlation and visual inspection of their hierarchical

dendrograms (i.e. last step in Fig. 5).

Determine functional enrichment of normal
and compressed groups

Using the normal and compressed classification to des-

ignate a “group of interest” compared with all of the

zinc sites with an annotation, we used a hypergeometric

test to determine whether any of the InterProScan anno-

tations or EC number annotations based on the mapping

of InterProScan annotations to KEGG pathways34 were

enriched in either group. For EC numbers, any zinc site

that returned no EC number was assigned 0.

RESULTS

Low variability in bond lengths versus high
variability in bond angles and the existence
of compressed angles

With the PDB downloaded on March 13, 2013, there

are 7878 PDB entries detected that have at least one zinc

ion in the protein. From these, we identified a total of

17,135 four-ligand, 602 five-ligand, and 169 six-ligand

noncluster zinc fc-shells. In our initial analysis of zinc

metalloproteins assuming 10 models, we observed abnor-

mally high ligand–zinc–ligand angle variance and very

low zinc–ligand bond length variance in classified canon-

ical CGs at the same time (Tables II and III, respec-

tively). The bond length statistics is consistent with

several other studies.25,35,36 However, in the angle sta-

tistics, most of the high variances appeared in specific

CGs, most notably Tbp and its minor CGs. From these

high variances it seemed that there are outlier CGs that

do not belong to any known canonical CGs. Also, a his-

togram of the smallest angle from each zinc site revealed

a significant number of sites with compressed (<588) or

super-compressed (<388) angles [Fig. 2(A)]. The peak at

1098 is the contribution from Tet, and the shoulder peak

at 908 is from Tbp, Oct, and their associated minor CGs.

However, none of the known CG models can account for

the histogram peaks at 328 and 538. The likelihood that

these sites are artificial is low given that (i) there is a

Figure 5
Workflow for functional validation.
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nontrivial number of zinc sites in this range, (ii) the his-

tograms around these peaks appear normally distributed,

and (iii) they occur in zinc fc-shells with 4, 5, and 6

ligands.

In an attempt to characterize the possible source of the

compressed and super-compressed minimum angles, we

characterized the two ligands comprising the smallest angle

by bidentation status and inclusion/exclusion of the 20

standard amino acids [Fig. 2(B)]. Bidentation occurs when

two ligating atoms are from the same amino acid residue

(e.g., the two oxygen atoms of one carboxylate from gluta-

mate). Our analysis showed that 83.0% of the compressed

angles could be explained by coordination from bidentate

ligands [as shown in Fig. 2(B)] and that these bidentation

patterns affect overall ligand propensities (Supporting

Information Table S13). Figure 6 pictorially shows the

common bidentation patterns and their frequencies

observed in the wwPDB. Some of the bidentation patterns

have been observed, such as ligation by carbonyl oxy-

gens,37 or theorized to occur from simulation, such as

bidentation by cysteine thiol and backbone carbonyl oxy-

gen25,38–40; however, their frequency had not been previ-

ously analyzed in the wwPDB in a systematic way.

Furthermore, 88.0% of the super-compressed angles

involve bidentation by nonstandard amino acids.

Classifying a zinc fc-shell with a compressed/super-

compressed angle into any of the previously canonical

CG models will either create an outlier or add significant

variance to subsequent analyses. Thus, we chose to sepa-

rate compressed and super-compressed angle containing

zinc sites from normal zinc sites.

Separation of zinc fc-shells into normal,
compressed, and super-compressed sets
using randomForest

As mentioned earlier, Figure 2 shows the presence of

compressed and super-compressed angles between zinc

fc-shell ligands. Because of the overlapping distribution

of the normal and compressed angles and the ligand and

bidentation propensities of the ligands comprising these

angles, we developed a randomForest classifier to decon-

volute this overlap. Then, we used randomForest to

classify zinc sites as normal, compressed, and super-

compressed groups based on three key factors: angles,

bidentation status, and ligand residue type. The training

data consisted of 16,375 sites (14,210 normal, 2087 com-

pressed, and 78 super-compressed) initially classified

from the smallest angle. The total number is smaller

than that previously mentioned (17,135) because we only

used the nonoverlapping zinc sites as the training data.

The out-of-bag error rate for the training data was 0.00

for the normal and compressed groups and 0.06 for the

super-compressed group. Importance measures showed

Figure 6
Four most prevalent zinc bidentation of standard amino acids in the wwPDB, with real structures on the top panel and schematic structures on

the bottom. Panel A: Glutamate bidentates the zinc ion via two side chain oxygens. Count: 935; percentage: 33.7%. Example shown: PDB ID,
2E4T. Panel B: Aspartate bidentates the zinc ion via two side chain oxygens. Count: 935; percentage: 28.7%. PDB ID: 1RTQ. Panel C: Cysteine

bidentates the zinc ion via one side chain sulfur and one back bone oxygen. Count: 153; percentage: 5.5%. PDB ID: 4FGL. Panel D: Cysteine

bidentates the zinc ion via one side chain sulfur and one back bone nitrogen. Count: 57; percentage: 2.0%. PDB ID: 4A48.
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that the most important feature is Angle 2 (with a score

of 1836), followed by bidentation status (score 859), and

Angle 6 (score 279). The reason that Angle 2 is the most

important feature is because it is most likely to be the

smallest angle because of the “largest-sortedMiddle-

opposite” ordering of angles used. Angle 1 is always the

largest angle and is, therefore, nearly impossible to be

the smallest (i.e., special case where all angles are exactly

equal). Angle 6 is the angle that is opposite to Angle 1

(e.g., has no ligand atoms in common with Angle 1),

increasing its likelihood that it is the smallest angle. The

bidentation status of ligands in the site showed its

importance as expected from the histogram in Figure 3.

Sorting the six angles by largest-sortedMiddle-opposite

makes them comparable across all geometries without

introducing artificial scrambling. This was necessary for

robustness in many of the analyses. As shown in Table

IV of ideal angles in this ordering, Angle 1 and Angle 6

in combination are highly distinct for different CGs. The

middle four angles should be very close to each other

except in the case of bva. Similar ordering for five- and

six-ligand CGs is shown in Supporting Information

Tables S4 and S5.

After the removal of redundant sites, 6199 four-ligand

zinc fc-shells were left for subsequent analyses. Applying

the randomForest classifier to all of the zinc fc-shells

resulted in 4845, 1303, and 51 normal, compressed, and

super-compressed fc-shells, respectively.

k-Means clustering

In an initial failed attempt to cluster zinc fc-shells

using randomForest (results not shown), the ligand type

and bond length showed very little influence in deter-

mining meaningful CGs, whereas the ligand–zinc–ligand

bond angles and bidentation status were more important.

Therefore, we applied k-means clustering to the angles

only to generate clusters of zinc sites. Note that cluster-

ing was done on the normal and compressed zinc sites

separately, as otherwise the clustering was unstable (Sup-

porting Information Fig. S3 and Supporting Information

Tables S6 and S7).

Two measures were used in assessing cluster stability:

the sum of absolute differences and the Jaccard index.

The sum of absolute differences measures the differences

between cluster centers over multiple clustering itera-

tions. The Jaccard index evaluates the agreement of the

set of actual zinc fc-shells that are classified into the

same cluster over multiple clustering iterations. Two

measures were used to biologically validate the optimal

k: Spearman’s rho and P-value between structural distan-

ces and functional distances of all cluster pairs. To make

comparisons between all four values visually easier, we

graphed the negative log of the P-value and the max sum

of absolute differences minus the sum of absolute differ-

ences with the Jaccard index and Spearman’s rho. We

expect the “true” k to have a local, simultaneous

Figure 7
Comparison of k in k-means clustering of the normal group with respect to four metrics.
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maximum for each of these four measures. Figure 7

shows how these four measures vary with respect to k

for the normal group. k 5 10 appears to be the consistent

local maximization of all four measures. Figure 8 shows

how these same measures vary with respect to k for the

compressed group. In this case, k 5 8 appears as the local

maximization of all four measures.

The angle statistics, average v2 probabilities, and 3D

structures of cluster representatives for the normal group

are shown in Tables V and VII and Supporting Informa-

tion Figure S1, respectively. All of the standard deviations

of the angles are much tighter in Table V than when we

preselected the 10 canonical CG models for classification

(Table II). By comparing the angle means of each cluster

to ideal angles in Table IV, Angle 1 of Clusters 4, 8, and

9 seems equivalent to 1808, because of folded normal dis-

tribution effect. Their Angle 6 is equivalent to 908, 1208,

and 1808, respectively. By taking into account their v2

probabilities, which is a mathematical characterization of

a cluster with respect to specific canonical CGs, and the

3D structure of the centroid zinc site, which is the visu-

alization of the cluster, Clusters 4, 8, and 9 are assigned

as Pyv, Bvp, and Spl. Similarly, Cluster 1 is assigned as

Pyv, but distorted. Cluster 3 is assigned as Bva. Clusters

2, 5, 6, 7, and 10 are all subclasses of Tet. In fact, all of

the canonical CGs find corresponding cluster(s) in Table

VII simply by using their maximal cluster average v2

probabilities for assignment.

Figure 8
Comparison of k in k-means clustering of the compressed group with respect to four metrics.

Table V
Mean and Standard Deviation of Angles for Each Cluster, Normal Group k 5 10

Cluster Size Angle 1 Angle 2 Angle 3 Angle 4 Angle 5 Angle 6

1 331 150.0 6 5.6 85.8 6 7.0 93.8 6 5.4 100.8 6 4.4 109.2 6 5.3 98.9 6 7.1
2 741 123.4 6 4.2 93.8 6 4.9 101.8 6 3.7 108.4 6 3.9 115.2 6 3.8 112.4 6 4.6
3 213 135.5 6 8.1 80.4 6 7.1 91.1 6 7.8 107.8 6 8.2 122.3 6 6.4 86.3 6 9.6
4 381 167.4 6 6.6 81.6 6 6.0 87.4 6 5.0 92.6 6 4.5 99.0 6 6.3 90.8 6 8.6
5 205 138.8 6 6.7 84.6 6 7.6 92.8 6 7.1 102.5 6 6.2 113.8 6 8.1 120.5 6 8.2
6 1050 116.0 6 2.9 103 6 3.1 106.3 6 2.1 108.9 6 1.9 111.8 6 2.1 110.5 6 3.2
7 853 119.4 6 3.0 100.8 6 3.8 107.0 6 2.9 111.2 6 2.6 114.8 6 2.5 101.3 6 4.3
8 383 168.0 6 6.7 80.4 6 5.7 87.7 6 4.1 93.2 6 3.8 100.0 6 5.6 116.9 6 8.5
9 165 166.8 6 8.1 79.6 6 5.6 87.1 6 3.5 92.3 6 3.2 99.7 6 6.2 155.3 6 11.0
10 523 131.1 6 4.9 94.9 6 5.4 102.3 6 3.9 108.5 6 4.2 115.7 6 4.8 96.7 6 6.3
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Tables VI and VIII and Supporting Information Figure

S2 are the angle statistics, average v2 probabilities, and

3D structures of cluster representatives for the com-

pressed group. Both mean angles and v2 probabilities

were assessed without considering the compressed angles,

so that these novel structures could be related to canoni-

cal CGs with minimum effect from the compressed

angles. Even by leaving out the compressed angle in cal-

culating v2 probabilities, most of the average v2 probabil-

ities are much lower than the normal group, which

confirmed that they should not be directly classified into

any of the canonical CGs. In contrast to the normal

group, canonical CG assignment cannot simply use the

maximal cluster average v2 probabilities. In fact, such a

simplistic assignment approach would have misassigned

canonical CGs for five of the eight compressed clusters.

There is also no highest probability on Tet, because Tet is

the most geometrically symmetric structure, and having

a compressed angle seems to disrupt this balance. By

using all three pieces of information, most of the clusters

can be viewed as distorted forms of the canonical CGs

with one of the angles compressed. As for Cluster 5, it

does not resemble any of the canonical CGs at all, except

maybe a highly distorted Pyv, where it has three ligands

on the same plane very close to each other, and the

fourth ligand–zinc bond perpendicular to that plane.

Now, if we use k-means on both normal and com-

pressed group together instead of separately, stability

tests show that k 5 10 and k 5 14 are the potential opti-

mal clustering numbers (Supporting Information Fig.

S3). However, the Spearman’s rho starts from a negative

number as shown in Supporting Information Figure S3,

indicating a much weaker structure–function relationship

through clusters if we were to combine everything

together. Also, angle statistics (Supporting Information

Tables S6 and S7) show that all standard deviations,

especially those with a compressed angle (Clusters 4, 5,

9, and 10 in Supporting Information Table S6, and Clus-

ters 2, 3, 5, 9, and 12 in Table VII), are higher than

when handling them separately. As shown in Supporting

Information Table S6, the canonical CGs Spv and Bvp

are very likely to be mixed together in Cluster 8 when

using k 5 10. Its discriminating position, Angle 6, is

roughly the average of 908 (Spv) and 1208 (Bvp), and the

standard deviation is much higher compared with the

other five angles. When using k 5 14 as shown in Sup-

porting Information Table S7, Spv and Bvp can be sepa-

rated into Clusters 7 and 13, respectively. But the

discriminating Angle 6 of both clusters have their means

further from their ideal angles and the associated stand-

ard deviations are relatively high compared with when

handling them separately (Table V, Clusters 4 and 8).

Restated, more zinc sites are misclassified and inap-

propriately associated if we cluster all zinc sites together

rather than clustering zinc sites with all normal angles or

with at least one compressed angle separately.

Functional analysis

To assess how the CG structures might influence the

functional characteristics of zinc sites, the distances

between clusters were calculated from both the ligand–

zinc–ligand bond angles and InterProScan annotations

that overlap a zinc–ligand (see Methods section). These

distances were compared using Spearman’s correlation

(rho) and P-value of the correlation.

The correlation ranged from 0.6 to 0.9 depending on

the number of ligands required in the overlap between

zinc binding sites and annotation sites identified by

InterProScan. This high level of correlation implies that

there is a definite link between the CG and the func-

tional properties of a given zinc size. This is expected

based on the sequence–structure–function tenet of struc-

tural biology; however, it is still beautiful to see.

Figure 9 shows the comparison of the dendrograms

constructed from structural (Panel A) and functional

(Panel B) distances for the normal group. Both structural

and functional information created a hierarchical den-

drogram cluster comprising normal k-means Clusters 2

(nk2), nk5, nk6, nk7, and nk10 together, which are all

Tet subclasses. Structurally, Bva (nk3) is the next closest

k-means cluster to the Tet super-cluster, whereas func-

tionally, Bva is closer to the core Tet super-cluster than

distorted Tet (nk5), which shows a relationship with

another distorted CG cluster (nk1). As for k-means clus-

ters nk1, nk4, nk8, and nk9, distorted Pyv (nk1) and Pyv

Table VI
Mean and Standard Deviation of Angles for Each Cluster, Compressed Group k 5 8

Cluster Size Angle 1 Angle 2 Angle 3 Angle 4 Angle 5 Angle 6

1 186 128.2 6 8.2 53.7 6 6.1 92.1 6 8.7 105.6 6 6.1 115.0 6 6.1 90.8 6 9.4
2 141 155.9 6 8.6 57.9 6 6.4 86.6 6 7.5 98.8 6 6.4 112.0 6 9.6 134.0 6 10.3
3 275 153.0 6 7.0 55.2 6 5.4 88.2 6 5.8 98.3 6 5.2 105.7 6 6.0 103.2 6 9.2
4 84 128.5 6 9.9 80.5 6 7.6 92.3 6 8.2 105.4 6 9.5 116.4 6 8.5 51.5 6 4.8
5 126 130.8 6 9.9 53.3 6 6.3 75.2 6 6.3 85.9 6 6.7 100.7 6 9.3 91.2 6 11.9
6 91 157.1 6 10.6 54.8 6 7.2 77.0 6 8.2 105.1 6 12 129.1 6 11.1 92.4 6 14.5
7 53 159.8 6 9.6 79.1 6 9.0 86.7 6 6.8 93.8 6 6.8 103.1 6 10.3 55.0 6 6.3
8 209 139.6 6 8.2 52.7 6 5.6 83.4 6 7.7 96.8 6 7.0 111.1 6 9.1 118.8 6 6.7
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(nk4) are the first to cluster together in the structural

dendrogram, closely followed by Bpv (nk8) and then Spl

(nk9). Similarly, in functional dendrogram, Pyv (nk4)

and Bpv (nk8) are grouped together and then with Pyv

(nk1). Figure 10 shows the same comparison for com-

pressed group. Compressed k-means Cluster 4 (ck4) and

ck7 are in a subgroup in both structural and functional

dendrogram, and so are ck1 with ck5, and ck2 with ck8.

These observations definitely indicate that there are cer-

tain structure–function propensities lying in these clus-

ters that need to be further investigated. Also, the 3D

structure of ck1 looks like an inverted Tet or Bva, and

ck5 is a completely new CG that does not resemble any

known CGs. They both are worth further investigation as

well.

In addition to comparing the structural and functional

distances directly, functional annotation enrichment was

done for both the normal and compressed zinc sites. We

used hypergeometric enrichment to compare the EC

annotation and IPR annotations that overlap a zinc site

in the normal and compressed groups relative to all of

the annotated zinc sites.

We trimmed the EC numbers to the second digit as

annotations for enrichment calculations. The EC num-

bers are enriched in either the compressed or normal

group, but not both (Supporting Information Table S14).

The most enriched enzyme classes in the normal group

are 4.2 (carbon oxygen lyases), followed by 2.1 (transfer-

ases transferring one-carbon groups), 3.4 (peptidases),

and 4.4 (carbon sulfur lyases). Comparatively, in the

compressed group, the most enriched enzyme classes are

1.7 (oxidoreductases acting on other nitrogenous com-

pounds as donors), 0 (no EC number), 3.2 (glycosylases),

1.16 (oxidoreductases oxidizing metal ions), and 2.4

(glycosyltransferases).

Similarly, a number of InterPro annotations are enriched

in either the normal or compressed group, but not both

(Supporting Information Table S15). In fact, many of the

InterPro annotations in the normal zinc sites are not

present at all in the compressed sites, but all sites are only in

the normal group, including the most highly enriched

annotations such as C2H2 zinc fingers (IPR015880 and

IPR007087) and glycoside hydrolase (IPR027291, IPR0

15341, and IPR028995). Many of the other highly enriched

annotations in normal have only a few sites in the com-

pressed group, including carbonic anhydrase (IPR018338,

IPR023561, and IPR018443) and PHD-type zinc fingers

(IPR013083, IPR019787, and IPR019786).

The compressed-specific annotations included pollen

allergen (IPR001778 and IPR002914), as well as protein

of unknown function (IPR010281). Other highly

enriched annotations include immunoglobulin domains

Table VII
Average v2 Probabilities of the Zinc Sites in Each CG for the Normal Group with k 5 10. [Color table can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Cluster Tet Bva Bvp Pyv Spl Assignment

1 0.028 0.090 0.193 0.265 0.125 Pyv distorted
2 0.543 0.042 0.015 0.006 0.000 Tet
3 0.033 0.197 0.193 0.125 0.017 Bva
4 0.004 0.044 0.399 0.683 0.445 Pyv
5 0.096 0.071 0.047 0.013 0.002 Tet distorted
6 0.931 0.011 0.004 0.002 0.000 Tet
7 0.769 0.064 0.017 0.007 0.000 Tet
8 0.071 0.373 0.685 0.424 0.097 Bvp
9 0.009 0.063 0.461 0.585 0.564 Spl
10 0.218 0.149 0.082 0.070 0.009 Tet

The highest CG probability for each cluster is in red.

Table VIII
Average v2 Probabilities of the Zinc Sites in Each CG for the Compressed Group with k 5 8 [Color table can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Cluster Tet Bva Bvp Pyv Spl Assignmenta

1 0.160 0.289 0.150 0.072 0.012 Bva with compressed 90
2 0.092 0.229 0.206 0.149 0.064 Spl with compressed 90
3 0.102 0.287 0.226 0.263 0.092 Distorted Pyv with compressed 90
4 0.074 0.159 0.090 0.062 0.015 Tet with compressed 109
5 0.031 0.146 0.154 0.184 0.060 New!
6 0.042 0.073 0.061 0.056 0.027 Pyv with compressed 90
7 0.022 0.313 0.313 0.362 0.330 Pyv with compressed opposite 90
8 0.112 0.133 0.197 0.050 0.005 Distorted Bvp with compressed 90

The highest CG probability for each cluster is in red, leaving out compressed angles in the probability calculation.
aAssignments are based on average angles (Table VI) and v2 probabilities with visual corroboration from the centroid zinc site (Supporting Information Fig. S2).
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(IPR013783, IPR007110, and IPR013106), ferritin

(IPR009078 and IPR012347), super-antigens (IPR016091

and IPR013307), and staphylococcal/streptococcal toxins

(IPR006126, IPR006173, and IPR006177).

These results imply that although there are many func-

tions that can be performed by both normal and com-

pressed CGs, there are some that seem to be specific to

one type or the other.

Figure 9
Hierarchical dendrogram (left) and Spearman’s correlation (right) of structural and functional distances for k 5 10 in the normal group.

Figure 10
Hierarchical dendrogram (left) and Spearman’s correlation (right) of structural and functional distances for k 5 8 in the compressed group.
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DISCUSSION

Previous works have attempted to characterize zinc

binding in metalloproteins by considering only canonical

zinc CGs that have been previously observed and

explained by coordination chemistry. However, when

these expectations of canonical CGs are applied to zinc

ions bound by proteins, many zinc sites are classified as

outliers or are misclassified with respect to CG (see Table

II, and Andreini et al.22). Our analysis of ligand–zinc–

ligand bond angles, where the best fc-shell is determined

from only previously characterized zinc–ligand bond

lengths, and then the ligand–zinc–ligand angles exam-

ined, showed the presence of angles below 588 (com-

pressed) and 388 (super-compressed). As these angles are

incompatible with any previously characterized canonical

CG, they implied the existence of unknown CGs. Many,

but not all of the compressed and super-compressed

angles seem to contain bidentate ligands (wherein two of

the ligands to the zinc atom are from the same amino

acid residue or molecule) or non-amino acid ligands.

This points to the need for less-biased methods for

determining zinc CGs in proteins.

What is especially interesting is that it is not possible

to organize all of the CGs using only the angle informa-

tion. Clustering all of the zinc sites using only the sorted

angles does not lead to stable clusters (Supporting Infor-

mation Fig. S3 and Supporting Information Tables S6

and S7). This aspect of the CG detection methodology

(in combination with using known bond length’s mean

and standard deviations) leads to our method being less

biased than previous methods; however, there is still a

bias. The sites must still be classified as either normal or

compressed prior to clustering on the angles. But this

classification is based on direct observations of the angle

distributions in the dataset and not on prior belief of

what is in the dataset.

Following the clustering of the normal and compressed

zinc sites, assignment to canonical CGs was made based on

agreement with their expected angles. The normal sites fit

canonical CGs very well, as is expected. An attempt was

made to relate the compressed CGs to canonical CGs using

a combination of criteria including v2 probability calcula-

tions after removing the compressed angle to remove that

as a source of bias. The assignment to canonical CGs in

this case is still a bit of a misnomer, as most of these

severely compressed versions of canonical CGs have not

been described in the literature. From this perspective,

they can be viewed as novel CGs. However, we took the

conservative approach of simply describing them as large

distortions of the canonical CGs. We have also labeled the

compressed CG (Cluster 5 of the compressed group) that

appears completely distinct from all of the other canonical

CGs as truly “novel.”

To allay suspicions that these compressed angles are

the result of experimental artifacts, such as whether or

not it is just due to the uncertainty of the X-ray experi-

ment, we calculated the average of the b-factors of the

ligands composing the compressed angle versus normal

angles. As shown in Supporting Information Figure S4,

there is no significant difference between their compos-

ing ligands. There is literature suggesting that some of

the compressed angles are a result of a phenomenon

called a carboxylate shift,41 which is a thermodynamic

mechanism enzymes employ to sustain the CG when

binding and leaving a substrate. However, no one has

systematically examined this phenomenon in terms of

metal’s CG in the wwPDB. Also, a simple mechanism

could not cover all instances, such as the bidentation

caused by ligation of cysteine’s backbone and side-chain

together.

The compressed and novel CGs beg the question: why

have they not been previously reported? One answer is

that until recently there has not existed enough example

structures for them to be reliably observed even with our

less-biased characterization methods. Figure 11 shows

how the number of compressed zinc sites has increased

proportionately with the growth of the wwPDB. It is

only within the past 10 years that enough compressed

sites existed in the wwPDB for a rigorous study to

observe and detect them. More importantly, however, is

the fact that even with a relatively large fraction of com-

pressed sites, an analysis that considers only the canoni-

cal CGs from previously identified zinc coordinations

and bonding structures will remove compressed sites

from the analysis as outliers. This is exemplified by the

work of Andreini et al., MetalPDB,22 where the sum-

mary of zinc metal showed that the outlier category had

the largest number of instances. Figure 11 shows that

there should have been more than enough compressed

Figure 11
Analysis of the deposition history of the March 2013 wwPDB zinc met-
alloprotein entries with compressed angles. Publication date of the key

references are indicated on the graph.
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sites to be detectable; however, there were no compressed

sites reported by Andreini et al. There was a number of

outliers noted in their work. Some of the outliers

reported by Andreini et al. were likely zinc sites with

compressed CGs, but because their analysis considered

only “normal” zinc CGs, the compressed CGs were over-

looked and not reported. This directly underscores the

need for less-biased analyses of metal CGs in proteins so

that these previously described CGs are not overlooked

or merely classed as outliers and completely removed

from an analysis.

These compressed sites also show enriched functional-

ity relative to all of the sites, suggesting that there are

particular functions or enzyme classes that are preferen-

tially compressed. The correspondence between CG clus-

ter distances from angles and cluster distances from

functional annotation further emphasize the functional

importance of the compressed and novel CGs. However,

it should also be emphasized that it is difficult from this

work to assign functionality to particular normal or

compressed clusters, as multiple clusters seem to share

functionality. We see two possible explanations: (a) pres-

ence of false positives in associating function with the

zinc sites and (b) potential existence of zinc metallopro-

teins with multiple zinc-coordinating CG conformations,

but where the X-ray crystal structure freezes out just one

conformation. Improvements in functional annotation

methods will be required to address these short-comings,

including: (i) the development of better annotating hid-

den Markov models to better relate zinc binding site

detected from protein sequence to specific protein func-

tions and (ii) the development of better methods that

relate overlapping protein regions with respect to protein

functions. Dealing with the second explanation may only

be addressed by NMR studies42 and/or newer combined

quantum mechanical, molecular mechanical, molecular

dynamics simulations.43

CONCLUSIONS

We have developed a less-biased approach for the clas-

sification of zinc binding sites with respect to CG that

allows for the detection of novel CGs. From one perspec-

tive, we have detected eight novel CGs that contain com-

pressed angles and cannot easily be classified into one of

the canonical CGs. From another perspective, seven of

these eight novel CGs can be viewed as highly distorted

versions of the canonical CGs; however, this perspective

may be considered as simply trying to push a square peg

into a round hole. From either perspective, one of the

compressed CGs appears to be truly novel and distinct

from all canonical CGs by every probabilistic, angle com-

parison, and visual inspection criteria we could use. As

the wwPDB continues to grow, additional distorted or

novel CGs may become detectable; however, we will only

be able to detect these previously undetected CGs by

using an unsupervised clustering approach such as the

one described in this article rather than applying a

supervised classification method based on “known” CGs,

which has been the method of choice up to this point in

time. In other words, we will be able to detect these pre-

viously undetected CGs only if we stop assuming that we

already know what a dataset contains before analyzing it.
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