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Abstract

Contemporary gene flow, when resumed after a period of isolation, can have crucial consequences for endangered
species, as it can both increase the supply of adaptive alleles and erode local adaptation. Determining the history of gene
flow and thus the importance of contemporary hybridization, however, is notoriously difficult. Here, we focus on two
endangered plant species, Arabis nemorensis and A. sagittata, which hybridize naturally in a sympatric population
located on the banks of the Rhine. Using reduced genome sequencing, we determined the phylogeography of the two
taxa but report only a unique sympatric population. Molecular variation in chloroplast DNA indicated that A. sagittata is
the principal receiver of gene flow. Applying classical D-statistics and its derivatives to whole-genome data of 35
accessions, we detect gene flow not only in the sympatric population but also among allopatric populations. Using an
Approximate Bayesian computation approach, we identify the model that best describes the history of gene flow between
these taxa. This model shows that low levels of gene flow have persisted long after speciation. Around 10 000 years ago,
gene flow stopped and a period of complete isolation began. Eventually, a hotspot of contemporary hybridization was
formed in the unique sympatric population. Occasional sympatry may have helped protect these lineages from extinction
in spite of their extremely low diversity.

Key words: hybridization, approximate Bayesian computation, endangered species, Arabis nemorensis, Arabis sagit-
tata, introgression.

Introduction
Individual taxa do not always evolve in isolation. Interspecific
hybridization, when it leads to fertile offspring, can result in the
transfer of alleles across species barriers and even allow to speed
the pace of adaptation (Seehausen 2004; Servedio et al. 2013;
Abbott 2017; Nieto Feliner et al. 2017; Todesco et al. 2020). The
footprints of gene flow are detectable in many genera and
demes (Seehausen 2004; Marcet-Houben and Gabald�on
2015; Ackermann et al. 2019; Taylor and Larson 2019).
Genomic analyses have revealed that species barriers are estab-
lished progressively, depending on the size and degree of re-
productive isolation of the species, with genetic variation being
shared over periods of time that are longer than previously
thought (Brandvain et al. 2014; Novikova et al. 2016; Edelman
et al. 2019; Small et al. 2020). The climatic oscillations of qua-
ternary glaciation cycles have likely contributed to multiple
opportunities for hybridization in many taxa (Hewitt 2000).

The evolutionary consequences of hybridization can be
manifold, offering a powerful channel for some taxa to capture
and quickly fix alleles that have been subjected to selection in
other species (Hedrick 2013; Vallejo-Mar�ın and Hiscock 2016;
Goulet et al. 2017; Suarez-Gonzalez et al. 2018). The potent

adaptive potential unleashed by hybridization have been con-
firmed in a number of species (Rieseberg et al. 2003; Baduel
et al. 2018; Ma et al. 2019; Marburger et al. 2019). For example,
introgression appeared to accelerate local adaptation via the
transfer of alleles contributing to the success of a relative of the
sunflower (Todesco et al. 2020). In Heliconius butterflies, an
inversion associating genes that control color patterns has
been repeatedly exchanged between species (Edelman et al.
2019). In addition, transgressive phenotypic variation can
emerge from the recombination of resident and incoming
alleles throughout the genome (Rieseberg et al. 1999;
Seehausen 2004). Positive selection is therefore expected to
increase introgression rates specifically in and around adaptive
loci. Heterogeneous introgression rates, however, can also arise
along the genome in the absence of adaptive gene flow
(Schumer, Rosenthal, et al. 2018). Covariation between the
rate of introgression, recombination, and gene density, for ex-
ample, indicates that selections acts to limit introgression and
points to the existence of polygenic barriers to gene flow
(Brandvain et al. 2014; Schumer, Xu, et al. 2018). In humans,
the impact of deleterious alleles was shown to correlate neg-
atively with the frequency of alleles introgressed from the

A
rticle

� The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Open Access
Mol. Biol. Evol. 39(2): msac015 doi:10.1093/molbev/msac015 Advance Access publication January 27, 2022 1

https://orcid.org/0000-0002-8895-0785


related species Homo neanderthalis, whose population size was
low and eventually collapsed (Juric et al. 2016; Steinrücken
et al. 2018). Ultimately, high rates of gene flow can introduce
maladapted alleles and ultimately impede adaptation
(Lenormand 2002; Yeaman 2015; Tigano and Friesen 2016).
These alleles, in turn, can select for alleles that will reinforce
species barriers to prevent resources from being wasted by
producing poorly performing hybrids (Hopkins and Rausher
2012). Gene flow, regardless of whether it promotes or erodes
adaptation, is expected to create a heterogeneous pattern of
introgression throughout the genome (Martin and Jiggins
2017; Schumer, Rosenthal, et al. 2018).

If gene flow can be either a blessing or a curse, it is partic-
ularly crucial to understand its importance for species that
have to be protected from extinction. In a context of global
climate change, the number of threatened species is expected
to increase (D�ıaz et al. 2019; Eichenberg et al. 2021). At the
same time, many species barriers that have so far been main-
tained by habitat, phenological, or behavioral separation are
likely to disintegrate, generating unprecedented opportuni-
ties for novel episodes of hybridization (Anderson et al. 2012;
Chunco 2014). Contemporary hybridization will most affect
endangered species if the taxa involved have been separated
long enough to acquire distinct ecological and population
genomics characteristics. For example, the hybridization of
long separated continental subspecies of salmon has been
associated with the manifestation of Dobzhansky–Muller in-
compatibilities (Rougemont and Bernatchez 2018). In
Mimulus, barriers to gene flow are strong today despite an
ancient history of hybridization, but contemporary hybridiza-
tion has been reported at specific locations (Brandvain et al.
2014; Kenney and Sweigart 2016). The potential of hybridiza-
tion to create a novel genetic make-up today that may im-
pact future evolution and support the evolutionary rescue of
biodiversity depends, therefore, on how much time has
elapsed during the period of isolation.

Determining the history of gene flow between taxa is a
complex task. Dating gene flow cannot be achieved with a
single summary statistic of genomic variation, because effec-
tive population sizes (Ne), migration rates and/or the time
since species formation jointly influence patterns of standing
variation, divergence, and expected allele sharing. The widely
used D-statistics tests for gene flow, while accounting for
incomplete lineage sorting at the time of speciation
(Durand et al. 2011). This and related statistics have, for ex-
ample, revealed the extent of gene flow between species
thought to be separated by differences in ploidy (Arnold
et al. 2016; Paape et al. 2018; Kryvokhyzha et al. 2019). Yet
such statistics do not allow speciation or gene flow to be
dated, nor do they evaluate the duration of isolation periods
(Schumer, Rosenthal, et al. 2018; Hibbins and Hahn 2019).
Failing to understand the correct history of speciation and
gene flow can lead to confounding neutral patterns of gene
flow with convergent evolution, sympatric speciation, or even
adaptive divergence (Bierne et al. 2013; Ravinet et al. 2017).

The evolutionary and demographic histories of hybridizing
species are often too complex to be determined analytically.
Additional population parameters such as population size

and recombination rates have also been shown to have strong
consequences on the amount of native genomic DNA that
can be rescued (Harris et al. 2019). Intensive simulation meth-
ods, such as Approximate Bayesian Computation (ABC), offer
a powerful alternative (Csill�ery et al. 2010). It not only makes it
possible to choose among competing models for the one best
able to explain the data, but also enables population param-
eter (population sizes, migration rates) and their fluctuation
over time to be estimated (Roux et al. 2013; Leroy et al. 2017;
Fraı̈sse et al. 2018; Rougemont and Bernatchez 2018).
However, ABC approaches have rarely been applied to
whole-genome data and when, then only to infer relatively
simple demographic events such as bottlenecks or expansions
(Boitard et al. 2016; Jay et al. 2019). The current limitation
stems from the inherent statistical complexity of the ap-
proach (high dimensionality of whole-genome data), the ne-
cessity for an educated guess regarding the choice of
summary statistics to use, and the lack of user-friendly
ready-to-use software capable of handling all genome data.
The potential of ABC approaches to determine the timing,
intensity, and duration of hybridization episodes based on
whole-genome data thus remains to be fully leveraged.

Here, we focused on a documented case of contemporary
hybridization between two endangered plant species and
reconstructed the history of gene flow. The species we exam-
ined, Arabis nemorensis and A. sagittata, are selfing biennial
forbs from the Brassicaceae family. Arabis nemorensis, which
is strictly confined to floodplain environments in Central and
Northern Europe, harbors extremely low levels of nucleotide
diversity, with about 1.5 single-nucleotide polymorphism
(SNP) expected in 10 kb (Dittberner et al. 2019). Since the
1950s, conversion to arable land and management intensifi-
cation have reduced the area covered by species–rich flood-
plain meadows, the ecosystem in which A. nemorensis thrives,
by more than 80%. Only small remnant patches have per-
sisted within protected areas (Hölzel 2005). The unique ecol-
ogy of A. nemorensis, its shrinking habitat, and its selfing
mating system all contribute to the acute danger of extinc-
tion this species finds itself in (Hölzel 2005; Burmeier et al.
2011; Mathar et al. 2015). Arabis nemorensis, however, was
found to occur in sympatry with its relative, A. sagittata, in a
small set of pristine habitat patches located on the banks of
the Rhine near Mainz, Germany (Dittberner et al. 2019).
Arabis sagittata, known to thrive in relatively dry environ-
ments, is also endangered, but its presence in floodplain
meadows is novel (Hand and Gregor 2006; Dittberner et al.
2019). Interestingly, approximately 10% of the individuals of
the sympatric population appeared to be of mixed ancestry
(Dittberner et al. 2019).

Using a combination of reduced sequencing and whole-
genome sequencing, we asked the following questions: is hy-
bridization local or is there a large contact zone? Is gene flow
symmetrical? Do rates of introgression vary along the ge-
nome? Is hybridization contemporary or was gene flow con-
tinuous throughout the history of the species? Our study
confirms the existence of a contemporary hotspot of hybrid-
ization where asymmetric gene flow has resumed after ap-
proximately 10 000 years of complete isolation between taxa.
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Results

Admixed Individuals Detected Only in a Single
Sympatric Population
We combined previously published and newly generated
RAD-sequencing data for a total of 231 accessions to describe
the phylogeographic distribution of A. nemorensis and assess
the distribution of A. sagittata and admixed individuals in the
area of distribution of A. nemorensis (supplementary table S1,
Supplementary Material online). This collection of genotypes
covered all sites where the presence of A. nemorensis had
been documented (see Materials and Methods). We per-
formed an admixture analysis (Alexander and Lange 2011)
and identified two genetic clusters, that were previously
assigned to A. nemorensis and A. sagittata (supplementary
figs. S1–S5, Supplementary Material online; Dittberner et al.
2019). We found individuals of the two species growing in
sympatry in only one of the 11 sites (the Rhine population),
indicating that opportunities for natural hybridization are
restricted (fig. 1A; Dittberner et al. 2019). Of the 140 individ-
uals sampled in the sympatric population, 75 were
A. sagittata, 42 were A. nemorensis, and 23 were individuals
we identified as having mixed ancestry because they showed
less than 95% purity in the output of the ADMIXTURE anal-
ysis. Phenotypic observations in the field, such as low seed
number per silique and elongated stems, had suggested that
hybridization may occur in some rare instances (Novotn�a and
Czapik 1974; Titz 1979). In contrast, genetic analyses indicate
that the two species frequently cross-hybridize within the
sympatric population (Dittberner et al. 2019). Interestingly,
A. sagittata ancestry predominates in most admixed individ-
uals (fig. 1B), indicating the frequent backcross of admixed
with A. sagittata individuals, which are more frequent than A.
nemorensis individuals in the sympatric population.

Chloroplast DNA Indicates That A. nemorensis Is the
Maternal Parent of Hybrids
Chloroplast DNA is maternally inherited and its sequence
variation can provide information about the maternal geno-
type of hybrids (McCauley 1995). To determine the maternal
genotypes of hybrids, we focused on RADseq stacks that
mapped to a total of 10 kb (5%) of the chloroplast sequence
of the close relative A. hirsuta (Kawabe et al. 2018). Haplotype
network analysis showed that the chloroplast sequences of
A. sagittata formed four closely related haplotype groups and
two for A. nemorensis (fig. 1C). As all but one admixed indi-
vidual had an A. nemorensis haplotype, we conclude that
A. nemorensis is the maternal genotype of most hybrids.
This observation confirms that gene flow between the two
clusters is asymmetrical. Surprisingly, 24 A. sagittata individ-
uals were found to carry the A. nemorensis chloroplast hap-
lotype although the admixture analysis found no trace of
A. nemorensis in their nuclear genome. This suggests that
some individuals may have a hybrid ancestry but their
A. nemorensis ancestry is undetectable in the admixture anal-
ysis of RAD-seq data, showing in turn that the examination of
whole-genome sequences was necessary.

Gene Flow between A. nemorensis and A. sagittata Is
Not Restricted to the Sympatric Population
To quantify interspecific gene flow between the two genetic
clusters, we resequenced 35 whole genomes of accessions
from both allopatric and sympatric populations for the two
species, as well as one individual of the closest diploid relative,
A. androsacea (supplementary table S2, Supplementary
Material online). In order to understand the history of gene
flow, we specifically excluded individuals that were predicted
to be admixed (fig. 1B), which were obviously formed a hand-
ful of generations ago. Analyses presented hereafter were all
conducted on data generated by whole-genome sequencing
in this set of 35 accessions. We confirm that nucleotide di-
versity is low in this system (at synonymous sites, p¼1.32e-5
and 4.37e-5 in A. sagittata and A. nemorensis, respectively).
The two species are clearly differentiated with a median
Fst¼ 0.8, yet median Dxy is 0.0003 and net divergence
Da¼ 0.03%, which lie in the range of values observed be-
tween populations of the same species that have the poten-
tial to exchange gene flow (Roux et al. 2016). We first
computed Patterson’s D (ABBA-BABA) statistic (Green
et al. 2010; Durand et al. 2011), a statistic that quantifies
gene flow after accounting for incomplete allele sorting.
This statistic is computed over the whole genome for phy-
logenies of the form (((P1, P2),P3),O), where O is the out-
group A. androsacea and P1 and P2 two populations of the
same species. D was highest for the phylogeny with
P1¼A. sagittata allopatric, P2¼A. sagittata sympatric, and
P3¼ all A. nemorensis individuals with 0.2 (P�0.001; block
jackknife test). This significant and positive D value shows
that gene flow is higher between P3 A. nemorensis and P2,
the sympatric A. sagittata population, than between
A. nemorensis and P1, the allopatric A. sagittata individuals
(fig. 2A). Although this test showed elevated rates of gene
flow in the sympatric population, it did not rule out intro-
gressions in the allopatric populations. Thus, we also com-
pared the two allopatric A. sagittata populations Lob and Adl-
1 (fig. 1A) with P1¼A. sagittata Lob, P2¼A. sagittata Adl-1
and P3¼ all A. nemorensis, and found D was 0.09 (P�0.001;
block jackknife test) indicating significant gene flow outside of
the sympatric population. Finally, we tested the phylogeny
with P1¼A. nemorensis sympatric, P2¼A. nemorensis allo-
patric, and P3¼A. sagittata Lob (allopatric), and found that
D was 0.17 (P�0.001, block jackknife test). This positive value
indicated that gene flow from A. sagittata into A. nemorensis
was stronger in allopatry than in sympatry, demonstrating
that the history of hybridization in this system predates the
formation of the sympatric population.

The Frequency of Introgression Is Heterogeneous
along the Genome
The D-statistic provides information about genome-wide
rates of gene flow but not about its distribution across the
genome. Thus, we calculated the fD-statistic (Martin et al.
2015) across the genome for five phylogenies covering all
possible scenarios of interspecific gene flow (fig. 2B).
Distributions of fD were highly zero-inflated for all
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populations, indicating that introgressions were generally rare
across the genome. Yet, in all populations, we found genomic
regions with elevated fD values. We did not find strong differ-
ences in the distribution of these regions among chromo-
somes. The D and fD statistics rely on the assumption that
there was no gene flow between P3 and P1 (Green et al. 2010;
Durand et al. 2011; Martin et al. 2015). As we found intro-
gressions in all populations, this assumption was violated,
meaning any introgression shared by P1 and P2 would remain
undetected. Our estimates of gene flow are therefore likely to
be conservative.

Introgressed Fragments Are on Average Largest in the
Sympatric Population
To locate introgressed fragments and their boundaries in the
genome, we calculated the ratio of average intra- and inter-
specific genetic distance for each individual in 10 kb genomic
windows (see Materials and Methods). This ratio is expected

to be smaller than the ratio throughout the genome, except
in introgressed regions. We used a value equal or greater than
2 as a conservative threshold for the ratio value calling intro-
gressed fragments. The average number of introgressions per
individual was highest in the sympatric A. sagittata popula-
tion, with 24.7 introgressed fragments per genome (standard
deviation [SD] ¼ 3.6), followed by the allopatric A. sagittata
populations, with an overall mean of 13.7 fragments per ge-
nome (SD¼ 3.5, supplementary table S3, Supplementary
Material online). In contrast, in A. nemorensis, we observed
an average of 9.6 introgressed fragments per genome
(SD¼ 1.47) in the sympatric population and 2.6
(SD¼ 0.55) in the allopatric. These results confirmed that
interspecific gene flow from A. nemorensis to A. sagittata
was stronger than vice versa. Furthermore, the presence of
introgressions in allopatric populations suggests that gene
flow is at least partly historical.

The high occurrence of introgression fragments in the sym-
patric A. sagittata population indicates that some of these
fragments could have been introduced more recently by con-
temporary gene flow. We thus assessed whether the introgres-
sion was likely to have occurred in the sympatric population
(recent gene flow) or whether it predated the separation of
local populations (historical gene flow). For this, we deter-
mined the individual in the donor species, whose orthologous
region was most closely related to the introgressed fragment
identified in the receiver species. We then observed that the
proportion of introgressed fragments that were most similar
to alleles of the sympatric A. nemorensis population was al-
most twice as high in the sympatric A. sagittata population
(38.5%) as in the allopatric A. sagittata population (20%), a
difference that was marginally significant (v2¼ 3.76, P¼ 0.05,
fig. 2C). This trend was reversed in A. nemorensis, with 25% of
introgressions originating from a sympatric A. sagittata lineage
in the sympatric A. nemorensis population as opposed to 43%
in the allopatric A. sagittata population. However, as there
were only four introgressions in the sympatric population,
this reversal is likely due to chance.

We further reasoned that recent introgressions originating
from sympatric donor lineages should be on average larger
than introgressions originating from allopatric donor lineages
because the latter being more ancient, they should have had
more time to be broken down by recombination. Thus, we
compared the distributions of introgression size among pop-
ulations. In A. sagittata, introgressions in the sympatric pop-
ulation were significantly larger than in the allopatric
population (Z¼�4.47, P< 0.001), with median values of
37,900 and 10,000 bp, respectively (fig. 2D). We did not find
this difference in the A. sagittata allopatric populations
(Kruskal–Wallis v2¼ 0.5174, df¼ 1, P¼ 0.472) or in the
two A. nemorensis populations (symp.: Kruskal–Wallis
v2¼ 0.6, df¼ 1, P¼ 0.4386; allop.: Kruskal–Wallis
v2¼ 1.772, df¼ 1, P¼ 0.1831).

The Best Fit Model Excludes Constant Gene Flow
between the Two Taxa
Based on the above, we observed: 1) asymmetrical gene flow
between species and 2) evidence for gene flow both within

FIG. 1. Hybridization between Arabis nemorensis and A. sagittata. (A)
Map of sampled populations. Each population is represented by a pie
chart showing the average ancestry proportions of A. nemorensis and
A. sagittata in the given population, based on RAD-sequencing data.
(B) Representation of individual ancestry components in the sympat-
ric (Rhine) population, based on RAD-seq data. Each bar represents
one individual and is colored according to its genomic ancestry. Bars
are ordered by decreasing A. sagittata ancestry. Admixed individuals
are framed with a purple rectangle. (C) Network of chloroplast RAD-
seq haplotypes. Each pie-chart represents one haplotype and the
fractions of species/populations carrying this haplotype. Haplotypes
are connected to their closest relative by a line. Orthogonal dashes
represent the number of mutations. Abbreviations in the legend:
nemo., A. nemorensis; sag., A. sagittata; allo., allopatric; symp.,
sympatric.
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and outside of the sympatric population. Our data thus in-
dicate that gene flow may have been continuous throughout
the history of the two species. However, we also observed that
gene flow from A. nemorensis into A. sagittata might have
intensified in the sympatric population. Gene flow could thus
have occurred in the past and stopped during a phase of
complete isolation, only to resume recently in the sympatric
population. We took a modeling ABC approach to date gene
flow between A. nemorensis and A. sagittata and to estimate
its strength and past fluctuation.

We modeled the history of interspecific gene flow using a
random-forest-based ABC approach (Raynal et al. 2019). Our
goal was to determine whether the data is explained better by
a history of continuous or by episodic gene flow. We thus
chose five demographic models, which explored different
modes of intra- and interspecific gene flow (fig. 3A), and
generated 50,000 coalescent simulations under each one. In
the first model, we assumed no migration at all, whereas
symmetric intraspecific migration was assumed in all other
models. In the second model, interspecific migration stopped

100,000 generations after the species split. In the third model,
ancestral interspecific migration continued until the first in-
traspecific population split. The fourth model was an exten-
sion of the third model that additionally allowed migration
between the sympatric populations, after populations in both
species had split. In the fifth model, interspecific migration
continued throughout the history of the species, allowing a
change in intensity after the intraspecific population had split
in both species. All interspecific migration rates were allowed
to be asymmetrical. Population sizes were constant for each
population but were allowed to change at all population split
points.

To choose the model that best fitted the data, we first
trained a random-forest classifier on the data all five models
use. The accuracy of the trained classifier was evaluated with a
confusion matrix that described how many simulations were
assigned to the model under which they were generated
(fig. 3B). Based on this matrix, we identified two subsets of
models that summary statistics could accurately distinguish
(max. error 5.2%). The first subset comprised the two models

FIG. 2. Patterns of introgression in sympatric and allopatric populations of parental species. (A) D-statistic results calculated over the whole
genome for different phylogenies. Bar color represents the species of the P3/donor population. Asterisks represent the result of a Jackknife test:
***P<0.001, **P<0.01. (B) Genome-wide distribution of fD calculated in 50-kb windows for different phylogenies, as shown on the right. Plots are
ordered by decreasing overall genome-wide fD. (C) Fractions of introgression origins for each population, inferred based on minimum genetic
distances (see Materials and Methods). Numbers on top show the total number of introgressions in each population. This plot does not take into
account the frequency of the identified introgression tracts. (D) Distribution of introgression size in each population, represented by dots and
boxplots. Dots are colored according to the introgression origin. This plot does not take into account the frequency of the identified introgression
tracts. The compact letter display indicates significant differences among groups. Abbreviations in the legends: nemo., A. nemorensis; sag.,
A. sagittata; allo., allopatric; symp., sympatric.
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with the least migration: the model without any migration
and the model with early ancestral interspecific migration.
The second subset contained three models with one or
more episodes of interspecific migration: prolonged ancestral
migration, ancestral and recent sympatric migration sepa-
rated by a period of complete isolation, and continuous mi-
gration. Within this last subset, the first model was classified
with a high accuracy of 84%, but the second and third models
were only classified with accuracies of 53% and 61%, respec-
tively. These results show that: 1) models with both high and
low migration rates could be distinguished easily by the clas-
sifier; and 2) determining the exact model within each of the

two groups was less straightforward. This result was not sur-
prising because when recent migration is low, the ancestral
and recent migration model gives results similar to those
generated under the ancestral migration model, which does
not allow migration in the sympatric population.

Next, we used the trained random-forest classifier to de-
termine the model that best explained the observed data. To
this end, we randomly selected 100 data sets, each consisting
of 500 loci of individual length 75 kb sampled from the ob-
served genotype (full genome) data and summarized with
200 summary statistics (supplementary table S4,
Supplementary Material online). Models with nonconstant

FIG. 3. Choosing the best demographic model. (A) Schematic representation of the tested demographic models. Populations are colored according
to the bottom-right code. Arrows represent migration rates. Interspecific migration rates can be asymmetric (even with double-sided arrows) and
intraspecific migration is symmetric. Dashed lines are timepoints at which populations split and/or migration rates change. (B) Confusion matrix
of the model-choice random forest model. For each model, simulated (out-of-bag) samples were classified by the trained random forest. Correct
classifications are on the diagonal. Results are represented as percentages. (C) Mean model classification results, that is, random forest votes, for
100 observed data sets, with 500 randomly selected genomic windows each. (D) Evaluation of fit for the best model. For each of the 100 observed
data sets, the median normalized summary statistic distance between observed data and the closest 1% of simulated data sets was calculated
(orange). As a null distribution, the same calculation was done with 1,000 simulated data sets of pseudo-observed data. For better clarity, the x axis
was trimmed at 300, but no observed distance was larger than that.

Dittberner et al. . doi:10.1093/molbev/msac015 MBE

6

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac015#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac015#supplementary-data


gene flow always received the majority of the votes. The
model with ancestral and recent sympatric migration was
chosen as the best model for 78% of the observed genomic
subsamples (fig. 3C). This was followed by the model assum-
ing ancestral migration only for 22% of observed genomic
subsamples. The other three models were not selected as
the most likely model.

Ancestral and recent sympatric migration separated by a
period of isolation most aptly characterize the history of this
plant system (fig. 3A). A history of low but uninterrupted
gene flow (Model 5) can be clearly ruled out. We further
quantified the goodness-of-fit of the model we identified as
the best. The distance between observed and simulated data
sets was not significantly different from zero, confirming that
the observed data lay well within expectations of the model
(fig. 3D). Next, we used this model to estimate the timing,
strength, and direction of gene flow between species and
populations as well as its fluctuation across genome
subsamples.

Estimation of Demographic Parameters Indicates Very
Low Ne in Both Taxa
To estimate demographic parameters of the best model, we
generated a total of 360,000 coalescent simulations under this
demographic model. We used two methods for parameter
estimation—random-forest-based ABC (Marin et al. 2019),
which also generated confidence intervals, and extreme gra-
dient boosting (XGBoost; Chen et al. 2020), which provided
the most accurate point estimates—and estimated each pa-
rameter independently (see Materials and Methods for
details). We achieved highest accuracy for the estimation of
present population sizes and lowest accuracy for the time and
population size at speciation (supplementary figs. S6 and S7,
Supplementary Material online). Of the two methods,
XGBoost tended to have the lowest root-mean-square error
(RMSE) and the highest R2, indicating that it could best re-
construct the parameters under which simulated data were
generated (supplementary fig. S8, Supplementary Material
online).

We then estimated the demographic parameters of the
two species based on observed data. We present in detail the
estimates obtained for one of the observed data sets we ran-
domly picked among those assigned to the selected model.
The estimated contemporary population sizes for
A. nemorensis were 6,775 (SD¼ 1,988) for the allopatric and
2,964 (SD¼ 615) for the sympatric population (fig. 4 and
supplementary table S5, Supplementary Material online).
For A. sagittata, 14,895 (SD¼ 2,407) made up the effective
allopatric population and 6,425 (SD¼ 1,649), the effective
sympatric population. These results agree with those of the
previous report, namely, that in the sympatric population,
A. sagittata harbored levels of genetic diversity higher than
those of A. nemorensis (Dittberner et al. 2019). The sizes es-
timated for the allopatric populations were larger than the
estimated size of the sympatric populations in both species,
presumably because the allopatric samples included individ-
uals collected in several sites. We further estimated that the
ancestral population in A. sagittata was more than twice as

large as that in A. nemorensis, with 59,031 (SD¼ 12,529) and
25,206 (SD¼ 9,777), respectively. We note that this result also
indicates that a simple scenario of early speciation followed by
secondary contact is unlikely to explain the data. The mag-
nitude of the population size decline after the split in both
species, with a mean factor of 6.11 for A. nemorensis, which
was similar to the factor of 6.57 estimated for A. sagittata. A
decline of effective population sizes in the recent past has also
been observed in the closely related species Arabidopsis thali-
ana, which is also selfing (Durvasula et al. 2017). However,
contemporary population sizes in this species are still larger
by at least an order of magnitude. This difference indicates
that A. nemorensis and A. sagittata have not been particularly
successful in their natural landscape.

The Period of Isolation Dates Back to the Last
Glaciation
The split between the species occurred approximately
894,801 (SD¼ 119,548) generations ago, when the effective
size of the ancestral population was approximately 150,281
(SD¼ 39,960). SDs were high, presumably because our model
also allowed for migration between populations (supplemen-
tary fig. S7, Supplementary Material online). Within species,
the populations split almost simultaneously: 10,441
(SD¼ 3,910) generations ago in A. nemorensis and 10,858
(SD¼ 3,417) generations ago in A. sagittata, and their split
time coincides with the last glacial maximum. Our analysis
thus suggests that the genetic landscape of the two taxa was
established after the last glaciation, a period during which
they became completely isolated.

Estimates of Migration Rate Confirmed Gene Flow
Resumed in Sympatry
The low but significant estimates of gene flow showed that
the model with ancestral and recent migration explained the
data better than a model assuming only ancestral migration
(fig. 3). We report the migration rates as the log10-
transformed fraction of a population migrating per genera-
tion. Migration from A. nemorensis to A. sagittata in the an-
cestral population was approximately five times higher than
vice versa: �6.34 (SD¼ 0.36) and �7.00 (SD¼ 0.85), respec-
tively. This amounts to about one migrant every 33 genera-
tions. Point estimates indicated that, in the sympatric
population, migration rates were lower than in the ancestral
population. Yet, the rate was still approximately ten times
higher from A. nemorensis to A. sagittata than vice versa, with
a rate of�7.72 (SD¼ 1.39) and�8.74 (SD¼ 1.33). The mode
of the posterior distribution for these two parameters differed
even more strongly (�6.36 for migration from A. nemorensis
to A. sagittata and �9.80 for the opposite direction). This
result aligns well with the asymmetry of gene flow revealed by
the analysis of chloroplast genome variation. As expected,
estimates of intraspecific migration rate were higher than
interspecific migration rates. We noted that the estimate
was two orders of magnitude higher in A. nemorensis com-
pared with A. sagittata (�5.61, SD¼ 1.61 and �7.09,
SD¼ 1.60 in A. nemorensis and A. sagittata, respectively).
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Variation in the Observed Genomic Sample Affects
Ancestral Population Size and Sympatric Migration
Rates
Since we observed that the introgression rate varies across the
genome, we examined whether estimates of gene flow varied
depending on the genomic regions included in the observed
sample. To test this, we compared the distributions of
random-forest-based and xgboost-based point estimates of
all demographic parameters for the 100 observed data sets
(supplementary table S6, Supplementary Material online).
Estimates were fairly robust to genome subsamples because
they were always in the same order of magnitude (fig. 5).

Yet, we made two notable observations. First, the abcrf
estimate of sympatric migration from A. nemorensis to
A. sagittata was 4.6 times more variable than the estimate
of migration in the opposite direction (fig. 5). The distribution
of point estimates for recent sympatric migration from
A. nemorensis to A. sagittata ranged from �8.3 to �6.5,
with a mean of �7.5 (supplementary fig. S9, Supplementary
Material online). Since the estimate was positively correlated
with the proportion of introgression regions included in each
genomic subsample, it partly reflects the heterogeneity of
introgression rates along the genome (Spearman correlation
coefficient Rho¼ 0.2, P¼ 0.03). The estimate of local

introgression rate fd also showed a weak yet significantly
negative relationship with inferred recombination rates in
the genome (Spearman Rho¼�0.06, P¼ 0.005, supplemen-
tary fig. S10, Supplementary Material online) indicating that
introgressed fragments were more likely in less recombining
regions of the genome. However, we note that gradient
boosting, a machine learning method that does not take
the variance of the coalescent process into account, yielded
migration estimates that were little affected by the composi-
tion of the genomic loci sampled for each analysis. Second,
although both methods indicated the same asymmetry in
gene flow between A. nemorensis and A. sagittata in the sym-
patric population, they yielded opposite conclusions for an-
cestral gene flow. Drawing a firm conclusion on the direction
of ancestral gene flow is therefore not possible.

Discussion

ABC Modeling Untangles Contemporary and
Ancestral Gene Flow between Two Taxa
Explorations of both genome-wide and local estimates of in-
terspecific introgressions, as well as allelic distributions within
and between species at introgressed loci, indicated that these
two Arabis species share a history of gene flow that predates
the formation of the sympatric population. The potential of

FIG. 4. Model parameter estimation. (A) Schematic representation of the model and its parameters: N, effective population size; M, migration rate
(fraction of migrants per generation); T, species/population split times. (B) Estimation results of the model parameters based on two methods:
ABCRF and XGBoost. Points represent the point estimate for each method, and triangles, the mode of the posterior distribution estimated by
ABCRF. Solid error bars represent the SD of the point estimate of ABCRF. Dashed error bars represent the 95% prediction interval of the ABCRF
posterior distribution.
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ABC approaches had been revealed previously by the study of
population isolation in Salmo salar (Rougemont and
Bernatchez 2018). Patterns of gene flow in S. salar popula-
tions, however, were resolved by genotyping more than 2,000
individuals at some 5,000 SNPs (Rougemont and Bernatchez
2018). This study now shows that ABC approaches have the
power to disentangle complex demographic scenarios even in
endangered species, where large sample of genotypes are by
definition not available. Indeed, we provide compelling evi-
dence that, although low levels of gene flow were maintained
long after speciation, interspecific gene flow was not contin-
uous in the history of these two plant species. Models pos-
tulating a phase of complete isolation initiated approximately
10,000 generations ago, were markedly better at explaining
the data than those assuming constant gene flow.

Several aspects could potentially challenge this conclusion.
First, gene flow may be underestimated, if many incompati-
bilities or deleterious alleles had to be removed by natural
selection (Sousa et al. 2013; Roux et al. 2016). Second, our
model ignored the effect of linked selection, which, by reduc-
ing Ne locally, can bias demographic inferences and decrease
effective local recombination (Schrider et al. 2016). In both
cases, a higher rate of introgression would be expected in
regions that are recombining more actively (Schumer, Xu
et al. 2018). The data, however, indicated the opposite, with
a marginally higher introgression rates in low recombining
regions of the genome. Third, the allopatric populations
were grouped into a single metapopulation, whereby some

aspect of demographic complexity could have been ignored.
However, none of these simplifications could lead to caveats
that would explain why, in the sympatric population of
A. sagittata, we observed longer introgressed fragments
than in the allopatric population. The migration rates esti-
mated for past gene flow were low in absolute number but
they fit well the model in which gene flow has resumed only
some rare sympatric populations. We note that the estimate
of gene flow in the sympatric population should be consid-
ered as the lower bound since the sample used for ABC de-
mographic inference excluded individuals with obvious
signatures of admixture. Intuitively, we believe that gene
flow might have happened in the past as it happens today:
through the occasional formation of sympatric demes leading
to localized bursts of interspecific gene flow.

Interspecific Gene Flow as a Chance for Evolutionary
Rescue?
Arabis nemorensis and A. sagittata are both considered en-
dangered in Germany and in many parts of Europe
(Dittberner et al. 2019). The demographic model confirms
that effective population sizes are particularly small in these
two low-diversity taxa (supplementary figs. S2–S5,
Supplementary Material online). Genetic diversity in both
species was approximately an order of magnitude lower
than in more common selfing relatives, such as, for example,
Arabidopsis thaliana (Alonso-Blanco et al. 2016) or Capsella
rubella (Onge et al. 2011). These low levels of diversity, how-
ever, do not necessarily point to a low adaptive potential that
would increase their risk of extinction. Indeed, the hotspot of
contemporary gene flow we uncovered has formed after a
period of isolation that might have been sufficiently long to
allow functional divergence. Variance in abcrf estimates asso-
ciated with the subsampling of genomic variation indicates
that the signature of contemporary gene flow is not homo-
geneous throughout the genome, in contrast to that of an-
cient gene flow. Such a heterogeneity suggests that the
contemporary contact is not without fitness consequences,
and, indeed, we found several high-frequency introgressions
that could be a signature of adaptive gene flow (Racimo et al.
2017). Studies in organisms such as yeast or sunflower have
shown that hybrid populations can adapt efficiently to chang-
ing environmental conditions (Stelkens et al. 2014; Mitchell
et al. 2019; Todesco et al. 2020). Moreover, gene flow can also
resolve fitness tradeoffs limiting adaptation in the parental
species (Walter et al. 2020).

At this stage, however, we do not know whether, in this
system, heterogeneous gene flow along the genome reflects
positive selection for introgression (Schumer, Rosenthal, et al.
2018; Suarez-Gonzalez et al. 2018). First, we do not know
whether the two species possess alleles of potential fitness
relevance for each other. Second, F1 hybrids display low fer-
tility, indicating that gene flow causes fertility reduction, at
least initially (Dittberner H, personal communication; Titz
1979). The simple removal of a handful of large effect incom-
patibility alleles could contribute to the pattern of heteroge-
neous introgression documented here (Schumer et al. 2014).
Introgressions may also carry deleterious alleles, either due to

FIG. 5. Distribution of parameter estimates for the 100 observed data
sets formed by subsampling five hundred 75-kb-long regions in the
genome. MN and MS, intraspecific migration rate among Arabis nem-
orensis and A. sagittata populations, respectively; MNS and MSN, in-
terspecific migration rate from A. nemorensis into A. sagittata,
respectively; Sym, sympatric population; Anc., ancient gene flow;
NN1, effective population size of allopatric A. nemorensis populations;
NN2, effective population of sympatric A. nemorensis population; NS1,
effective population of sympatric A. sagittata population; NS2, effec-
tive population size of allopatric A. sagittata population; NNanc, an-
cestral population size of A. nemorensis; NSanc, ancestral population
size of A. sagittata; TN, time elapsed since split of A. nemorensis pop-
ulation; TS, time elapsed since split of A. sagittata populations; TAnc,
time of speciation; NAnc, ancestral population size prior to speciation.
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fitness trade-offs between the parental species (Arnegard
et al. 2014) or due to slightly deleterious variants in the pa-
rental genomes that have not been purged by selection, that
is, genetic load. This phenomenon is known to have shaped
the landscape of introgression from Neanderthals to humans
(Harris and Nielsen 2016; Juric et al. 2016), resulting in more
introgressions outside of either functionally important
regions or of regions with low recombination rates
(Schumer, Xu, et al. 2018). The absence of a global positive
correlation between recombination rate and introgression
suggests that negative selection is likely weak and not perva-
sive throughout the genome. Alternatively, transient hetero-
zygosity following hybridization may favor gene flow in low
recombining regions because these regions presumably har-
bor more deleterious variants that could be masked by the
introgression. Novel methods for the detection of adaptive
gene flow have been proposed, but this task remains arduous
in selfing species, where recombination events are rare (Setter
et al. 2020). Experimental work is required to identify the
phenotypic consequences of gene flow between A. sagittata
and A. nemorensis and disentangle the effect of positive and
negative selection on the pattern of introgression. Having
identified a local hotspot of contemporary hybridization, it
is now possible to monitor these consequences in situ.

Materials and Methods

Plant Material and DNA Extraction
In 2016 and 2017, we identified 30 sites reported to host
A. nemorensis populations on the Deutschland Flora
Database. Of these, 24 could be visited, and A. nemorensis/
A. sagittata populations were observed in 11 of them. We
sampled seeds from at least ten A. nemorensis and/or
A. sagittata plants per site for a total of 231 accessions (sup-
plementary table S1, Supplementary Material online).
Populations were located in Southern Germany and Austria
(fig. 1A). One of these sites, referred to as “Rhine,” was previ-
ously described in Dittberner et al. (2019) and consists of
multiple proximate pristine habitat patches at one site.
Individuals from these patches were assembled in one sym-
patric population. We extracted DNA for genotyping as pre-
viously described (Dittberner et al. 2019).

RAD-Seq Genotyping for Phylogeography
In addition to the 140 accessions originating from the Rhine
populations that were previously genotyped in Dittberner
et al. (2019), we genotyped 91 accessions using the original
RAD-seq protocol (Etter et al. 2011) with the modification
described in Dittberner et al. (2019). Libraries were sequenced
at the Cologne Center for Genomics on three Illumina HiSeq
4000 lanes with 2� 150 bp. We used FastQC (Andrews 2010)
to check the raw reads. We trimmed adapters and removed
reads shorter than 100 bp using Cutadapt (Martin 2011). We
removed PCR duplicates based on a 5-bp stretch of random
nucleotides at the end of the adapter, using the clone_filter
module of Stacks version 1.37 (Catchen et al. 2013). We
demultiplexed samples using the process_radtags module
from Stacks. We filtered reads with ambiguous barcodes

(allowed distance 2) and cut-sites, reads with uncalled bases
and low-quality reads (default threshold).

We used our previously described pipeline to call nuclear
genotypes in all samples (Dittberner et al. 2019). Briefly, we
used BWA (Li and Durbin 2009) to map reads against the
high-quality reference genome we had sequenced and assem-
bled for A. nemorensis (Dittberner et al. 2019). We filtered
mapped reads using SAMtools (Li et al. 2009) to remove
regions with excessively low (30%) or high (2-fold) coverage,
compared with the mean coverage. We called genotypes us-
ing samtools mpileup and VarScan2 (Koboldt et al. 2012). We
filtered genotyped loci using VCFtools (Danecek et al. 2011).
Knowing that both species are predominantly selfing, we fil-
tered out SNPs with more than 20% overall heterozygosity
and SNPs with more than 75% heterozygosity within a pop-
ulation, because heterozygous SNPs tended to cluster on a
few single RAD-seq fragments, indicating inaccuracies in map-
ping that were not picked up by filtering on coverage. In total,
we genotyped 2.6 million sites (�1% of the genome) (exclud-
ing sites with more than 5% missing data in our sample) and
identified 25,634 SNPs.

To obtain SNPs in the chloroplast sequence, we mapped
the RAD-seq reads against a chloroplast reference genome of
Arabis hirsuta (Kawabe et al. 2018), using the mem algorithm
of BWA (Li and Durbin 2009) with default settings. We called
genotypes and SNPs as described above. We set heterozygous
genotype calls to missing data, as these calls most likely
resulted from mapping errors (the plastome is effectively
haploid). Furthermore, we used VCFtools to remove SNPs
with either more than 20% missing data or more than two
alleles, which resulted in 23 chloroplast SNPs.

Determining Admixed Individuals with RAD-Seq and
Chloroplast Data
To determine the genomic make-up of each population and
identify the presence of admixed genotypes, we first analyzed
SNP data using ADMIXTURE (Durand et al. 2011), varying K
from 2 to 10. First we converted VCF files to bed format using
PLINK (Purcell et al. 2007; Purcell 2009). We ran ADMIXTURE
analysis (Alexander and Lange 2011) for K¼ 1 to K¼ 6, with
ten iterations of cross-validation each. We normalized clusters
across runs using CLUMPAK (Kopelman et al. 2015). We used
K¼ 2 for further analysis, as we were analyzing two species
and the value was well supported by the cross-validation error
(supplementary fig. S1, Supplementary Material online).
Individuals were defined as admixed if they had less than
95% ancestry from either species. We created plots using
the libraries ggplot2 (Wickham 2009), ggmap (Kahle and
Wickham 2013), scatterpie (Yu 2018), and ggsn (Baquero
2017). Finally, we used the library pegas (Paradis et al. 2016),
to determine chloroplast haplotypes and build a haplotype
network.

Analysis of Genetic Diversity
We used the RAD-seq data to determine the level of genetic
diversity within and between species. Using the vcfR package
(Knaus and Grünwald 2017), the genotype data were loaded
into R and converted to DNAbin format. We used the pegas
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package (Paradis et al. 2016) to calculate pairwise genetic
distances among all individuals. Based on the resulting dis-
tance matrix, we calculated average genetic distances within
and between both populations and species. We calculated
the diversity in the hybrid complex as the average genetic
distance within the whole Rhine population.

Whole-Genome Resequencing for Gene Flow
Quantification and ABC
To achieve greater resolution for introgression detection, we
randomly selected five A. nemorensis and 14 A. sagittata
accessions from the sympatric population, four and six acces-
sions from two allopatric A. sagittata populations, and one
accession of each of the six allopatric A. nemorensis popula-
tions. In total, the whole genome of 35 accessions was se-
quenced (supplementary table S2, Supplementary Material
online). To provide an outgroup species for estimating gene
flow, we also sequenced one accession of A. androsacea, pro-
vided by Jean-Gabriel Valay (Jardin Alpin du Lautaret, France).
DNA for these accessions was extracted as described above.
Libraries were prepared using Illumina TruSeq DNA PCR-free
kits at the Cologne Center for Genomics. Six samples were
sequenced on a HiSeq 4000 with 50 million 2�75 bp reads
per sample. The remaining samples were sequenced on a
NovaSeq6000 with 25 million 2�150 bp reads per sample,
resulting in a depth of approximately 25�.

We used FastQC (Andrews 2010) to quality-check the
resulting reads. We filtered the reads using the process_short-
reads module from Stacks v2.2 (Catchen et al. 2013), remov-
ing reads shorter than 70 or 100 bp (threshold was adapted to
the sequencing device) and reads with uncalled bases or low-
quality scores (default threshold). At this point, we included
reads of the A. nemorensis reference genome accession from
the sympatric population (Dittberner et al. 2019). We
mapped the reads against the A. nemorensis reference ge-
nome (Dittberner et al. 2019) using the mem algorithm of
BWA (Li and Durbin 2009) with default settings. We filtered
out poorly mapped reads using the following criteria: map-
ping quality <30, read not mapped in proper pairs, >50% of
the read is soft-clipped. We called genotypes as described
above but with the default strand-filter of VarScan2
(Koboldt et al. 2012). Genotypes were filtered using
VCFtools (Danecek et al. 2011). As in the above, filters were
set to allow maximum 20% missing data, maximum two
alleles, and not more than 20% heterozygosity per site (see
above) and to remove indels and low-quality genotype calls
marked “filtered” by VarScan2. Additionally, we removed sites
with a mean depth greater than 45 (twice the mean depth of
all sites) and smaller than 7.5 (mean depth of all sites divided
by 3). From the resulting genotype data set, which comprised
78.976.767 nucleotide positions, we extracted a total of
2.954.526 SNPs using VCFtools. To verify sample identity, we
performed a PCA using the adegenet package (Jombart et al.
2016). Based on this PCA and the RAD-seq data above, we re-
assigned one A. sagittata mislabeled sample (174) from one
allopatric population to the other.

Estimation of the Population Recombination Rate
In order to take within-locus recombination into account in
our ABC estimations of the demographic history, we esti-
mated the population recombination rate R; we used the
sympatric A. sagittata population because we had sequenced
the most individuals in this population. We first phased the
reads using the read-aware phasing algorithm implemented
in SHAPEIT (Delaneau et al. 2013). We then used FastEPRR
(Gao et al. 2016) to estimate the local recombination rate in
nonoverlapping 75-kb windows along the genome, with oth-
erwise default settings. We used the median of the distribu-
tion (R¼ 11.5 per 75-kb window) as the per locus population
recombination rate Rho¼ 4 Ne r (i.e., Rho¼ 0.15 per kb).

Detection of Interspecific Gene Flow
To investigate signatures of gene flow among nonadmixed
individuals, we analyzed the whole-genome resequencing
data using two four-taxon statistics: we calculated D
(Durand et al. 2011) over the whole genome to detect inter-
specific gene flow, and we calculated fD (Martin et al. 2015) in
50-kb sliding windows to analyze the heterogeneity of gene
flow along the chromosomes. These tests assumed the gen-
eral phylogeny: (P1, P2)(P3) outgroup; where P1 was the con-
trol population (no gene flow), P2 was the gene-flow target
population, and P3 was the donor population of gene flow.
We used A. androsacea as the outgroup to determine the
ancestral allelic state. We calculated fD in 50-kb sliding win-
dows with 25 kb overlap, following Martin et al. (2015). We
skipped sites with derived allele frequency of 0 in P3, as these
could bias values of fD. We calculated these statistics for the
phylogenies shown in figure 2.

To complement the four-taxon analysis, we applied a
method based on analyses of genetic distance to locate and
assign boundaries to putative introgressed fragments in indi-
vidual accessions (excluding admixed individuals as in the
above). This method allowed identifying introgressed frag-
ments regardless of their frequency and their size and may
be better suited to the detection of introgressions of various
ages. Our reasoning was as follows: if there is no introgression,
the mean genetic distance of a given accession to members of
the same species should be smaller than the distance to
members of other species; for introgression, the opposite is
true. Thus, in 10-kb windows along the genome, we calcu-
lated the mean intra- and interspecific genetic distance for
each accession, excluding individuals from the same popula-
tion for the intraspecific case, as they are likely to carry the
same introgression. We added a constant of 0.0001 to all
interspecific distances to avoid zero-division and removed
windows with zero interspecific distance and nonextreme
intraspecific distance (<90th percentile), as these could
lead to spurious signals of introgression. For each window,
we calculated the ratio of intraspecific and interspecific ge-
netic distance (hereafter, distance ratio), which we used to
identify introgressions.

For each accession, we identified introgressions by first
removing all windows with a distance ratio smaller than or
equal to 1. We then classified windows as introgressions if
their distance ratio was >2 or if both of their neighboring
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windows fulfilled this condition. This threshold was chosen
because it seemed conservative enough to identify putative
introgressed tracks. Adjacent introgression windows were
connected to a single introgression. We applied several filters
to the resulting set of candidate introgressions: We excluded
candidate introgressions from further analysis if they con-
tained too many repetitive elements (i.e., those with mean
number of genotyped positions less than the 25% quantile of
the number of genotyped position in all introgressions).
Furthermore, we overlapped candidate introgressions with
D and fD values (in 50-kb windows) for the respective target
population; for introgressions larger than 50 kb, we calculated
the mean of all windows within the introgression. We kept
introgressions with values of D> 0.1 and fD > 0.01.
Subsequently, we removed introgressions with >30% mean
heterozygosity, as these often gave inaccurate signals: the ex-
pectation for this distance ratio is not the same as for the
homozygous case (detecting heterozygous introgressions
with this method would require haplotype data). To define
the boundaries of each introgression accurately within each of
the remaining candidate introgressions, we recalculated the
genetic distances in sliding 2-kb windows in 200 bp steps. We
applied the same thresholds as described above to define our
final set of introgression regions in all these windows.

Finally, we aimed to determine the likely origin of each
introgression by calculating genetic distances of the introgres-
sion region between all accessions of the donor species and
the target accession. We then determined the accession(s)
with the minimum genetic distance to a given introgression.
We standardized genetic distances by dividing them with the
approximate number of genotyped sites for each pair of
accessions (we used an approximation to reduce computa-
tional requirements). The approximate number was esti-
mated by taking the mean of all 2-kb windows (200 bp
steps) within an introgression and scaling this value by the
length of the introgression. If all accessions originated from
the same population (i.e., sympatric or allopatric for the do-
nor species), we inferred that the introgression likely origi-
nated from this population (or a closely related one). If donor
accessions originated from multiple populations, the inferred
origin was ambiguous.

Statistical analysis was performed in R (R Development
Core Team 2008). Visualization was done using the ggplot2
library (Wickham 2009). To account for the introgression
frequency in statistical analyses of origin and introgression
size, we counted each unique introgression (identical start-
and end-points) only once, regardless of its frequency. We
tested whether introgression size differed among populations
using a Kruskal–Wallis test followed by a pairwise Dunn test,
implemented in the FSA package (Ogle et al. 2020).

Modeling the History of Interspecific Gene Flow
We used coalescent simulations and an ABC algorithm with
random forest-based Bayesian parameter inference to deter-
mine the most likely demographic history of the two species,
focusing especially on the history of interspecific gene flow
(Raynal et al. 2019). Modeling was performed in two steps: 1)
we compared data obtained from each postulated

demographic model to our observed genetic data to identify
the best-fitting one and 2) we estimated the posterior distri-
bution for each demographic parameter of the best model.

The summary statistics for the observed data were com-
puted from the 35 fully sequenced genomes. We randomly
selected 500 genomic windows of 75 kb each, all of which
were at least 150 kb apart from one another and contained at
least 20,000 genotyped sites, which allowed excluding regions
that were excessively repetitive. We computed the following
summary statistics using a custom python script: overall hW,
hW, and hp within each population, Tajima’s D for each pop-
ulation, dXY and FST between all pairs of populations, the
fraction of shared, private, invariant and fixed SNPs for all
pairs of populations, Patterson’s D and fD (ABBA-BABA) for
eight possible phylogenies. All summary statistics, except
Patterson’s D, were calculated per locus and the resulting
distributions were further summarized as the mean and var-
iance as well as the 5% and 95% quantile, resulting in a total of
236 summary statistics. To estimate the variance in model
selection and parameter inference due to window choice, we
assembled 100 random sets of these 500 genomic windows
and considered each as one independent observation.

Simulated data for each of the five model described in
figure 3A were obtained with the software escrm (Sellinger
et al. 2020), which is a modification of the widely used coa-
lescent simulation software scrm (Staab et al. 2015) that
accommodates selfing (we set a 90% selfing rate for all pop-
ulations). Fixed parameter values and prior distributions for
all demographic parameters are found in table 1. For each
model, we simulated 50,000 data sets, each consisting of five
hundred 75-kb-long loci recombining at a rate estimated
from the data, as described above. Summary statistics for
the observed data are computed using the same custom py-
thon script.

Model Choice Procedure
In the first step, we specified five different demographic mod-
els, all of which differed in their mode of intra- and interspe-
cific gene flow (fig. 3A). In the first model, we assumed no
migration at all, either intra- or interspecific. In the second
model, interspecific migration stopped 100,000 generations
after the species split. In the third model, ancestral interspe-
cific migration continued until the first intraspecific
population-split. The fourth model was an extension of the
third model that additionally allowed migration between the
sympatric populations, after populations in both species had
split. In the fifth model, interspecific migration continued
throughout the history of the species, allowing a change in
intensity after the intraspecific population had split in both
species. All interspecific migration rates were allowed to be
asymmetrical, whereas symmetric intraspecific migration was
assumed in all models (except Model 1, which assumed no
migration at all). Population sizes were constant for each
population but were allowed to change at all population split
points (table 1).

We used abcrf, an R package designed for ABC-based de-
mographic modeling based on random forests, to choose the
model that best fit our data and to infer their parameters
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(Csill�ery et al. 2010; Marin et al. 2019; Raynal et al. 2019). We
trained a random forest classifier to distinguish between the
five models based on a set of summary statistics, that is, the
model was the dependent variable and the 236 summary
statistics were independent variables. We trained the random
forest algorithm on 50,000 simulated data sets for each of the
five models drawing from the priors in table 1 and using abcrf
default parameters, except that parameter “lda” was set to
false, disabling linear discriminant analysis. To estimate the
classification error for model choice, we used the so-called
out-of-bag method implemented in abcrf. Due to bootstrap
aggregating, each sample was used only to build a subset of
trees in the random forest, and the remaining trees could be
used to predict the best model for this sample. The results
were represented as a confusion matrix showing how fre-
quently the predicted model matches (or does not match)
the true model (fig. 3B). All samples were expected to fall on
the diagonal of such a matrix. We then used the trained
classifier to assign the most likely demographic model to
each of the 100 observed samples (see above). The model
that was most frequently selected as the best model for the
observed samples was selected as the model fitting our data
best.

We further quantified the goodness-of-fit for the best
model using a method implemented in the R package abc
(Katalin et al. 2015), which is based on a rejection algo-
rithm. Briefly, the normalized distance of summary statis-
tics between the observed and all 50,000 simulated data
sets was calculated; then the median of the lowest 1% of
distances was extracted (the rejection step). The same pro-
cedure was performed for 1,000 simulated data sets under
this model, drawing parameter values from the prior dis-
tributions of distances (so-called pseudo-observed distan-
ces). If the model fit is good, the observed distance (1%
best-fitting simulations to the observed data) should lie
well within the distribution of pseudo-observed distances
(1% best simulations fit each of the pseudo-observed data
set). We conducted this analysis for all 100 observed data
sets. For each data set, a P value was calculated as the
fraction of pseudo-observed distances, which are higher
than the observed distance.

Estimation of Demographic Parameters
After identifying the best-fitting demographic model, we es-
timated the posterior distributions of the different parame-
ters. Demographic parameters with log-uniform prior
distributions were log-transformed prior to training to
make them uniform. To reduce computational load, we first
selected a subset of the most informative summary statistics
for each parameter; we then trained a random forest for each
demographic parameter based on 115,000 simulated data
sets and extracted the top ten most important summary
statistics. This approach reduced the 236 summary statistics
to a set of 111 unique summary statistics for training the full
models.

The accuracy of random-forest predictions can be greatly
increased by tuning training parameters. We tuned the fol-
lowing training parameters by training random forests using
all possible combinations: the number of variables to possibly
split in each node (mtry; search space: 11, 22, 44, 66, 88); and
the minimal node size (search space: 5, 10, 30, 50). This train-
ing was conducted for a subset of representative demo-
graphic parameters (NN1, NNanc, TN, MSN,anc, MS, MSN,sym).
We plotted the out-of-bag prediction error for each combi-
nation of training and demographic parameters (supplemen-
tary fig. S11, Supplementary Material online). Based on these
results, we took mtry¼ 44 as the optimal number of ran-
domly sampled variables, as higher values strongly increased
training time while increasing accuracy only minimally. The
influence of minimal node size was generally small, so we kept
it at the default value of 5.

Finally, we trained a random forest for each parameter on
359,000 simulated data sets, keeping 1,000 pseudo-observed
data sets out of the training data set to use as a test. We
quantified the estimation error for each model parameter by
computing the parameter estimates for each pseudo-
observed data set and calculating R2 between true and esti-
mated values. Additionally, we computed the RMSE per

model parameter as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1
y
_

t � yt

� �2

T

s
, where T is the

number of pseudo-observed data sets, yt is the true value,
and ŷt is the estimated value. To make RMSE more compa-
rable among parameters, we further converted RMSE to per-
centages (%RMSE) by scaling it to the prior range of each
parameter (supplementary fig. S8, Supplementary Material
online).

To calculate parameter estimates for the observed data, we
first randomly selected one of the 100 genomic subsamples
(observed samples) that was previously classified as fitting the
best model. For this data set, point estimate, SD, posterior
mode, and the 5% and 95% quantiles of the posterior distri-
butions were determined for each demographic parameter.
Additionally, we determined point estimates for the remain-
ing 99 observed data sets to assess the variation of demo-
graphic parameters depending on the chosen genomic
subsample.

To complement abcrf, which estimates a posterior distri-
bution, we also used XGBoost (Chen et al. 2020), a widely used
tree-based machine-learning method that gives only a point

Table 1. Overview of Demographic Parameters (see fig. 3A) and Their
Prior Distributions or Fixed Values.

Parameter Minimum Maximum Distribution

NN1, NN2, NS1, NS4 500 100,000 Log-uniform
NNanc, NSanc 500 100,000 Uniform
NAnc 50,000 200,000 Uniform
TN, TS 0 20,000 Uniform
TAnc 500,000 1,500,000 Uniform
MSym, MAnc 1e-11 1e-3 Log-uniform
MN, MS 1e-11 1e-1 Log-uniform

NOTE.—MSym and MAnc had the same prior distributions for both directions of
migration. About 500 loci of length 75 bp were simulated assuming a per site
mutation rate of 7�10�9 (Ossowski et al. 2010) and a population recombination
rate of 0.15 per kb. Preliminary work had shown that ancestral population sizes
tended to be larger, so we used a uniform distribution to improve simulation
efficiency.
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estimate but often achieves greater accuracy than random
forests. We included all summary statistics in XGBoost mod-
els. We split the 50 000 simulated data sets into a test data set
of 20,000 samples and a training data set with the remaining
30,000 samples. Tree depth (dp; values: 3, 6, 9) and minimum
child weight (values: 5, 10) are the two training parameters
that control the complexity of the trees. We tuned these
parameters for the same demographic parameters as de-
scribed above, choosing those that minimized RMSE (supple-
mentary fig. S12, Supplementary Material online). The
algorithm was stopped if the test statistic did not improve
for 100 rounds. For tree depth, we chose six as the optimal
value for training models for TS, TN, NNanc, and NSanc, and nine
for all other model parameters. We chose 10 as the optimal
value for minimum child weight. Using these settings, we
trained an XGBoost model for each demographic parameter,
again stopping after 100 rounds if there was no improvement.
We assessed accuracy using the test data set with 20,000
simulated observations, as described for abcrf. We then per-
formed the estimation of the demographic parameters for
the 100 genomic subsamples forming the observed data sets.
Posterior distributions are shown in supplementary figure
S13, Supplementary Material online.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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