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It is well known that consumers are keen to try fermented milk products with different
flavors and starter cultures are important in determining the resulting fermented dairy
products. Here, we present the phenome of 227 Lactococcus lactis subsp. lactis
isolates from traditionally fermented dairy products and the selection of potential
starter strains. Large-scale phenotyping revealed significant technological diversity in
fermentation characteristics amongst the isolates including variation in fermentation
time, viscosity, water holding capacity (WHC) and free amino nitrogen (FAN) production.
The 16 isolates with the best fermentation characteristics were compared, in a sensory
evaluation, with the commercial starter Chr. Hansen R-704 as excellent fermentation
characteristics to identify potential starter isolates and find the isolate which can
product good flavors. From these, and from solid phase micro extraction (SPME) – gas
chromatography (GC)-mass spectrometry (MS) analysis, we identified IMAU11823 and
IMAU11919 as producing 3-methyl butanal and 3-methyl-2-butanone which contribute
to the malt aroma. This study expands the characterization of L. lactis subsp. lactis
phenotypic dataset and technological diversity and identified isolates with potential
culture starter in the fermentation industry.

Keywords: Lactococcus lactis subsp. lactis, fermentation characteristics, potential starter culture, malt aroma,
large-scale phenotyping

INTRODUCTION

People from different cultural backgrounds, and from across the globe, have been consuming
fermented dairy products for millennia. Traditionally fermented dairy products are considered,
not just as food, but also as a nutritionally complete food with a number of health benefits
(Dehghan et al., 2018). These and other health-promoting features, combined with the view that
fermented foods are “natural,” has further increased the popularity of fermented dairy foods
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(Kumar et al., 2015) including yogurt, kefir, dairy fan (resembling
cheese), dairy cake, koumiss, sour cream, butter, and cheese.
Natural fermented dairy products are rich in a diversity of lactic
acid bacteria (LAB). LAB with different functional attributes are
excellent microbial resources for industrial production, especially
in the dairy industry (Cretenet et al., 2011).

As primary components of the starter cultures used in
fermented food production, members of the LAB group are of key
industrial importance (McAuliffe, 2018). As a typical species of
Lactococcus (L.) which is famous genera in LAB, Lactococcus lactis
is widely used in industry. Isolates of L. lactis subsp. lactis are
generally fast acidifiers, while isolates of L. lactis subsp. cremoris
are often favored as defined starters because they tend to cause
less bitterness. In addition to the widely recognized applications
of L. lactis subsp. lactis in cheese and butter production (Madera
et al., 2003; Özkalp et al., 2007), its special odor-providing
attributes are also important to improve the quality of fermented
milk products (especially low-temperature fermented milk)
(Omaea et al., 2008; Cavanagh et al., 2015). The L. lactis subsp.
lactis isolates used as starter cultures for commercial production
have numerous isolate-dependent characteristics such as lactose
fermentation capabilities, proteolytic activity, exopolysaccharide
(EPS) production, and flavor production; they also play an
essential role in the formation of aroma, texture and acidity in
the final products (McAuliffe, 2018). Chr. Hansen R-704 was a
commonly used starter cultures in China. Although it cannot
produce special fermentation aroma, it has useful and excellent
fermentation characteristics. Therefore, Chr. Hansen R-704 was
used in this study as a reference strain for screening potential
starter strains.

Flavor characteristics of the milk to be used for fermentation
are also of primary importance for the quality of the final
fermented product (Gallardo-Escamilla et al., 2005). The dairy
products market is continually expanding, and consumers are
increasingly experimenting with different flavors and ingredients.
Thus, dairy companies are always striving to ensure their
products have unique characteristics that set them apart from
others. To achieve this, many companies have investigated
culture manipulation as a tool for flavor diversification
(McAuliffe, 2018). When screening starter cultures, it is
important to consider the aroma-producing capacity of isolates
alongside the usual fermentation characteristics.

Recently, there has been increased interest in exploring the
production of flavor-producing compounds by isolates from
different natural ecosystems. Formation of volatile compounds is
key to flavor enhancement; production of these compounds is as
a result of glycolysis, lipolysis, citrate metabolism and particularly
proteolysis of amino acids (Rvan et al., 2002; Gerrit et al., 2010).
Isolates of L. lactis subsp. lactis biovar diacetylactis ferment
citrate, which contributes to flavor and aroma via the production
of diacetyl. The decarboxylation activity of non-dairy isolates,
in monoculture and in co-culture with industrial dairy isolates,
was evaluated by Ayad et al. (2010). They found that some non-
dairy isolates in monoculture had strong decarboxylation activity
against α-ketoisocaproic acid as indicated by high levels of the
malt odor compound 3-methyl butanal in cell-free extracts. The
compound 3-methyl butanal, and also 3-methyl-2-butanone, can

endow fermented dairy products with different flavors including:
fresh malt, nutty, floral, and fruity flavors (Jensen et al., 1994;
Adhikari et al., 2010; Galvão et al., 2011). Seventy-eight percent of
Chinese consumers prefer “nutty malt flavors,” such as those that
are associated with mature cheese (Zhang et al., 2011). Therefore,
the development of nutty and malt flavors by starter cultures is
particularly suited to Chinese consumers.

Looking for strains that have good fermentation properties
and produce specific aromas can be of great help not only
in industrial production, but also in understanding the main
components of these aromas. The present study aimed to identify
the fermentation characteristics of wild-type L. lactis subsp. lactis
isolates from naturally fermented dairy products and screen for
those with greatest potential as starter cultures because they
good fermentation characteristics. We recorded fermentation
characteristics of isolates during both the fermentation stage and
the storage stage at 4◦C and used the results to select isolates
with favorable attributes for comparison with a commercial
starter Chr. Hansen R-704. And we used sensory evaluation to
identify those with the ability to produce a malt odor. Solid
phase micro extraction (SPME)-gas chromatography (GC)-mass
spectrometry (MS) was used to compare the volatile flavor
profiles of four isolates that either produced fermented milk with
good flavor, or without good flavor. Our work aimed to provide
a large-scale phenomics data for isolates with different metabolic
activities, as demanded by the dairy industry in order to expand
their product portfolio. In addition, we also identified two isolates
that produced the malt odor and had the greatest potential as
starter cultures.

MATERIALS AND METHODS

Experimental Design
In the first fermentation run we made an initial characterization
of the fermentation attributes of 227 L. lactis subsp. lactis isolates
from naturally fermented dairy products, in whole milk at
30◦C. The fermented milk from those isolates that had achieved
fermentation of whole milk in less than 32 h (n = 190) were
stored at 4◦C and their acid production properties assessed. From
these isolates the ones that fermented milk within 12 h and had
good acidification profiles during storage (n = 40) were identified
and their combined fermentation and storage properties in the
first fermentation run reconsidered. In this way isolates with
suboptimal attributes were excluded leaving a subset (n = 24)
to be taken forward for more detailed comparison with the
commercial starter, Chr. Hansen R-704, in a second fermentation
run. Chr. Hansen R-704 was used as a benchmark to compare
the technological characteristics (e.g., TA, pH, water holding
capacity). Results from the second fermentation run allowed
selection of isolates with the greatest potential (n = 16). These
isolates were then used to produce fermented milk for sensory
evaluation, in comparison with the commercial starter, to identify
those that also had special flavors. Finally, we used SPME-GC-
MS to compare differences in volatile flavor profiles amongst
two isolates with the best sensory profiles (which produced the
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special flavors) and two other isolates that did not produce the
special flavors.

Lactococcus lactis subsp. lactis Isolates
and Reagents
The 227 isolates of L. lactis subsp. lactis used in this study
were from the Lactic Acid Bacteria Collection Center (LABCC)
of the Inner Mongolia Agricultural University, Hohhot, China
(Supplementary Table S1). The isolates had been isolated from a
variety of traditionally fermented foods, specifically from: shubat
(ten isolates), yogurts (111 isolates), dairy cake (26 isolates),
acid porridge (one isolate), sour cream (ten isolates), koumiss
(seven isolates), dried milk cake (one isolate), milk (nine isolates),
cheese (four isolates), goats’ yogurt (four isolates), goats’ milk
(two isolates), fan acid whey (one isolate), and jiaoke (41
isolates); a map showing the geographical locations from which
isolates came is shown in Supplementary Figure S1. They were
identified as L. lactis using a combination of traditional microbial
identification methods in combination with 16S ribosomal RNA
(rRNA) gene sequence analysis (Bao et al., 2010). 16S rRNA gene
sequences were submitted to NCBI GenBank and isolate-specific
information is shown in Supplementary Table S1. All isolates
were stored long-term in a skimmed milk medium (SMM, NZMP
LTD., New Zealand) at−80◦C.

Activation, Multiplication, and Viable
Counts of Bacterial Isolates
To activate the 227 L. lactis subsp. lactis isolates from the culture
collection, they were each cultured in skimmed milk medium at
37◦C for 24 h. After this, the culture was multiplied over two
generations in M17 (OXOID, London, United Kingdom) liquid
medium with 2% inoculation volume (Terzaghi and Sandine,
1975). The bacteria were collected by centrifugation at 3500 r/min
for 15 min, washed twice in phosphate-buffered saline (PBS), and
then diluted to concentrations of 107 and 108 colony forming
units (CFUs) per mL by PBS. After a further 48 h at 37◦C the cells
were counted using the pouring method and suspensions placed
at 4◦C prior to use in fermentation runs (Li et al., 2018).

Preparation of Fermented Milks
The fermented milk was prepared based on the National Standard
of the People’s Republic of China (2010; standard GB 19302–
2010) and a previously published work (Wang et al., 2010). The
reconstituted milk was prepared from 11.5% (wt/wt) whole milk
powder (NZMP Co. Ltd., Wellington, New Zealand) (containing,
per 100 g, 39.1 g of lactose, 26.8 g of fat, and 25.0 g of
protein) with the addition of 6.5% sucrose. The whole milk
powder and sucrose were blended with sterilized distilled water
at 65◦C and homogenized at 20 MPa by using a high-pressure
homogenizer (SRH, Shenlu, Shanghai) before pasteurization
(95◦C for 5 min). The whole milk was then heated at 95◦C for
5 min to pasteurize it and then cooled to 30◦C. In all fermentation
runs the number of viable bacterial cells were enumerated for
each isolate and inoculated into whole milk to achieve a dose of
1 × 106 CFU/mL. The fermentation experiment was performed
in triplicate. Fermentation was done at 30◦C until each culture

suspension achieved a pH of 4.6. The time taken to achieve this
was recorded. In the first fermentation run the fermented milk
produced by isolates that had achieved a pH of 4.6 within 32 h
(n = 190) was then stored at 4◦C for 24 h, the same amount of time
as commercially produced fermented milk is stored in China.

Determination of Fermentation
Characteristics of Isolates
In the first fermentation run samples of fermented milk
were taken 0, 12, 16, 20, 24, 28, and 32 h following the
inoculation of the starter cultures. The pH, titratable acidity
(TA, ◦T) and free amino nitrogen (FAN) were determined in
triplicate for each sample. The TA and pH of the fermented
milk were determined based on standard methods described
by the Association of Official Analytical Chemists (AOAC,
2000). The FAN content was determined based on methods
described by Church et al. (1983).

Determination of Acidification
Characteristics of Isolates During
Storage
During the 24 h storage period of fermented milks from the
first fermentation run, additional samples were taken at 0 (i.e.,
the time that each isolate achieved pH 4.6), 12 and 24 h. The
pH, TA, viscosity, water holding capacity (WHC), and FAN
content were determined. Viscosity was determined using a
viscometer (BROOKFIELD, Middleboro, MA, United States).
WHC was determined using previously described methods
(Farooq and Haque, 1992).

Sensory Evaluation
Isolates selected (n = 16) for sensory profiling were compared
with the commercial starter, Chr. Hansen R-704 (Hansen Co.,
LTD., Hoersholm, Denmark) which compounded by several
L. lactis strains. Each isolate was used as a starter culture
to produce fermented milk as described previously and then
submitted to sensory analysis using the methods of Bayarri et al.
(2011). The scoring standards are shown in Supplementary
Table S2. Participants were asked to taste all the fermented milks
and drink water between each sample to cleanse the palate. Scores
are presented as mean ± standard deviations (SD). The review
team was graded according to the scoring criteria and identified
the number of strains with different flavors from commercial
starter products.

Volatile Flavor Profiles
We used SPME-GC-MS (Agilent 7890B gas chromatograph;
Agilent Technologies Inc., Palo Alto, CA, United States) to detect
differences in the volatile flavor profiles of the two isolates
with the best sensory evaluation scores and the two isolates
with the worst sensory evaluation scores. Volatile compounds
from the fermented milk were identified using a 7890B gas
chromatograph equipped with a 5977A mass selective detector
(Agilent Technologies Inc., Palo Alto, CA, United States). Volatile
compounds adsorbed onto the SPME fibers (Supelco, Bellefonte,
PA, United States), were passed through an HP-5MS column
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(30 m length, 0.25 mm i.d., 0.25 µm film thickness, Agilent
Technologies Inc.).

Twenty milliliters fermented milk were placed in 100 mL gas
washing flask with a purge head, and 1 µL 1,2-Dichlorobenzene
solution (Sigma-Aldrich, St. Louis, MO, United States) was added
as internal standard solution. The final concentration of internal
standard solution in each sample was 10 µg/L. All samples were
analyzed in triplicate by SPME-GC-MS. The following methods
were used at each step of detection.

SPME conditions: The products were stirred with micro-
stir bars for 60 min at 50◦C to allow the samples to reach
equilibrium with magnetic stirring (400 rpm). Fibers were
then inserted into the GC-MS injector port for desorption
(3 min) at 270◦C to desorb volatile compounds into the
gas chromatograph.

GC conditions: Helium was used as the carrier gas
at 1 mL/min. The gas chromatograph temperature was
maintained at 35◦C for the first 5 min, then increased
to 140◦C at a rate of 5◦C/min for 2 min, and gradually
increased to 250◦C at a rate of 10◦C/min for the final 3 min
(Dan et al., 2017).

MS conditions: The MS detector was operated at 150◦C in
electron impact mode at a voltage of 70 eV and had an ion
source temperature of 230◦C. The mass spectra of the treated
samples were recorded within a mass range of 35–500 m/z
with five scans and no solvent delay.

Volatile compounds were identified by matching of their
mass spectra with those of commercial database (National
Institute of Standards Technology Mass Spectral Database) and
confirmed by comparison with retention indices (RI) of authentic
reference compounds or RI recorded in the literature. The
relative abundances of all identified volatile compounds were
semi-quantified as peak areas in total ion chromatography (TIC).

Statistical Analysis
All experimental data were analyzed using R software (ver. 3.5.0).
Bar plots were constructed using the “ggplot2” package.
Correlations were analyzed and plotted using the “ggcorrplot”
package. The heatmap was plotted using the “pheatmap”
package. The sensory evaluation scores were presented using the
Microsoft Excel 2016.

RESULTS

Fermentation Characteristics of L. lactis
subsp. lactis Isolates During
Fermentation and Acid Production
Properties During Storage
The fermentation characteristics of the 227 L. lactis subsp.
lactis isolates from traditionally fermented dairy products were
determined. The fermentation times (i.e., time to achieve pH 4.5)
were 12, 16, 20, 24, and 28–32 h for 55, 67, 25, 24, and 19 isolates
(190 in total), respectively (Figure 1). There were 37 isolates that

did not finish fermentation within 32 h and these isolates were
not evaluated during storage.

Variation in acidification capacity and proteolytic capacity,
during storage of isolates that completed fermentation within
32 h (n = 190) can be seen in Figures 2B,C. The acidification
capacity of half of the isolates was lower than 4.0◦T/h; isolate
IMAU11060 had the best (greatest) acidification capacity at
6.88◦T/h. IMAU20795 and IMAU11468 had the best 1FAN per
hour at 0.682 and 0.639 mmol/L·h, respectively.

Acidification capacities of the 190 isolates between 0 and
12 h was bimodal with the first peak having a value of 1.2◦T/h
and the second peak a value of 5◦T/h (Figure 1D). The values
of 1FAN per hour for most isolates were between 0 and
0.4 mmol/L·h (Figure 1E).

The pH, TA, viscosity, WHC, and FAN of the 190 isolates
after 0, 12, and 24 h of storage can be seen in Figures 2A–E,
respectively. Isolates that had the same fermentation times
showed similar trends in variability (Figure 2). Overall, the pH
of most isolates decreased while the TA increased during storage.
Isolates with weak post-fermentation acidification characteristics
were selected for further evaluation.

Of the 190 isolates tested, 44 had good viscosity-producing
properties with viscosities exceeding 900 mPa·s after 24 h storage.
Thirty-four isolates had viscosities below 300 mPa·s. We found
that 26 of the 190 L. lactis subsp. lactis isolates had WHCs greater
than 50% (considered as high quality) while most (155 of 190)
had WHC values between 40 and 50%. Most isolates had low FAN
values during storage.

Correlation Analysis
We further analyzed correlations amongst the mean values for all
the indicators measured during fermentation and storage. Most
indicators were significantly correlated with each other (p < 0.05;
Figure 3). For instance, 1FAN per hour during fermentation was
positively correlated with FAN and TA during storage (r > 0;
p < 0.05). However, 1FAN per hour during fermentation was
negatively correlated with WHC and viscosity during storage
(r < 0; p < 0.05). Additionally, there were positive correlations
between FAN and TA during storage, as well as between WHC
and viscosity (r > 0; p < 0.05). Conversely, FAN, TA, WHC,
and viscosity were negatively correlations with each other (r < 0;
p < 0.05). The TA per hour during fermentation was negatively
correlated with pH and FAN during storage (r < 0; p < 0.05).
In addition, the TA per hour during fermentation was positively
correlated with pH and FAN during storage (r < 0; p < 0.05).

Selecting Isolates With Greatest
Potential as Starter Cultures
Of the 40 isolates that completed milk fermentation within
12 h and had a strong acid production capacity (Table 1) acid
production of isolates IMAU40066, IMAU90233, IMAU96006,
IMAU11161, IMAU10854, and IMAU10941 increased to
more than 20◦T during storage which is not optimal and so
they were excluded from further evaluation. During storage
the viscosity, WHC and FAN of fermented milk made
by IMAU32258, IMAU10940, IMAU96004, IMAU32070,
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FIGURE 1 | Frequency histogram of fermentation capacity of 227 isolates of L. lactis subsp. lactis during fermentation (A) Fermentation time (hours); (B) Average
acid production rate (◦T/h); (C) Average protein production rate (mmol/L·h); (D) Average acid production rate in first 12 h (◦T/h); (E) Average protein production rate
per hour in first 12 h (mmol/L·h).

IMAU11885, IMAU10422, IMAU10850, IMAU10937,
IMAU11049, IMAU11882, and IMAU90221 (total 11 isolates)
increased and then decreased; this instability meant they
too were excluded. This left 24 isolates for comparison with
the commercial isolate, Chr. Hansen R-704, in the second
fermentation run.

In the second fermentation run we compared the fermentation
capacity of the 24 isolates with the commercial starter to
identify those with greatest potential. The fermentation time
of the experimental isolates was between 7.59 and 20.76 h,
while the fermentation time of the commercial isolate, R-704,
was 7.66 h (Table 2). The fermentation time of IMAU92143
and IMAU90233 was 7.59 h and 7.65 h, respectively, and
they also had a strong acid production capacity. There were
18 isolates with longer fermentation times than Chr. Hansen
R-704, although they were still less than 12 h, which was
consistent with the results of the first fermentation run. However,
isolates IMAU11863, IMAU11905, IMAU11497, IMAU11951,
IMAU11820, IMAU10066, IMAU11547, and IMAU11886 took
longer than 16 h, and the texture of the fermented milk was poor;
this indicated that these eight isolates had poor fermentation
stability and would not be good starter cultures.

Screening Potential Starter Culture
Isolates for Good Sensory and Odor
Properties
From the comprehensive evaluation described above, 16 isolates
were selected for sensory evaluation against the commercial

isolate Chr. Hansen R-704, and they had the following attributes:
fast acid production, weak post-fermentation acidification, good
viscosity, good water-holding capacity and good proteolytic
capacity. These isolates were IMAU92143, IMAU11411,
IMAU11919, IMAU11879, IMAU11822, IMAU11823,
IMAU11906, IMAU11885, IMAU11838, IMAU94238,
IMAU10407, IMAU50105, IMAU10982, IMAU10987,
IMAU11546, and IMAU50117.

The highest sensory evaluation score was 83 and achieved by
Chr. Hansen R-704-fermented milk (Table 3), and the lowest
was 58.71, achieved by IMAU10987-fermented milk. The overall
sensory evaluation score of fermented milk produced by isolates
IMAU11823, IMAU11906, and IMAU11919 was more than 80
points, and there was no significant difference between them and
isolate Chr. Hansen R-704 (p > 0.05), showing they had good
sensory qualities. The sensory evaluation scores of fermented
milks from the other isolates were all higher than 60. Fermented
milk made by isolates IMAU11919 and IMAU11823 had the
best odor, which was identified as a malt odor. According to
the sensory evaluation results, fermented milk made by isolates
IMAU11823 and IMAU11919 not only has good fermentation
characteristics and sensory characteristics, but also has a special
flavor. These two isolates are used in SPME-GC-MS evaluation.

Identification of Volatile Flavors in
Isolates That Produced a Malt Odor
Using SPME-GC-MS, a total of 54 volatile flavor compounds
were detected in the fermented milk produced by the four
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FIGURE 2 | The heatmap of fermentation capacity of 227 isolates of L. lactis subsp. lactis during storage at 4◦C (A) pH; (B) TA (◦T); (C) Viscosity (mPa·s); (D) WHC;
(E) FAN (mmol/L).

TABLE 1 | The acid production rate of 40 isolates with good fermentation rate at first screening.

Isolate number Acid production rate Acid production quantity Isolate number Acid production rate Acid production quantity

(1◦T/h) (◦T) (1◦T/h) (◦T)

IMAU10066 4.60 55.08 IMAU11863 5.14 63.25

IMAU10407 5.17 55.88 IMAU11879 5.09 58.19

IMAU10422 5.78 52.90 IMAU11882 5.00 63.10

IMAU10850 5.03 60.36 IMAU11885 5.26 70.11

IMAU10854 5.27 66.86 IMAU11886 5.03 61.15

IMAU10937 5.18 67.61 IMAU11905 5.43 62.09

IMAU10940 4.99 53.72 IMAU11906 5.57 65.49

IMAU10941 5.22 62.19 IMAU11919 4.34 63.32

IMAU10982 5.11 54.34 IMAU11951 5.28 49.82

IMAU10987 5.63 51.05 IMAU32070 5.63 59.64

IMAU11049 4.64 61.73 IMAU32258 4.99 65.55

IMAU11161 4.48 61.30 IMAU40066 4.66 59.85

IMAU11411 5.46 60.00 IMAU50105 4.15 50.01

IMAU11497 5.98 55.66 IMAU50117 4.17 67.54

IMAU11546 4.41 65.20 IMAU90221 4.78 60.50

IMAU11547 5.04 55.15 IMAU90233 4.97 71.78

IMAU11820 4.59 57.11 IMAU92143 5.26 57.39

IMAU11822 4.53 63.18 IMAU94238 4.76 62.60

IMAU11823 4.85 52.06 IMAU96004 5.46 59.85

IMAU11838 5.10 61.08 IMAU96006 4.25 69.38
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FIGURE 3 | The correlation between fermentation characteristic index and fermentation characteristic index during storage (∗ means p < 0.05).

TABLE 2 | The fermentation time of 24 isolates with good fermentation capacity
and commercial starter at second screening.

Isolate number Fermentation
time (h)

Isolate
number

Fermentation
time (h)

R-704 7.66 ± 0.01 IMAU11863 18.76 ± 0.03

IMAU10066 19.54 ± 0.00 IMAU11879 7.85 ± 0.00

IMAU10407 9.75 ± 0.00 IMAU11885 8.13 ± 0.01

IMAU10982 11.17 ± 0.00 IMAU11886 20.76 ± 0.05

IMAU10987 11.25 ± 0.02 IMAU11905 20.34 ± 0.05

IMAU11411 7.74 ± 0.00 IMAU11906 8.09 ± 0.01

IMAU11497 16.39 ± 0.00 IMAU11919 7.78 ± 0.00

IMAU11546 12.11 ± 0.00 IMAU11951 20.59 ± 0.00

IMAU11547 19.51 ± 0.05 IMAU50105 11.11 ± 0.00

IMAU11820 19.51 ± 0.05 IMAU50117 13.09 ± 0.01

IMAU11822 7.88 ± 0.01 IMAU92143 7.59 ± 0.02

IMAU11823 7.89 ± 0.00 IMAU94238 8.91 ± 0.00

IMAU11838 8.17 ± 0.01

selected isolates (IMAU11823, IMAU11919, IMAU10987, and
IMAU10407), which included 11 acids, five aldehydes, seven
ketones, ten alcohols, two esters, eight hydrocarbons, and

seven other compounds (Table 4). The flavor substances
of the fermented milk from the two groups (with or
without malt odor) were similar, but some attributes were
different. It is worth noting that 3-methyl-butanol and
3-methyl-2-butanone were present in larger quantities in
fermented milk from isolates IMAU11823 and IMAU11919;
123.94 µg/L and 76.21 µg/L, respectively, for isolate
IMAU11823, and 101.91 µg/L and 80.76 µg/L, respectively,
for isolate IMAU11919.

DISCUSSION

Lactococcus lactis is the most extensively studied LAB and the
second most studied gram-positive bacterium with respect to
its genetics, physiology and molecular biology (Savijoki et al.,
2006; Cretenet et al., 2011). L. lactis subsp. lactis plays an
important role in the food industry, particularly production
of dairy products, and in the health sector due to its special
fermentation process (Kelleher et al., 2017). It is well known
as an industrial starter culture, and is generally recognized
as safe (GRAS) by the Food and Drug Administration in
United States (Adelene et al., 2017; Kelleher et al., 2017). Some
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TABLE 3 | The sensory evaluation of 16 isolates with good fermentation capacity and commercial starter at second screening.

Isolate number Odor Flavor Appearance Taste Total score

R-704 22.86 ± 2.97 24.71 ± 2.63 18.57 ± 0.98 16.86 ± 1.95 83.00 ± 4.16A

IMAU10407 20.43 ± 5.29 21.14 ± 1.46 14.00 ± 3.65 12.43 ± 1.62 68.00 ± 8.60C

IMAU10982 23.71 ± 3.86 23.29 ± 3.25 17.29 ± 2.06 15.29 ± 1.25 79.57 ± 8.34AB

IMAU10987 17.43 ± 3.82 18.29 ± 4.50 9.86 ± 2.54 13.14 ± 2.61 58.71 ± 10.83D

IMAU11411 18.14 ± 3.80 17.43 ± 4.39 18.29 ± 1.25 14.29 ± 4.57 68.14 ± 11.63C

IMAU11546 21.14 ± 3.58 22.29 ± 3.99 9.86 ± 3.48 15.29 ± 1.89 68.57 ± 8.66C

IMAU11822 19.71 ± 3.35 21.71 ± 4.64 18.29 ± 1.25 15.43 ± 2.76 75.14 ± 8.84ABC

IMAU11823 22.71 ± 3.30 23.29 ± 4.07 18.43 ± 1.13 17.14 ± 1.68 81.57 ± 7.55AB

IMAU11838 19.29 ± 2.06 20.57 ± 3.91 18.14 ± 1.07 15.86 ± 1.95 73.86 ± 4.85ABC

IMAU11879 21.86 ± 1.46 24.00 ± 3.56 16.86 ± 2.97 15.00 ± 2.58 77.71 ± 8.06ABC

IMAU11885 22.71 ± 1.60 23.00 ± 2.38 16.50 ± 2.06 16.71 ± 2.81 78.93 ± 3.66AB

IMAU11906 23.57 ± 2.37 24.86 ± 3.58 15.71 ± 2.14 16.29 ± 2.29 80.43 ± 7.91AB

IMAU11919 25.14 ± 1.86 23.71 ± 2.50 17.07 ± 1.10 16.43 ± 3.26 82.36 ± 4.59A

IMAU50105 21.86 ± 3.93 20.71 ± 2.56 16.14 ± 1.86 14.71 ± 1.89 73.43 ± 7.98ABC

IMAU50117 20.86 ± 2.85 21.57 ± 2.44 15.43 ± 2.30 14.14 ± 1.46 72.00 ± 3.87C

IMAU92143 22.00 ± 3.11 21.43 ± 2.15 15.71 ± 3.45 14.29 ± 1.98 73.43 ± 8.58ABC

IMAU94238 20.86 ± 3.93 23.29 ± 2.81 15.00 ± 2.65 15.00 ± 2.38 74.14 ± 8.41ABC

Different letters A−D indicated significant differences in sensory scores of different strains (P < 0.05).

industrial starter culture composed of L. lactis subsp. lactis
have good fermentation capability and flavor, which means
they have great economic value. However, there is a need to
identify new starter isolates that meet the growing consumer
demand for products with a wider variety of flavors and
mouthfeel. As one of the main sources of potential starter
isolates, traditionally fermented dairy products are abundant
in LAB. Therefore, evaluating the fermentation characteristics
of L. lactis subsp. lactis isolates from natural-fermented dairy
products helps us understand their metabolic characteristics and
identify new applications.

In this paper, we describe the fermentation characteristics of
227 L. lactis subsp. lactis isolates from traditionally fermented
dairy products and identified isolates with potential as starter
cultures that had good fermentation capabilities and produced a
malt odor. We showed that all 227 L. lactis subsp. lactis isolates
were able to ferment milk within 40 h and that they had a
wide diversity of fermentation characteristics. We found that
55 isolates fermented within 12 h, which was very fast, and
that a total of 190 isolates had finished fermentation within
32 h. The average speed of acid production in the first 12 h
was used to further elucidate acid production capacity and,
although this was not linear during fermentation, it was helpful
for comparisons amongst isolates. As starter cultures, L. lactis
subsp. lactis are often used in the production of cheese, butter,
and various fermented milks; selection has been based on their
performance in fermentation and on desired properties of the
final product (Wouters et al., 2002). Acidification activity is
the most important selection criterion. Isolates that are fast
acid producers are most frequently selected as starter cultures,
whereas poor or medium acid are only used if they have other
desirable attributes (Ehe et al., 2004).

Acid production capacity during storage is also important
for the dairy industry. Low post-fermentation acidification is an

important selection parameter for commercial starters used in
yogurt or fermented milk production as it affects the quality
of the final product (Dan et al., 2015). We investigated this in
the 190 isolates that had a fermentation time of less than 32 h
and measured parameters such as pH, TA, viscosity, WHC and
FAN during storage. The isolates exhibited a lot of variation in
these attributes during storage which may indicate a high level of
genetic diversity, which warrants further study.

The data set on characteristics of L. lactis subsp. lactis during
fermentation and storage that we have compiled will contribute
to the further characterization of L. lactis subsp. lactis. Notably,
we found correlations between fermentation characteristics
and storage characteristics. The positive correlation between
TA during fermentation, and pH and FAN during storage,
could indicate that isolates with a higher acid-producing
capability during fermentation may result in products with a
lower pH during storage, which could cause post-fermentation
acidification. This could explain why there were only a few
isolates with good fermentation capacities and low post-
fermentation acidification, and why the fermentation capacity
of most isolates was positively correlated with post-fermentation
acidification capacity. At the same time, a rapid decrease in
pH may also support protein hydrolysis, which produces more
FAN. In addition, proteolytic activity of a isolate affects growth
and, ultimately, the sensory quality of the product (Flambard
et al., 1998; Ehe et al., 2004). L. lactis subsp. lactis has a
complex proteolytic system that, together with other proteolytic
enzymes, converts casein into peptides and amino acids (Law and
Haandrikman, 1997). Amino acids are key precursors of volatile
flavor compounds once they are metabolized into aldehydes,
ketones, amides, alcohols and sulfur compounds (Yvon and
Rijnen, 2001; Smit et al., 2005).

It is worth mentioning that, due to the unique metabolic
characteristics of L. lactis subsp. lactis, they produce lactic
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TABLE 4 | Volatile flavors in fermented milk produced by pure cultures of L. lactis subsp. lactis 4 isolates (IMAU11823, IMAU11919, IMAU10987, and IMAU10407)
by SPME-GC-MS.

Number Compound Chemical formula RT (min) RI RI reference Abundance (µg/L)

IMAU10987 IMAU10407 IMAU11823 IMAU11919

Acid

1 Acetic acid C2H4O2 2.77 635.75 638.00 0.00 0.00 0.00 0.49

2 Pentanoic acid, 3-methyl- C6H12O2 6.65 803.63 NS 0.00 0.00 0.86 0.00

3 Butanoic acid C4H8O2 6.97 811.97 820.00 0.52 0.00 0.10 0.00

4 Propanedioic acid, propyl- C6H10O4 7.18 817.39 NS 0.00 0.00 0.09 0.00

5 Butanoic acid, 3-methyl- C5H10O2 9.22 871.03 878.00 1.52 0.21 2.23 0.00

6 4-Methyl-2-oxovaleric acid C6H10O3 12.16 949.58 NS 0.67 13.33 8.73 10.38

7 Hexanoic acid C6H12O2 14.25 1006.86 999.00 6.22 2.16 0.00 4.39

8 Hexanoic acid, 2-methyl- C7H14O2 14.25 1006.86 NS 0.00 0.00 2.88 0.00

10 gamma.-Guanidinobutyric acid C5H11N3O2 20.03 1187.70 NS 0.00 0.00 0.08 0.00

11 Octanoic acid C8H16O2 20.06 1188.91 1189.00 4.50 0.81 3.82 2.52

Aldehyde

12 Butanal, 3-methyl- C5H10O 3.47 689.23 689.00 0.00 0.00 37.86 46.87

13 Heptanal C7H14O 10.59 907.36 907.00 0.00 0.00 0.96 0.00

14 Benzeneacetaldehyde C8H8O 15.64 1048.71 NS 1.97 0.84 1.25 0.30

15 2-Octenal, (E)- C8H14O 16.61 1077.78 1067.00 0.00 0.00 1.34 0.00

16 Benzaldehyde, 3,4-dimethyl- C9H10O 21.01 1221.53 NS 0.00 0.00 0.26 0.00

Ketone

17 2,3-Butanedione C4H6O2 1.85 STD MS.STD 1.27 1.86 6.80 7.74

18 2-Butanone, 3-methyl- C5H10O 2.14 STD MS.STD 0.00 0.00 0.00 2.50

19 2-Pentanone C5H10O 3.30 675.78 NS 0.77 0.00 1.32 1.11

20 Acetoin C4H8O2 4.42 727.83 714.00 1.57 1.14 18.85 16.23

21 2-Heptanone C7H14O 10.19 896.55 898.00 11.72 6.76 15.84 16.58

22 2-Nonanone C9H18O 17.28 1098.04 1104.00 5.53 2.86 6.44 6.58

23 2-Undecanone C11H22O 23.26 1300.83 1305.00 1.01 0.52 1.02 1.28

24 6-Pentadecanone C15H30O 28.92 1504.60 NS 0.00 0.00 0.30 0.00

Alcohol

25 Cyclohexanol, 4- methyl-, trans- C7H14O 3.51 691.83 NS 0.58 0.00 0.00 0.00

26 1-Butanol, 3-methyl- C5H12O 4.43 728.21 734.00 52.74 37.02 72.64 67.65

27 1-Hexanol C6H14O 9.41 876.09 880.00 1.03 0.23 1.67 0.29

28 1-Butanol, 3- methyl-, acetate C7H14O2 9.73 884.58 NS 0.00 0.00 0.51 0.00

29 1-Heptanol C7H16O 13.18 977.10 974.00 2.04 0.71 1.94 1.70

30 1-Deoxy-d-mannitol C6H14O5 13.90 996.57 NS 0.00 0.20 0.00 0.00

31 3-Nonen-1-ol, (E)- C9H18O 16.60 1077.60 NS 0.00 0.12 1.67 0.88

32 3-Decyn-2-ol C10H18O 16.61 1077.78 NS 0.00 0.00 0.00 0.68

33 2-Nonen-1-ol C9H18O 16.61 1077.97 NS 0.00 0.00 0.19 0.00

34 Phenylethyl Alcohol C8H10O 17.92 1118.78 NS 2.19 1.61 1.26 1.76

35 1-Nonanol C9H20O 19.75 1178.60 1171.00 0.00 0.00 0.06 0.00

Ester

36 Carbonic acid, methyl pentyl ester C7H14O3 3.89 709.61 NS 0.00 0.00 0.00 1.78

37 Acetic acid, pentyl ester C7H14O2 9.74 884.82 NS 0.00 0.00 3.80 0.00

Hydrocarbon

38 n-Hexane C6H14 2.18 STD MS.STD 2.84 228.66 1.23 1.29

39 Pentane C5H12 2.42 609.09 NS 0.00 0.00 0.14 6.84

40 Hexane, 1-chloro- C6H13Cl 5.48 764.24 NS 0.00 0.30 0.00 0.00

41 Butanoyl chloride, 3-methyl- C5H9ClO 12.67 963.53 NS 0.00 0.00 0.97 0.00

42 Benzene, 1,2-dichloro- C6H4Cl2 15.25 1036.88 NS 2.20 0.00 0.00 1.38

43 Benzene, 1,3-dichloro- C6H4Cl2 15.26 1037.06 NS 0.00 2.39 0.00 0.00

44 Benzene, 1,4-dichloro- C6H4Cl2 15.48 1043.74 NS 0.00 0.00 98.94 0.00

45 1-Nonyne C9H16 16.60 1077.42 NS 1.00 0.00 0.00 0.00

46 Benzaldehyde, 3,4-dimethyl- C9H10O 21.01 1221.53 NS 0.00 0.00 0.26 0.00

(Continued)
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TABLE 4 | Continued

Number Compound Chemical formula RT (min) RI RI reference Abundance (µg/L)

IMAU10987 IMAU10407 IMAU11823 IMAU11919

Nitrogen-containing

47 Alanine C3H7NO2 1.42 STD MS.STD 6.45 1.23 0.53 0.00

48 Dimethylamine C2H7N 1.52 STD MS.STD 0.00 0.00 0.32 0.47

49 2-Formylhistamine C6H9N3O 1.62 STD MS.STD 0.41 0.00 0.00 0.57

50 D-Alanine C3H7NO2 1.62 STD MS.STD 0.00 0.96 1.74 1.03

51 Acetamide, 2-fluoro- C2H4FNO 2.00 STD MS.STD 1.82 0.00 0.00 0.00

52 2-Pentanamine, 4-methyl- C6H15N 2.16 STD MS.STD 0.00 0.00 3.45 0.00

53 Oxime-, methoxy-phenyl-_ C8H9NO2 11.16 922.82 NS 1.53 0.65 2.25 2.01

54 Benzothiazole C7H5NS 21.24 1229.54 NS 0.96 0.14 0.90 0.19

The retention indices (RI) of unknown compounds in the HP-5MS column (Agilent Technologies Inc., Palo Alto, CA, United States) calculated against the GC-MS retention
time of n-alkanes (C3–C25). RI from the NIST Chemistry WebBook database (http://webbook.nist.gov/chemistry). The capillary column is shown in parentheses. RI,
agrees with retention index literature; MS, compared with the NIST 11 Mass Spectral Database; STD, agrees with the mass spectrum of standard chemicals; –, not
detected; NS, not found in any database.

acid and other products during the fermentation process. This
influences microbial safety because it results in a high level
of lactic acid and anti-microbial agents such as bacteriocins
(Guinane et al., 2005; Bali et al., 2016). Amongst these
metabolites, diacetyl is of particular interest. L. lactis subsp. lactis
biovar diacetylactis was classified according to its phenotype
of diacetyl production. However, the increasing demand for
products with a wide range of new organoleptic properties
has encouraged collection of big data sets on phenotypic
characteristics for this species. Researchers are increasingly
screening isolates with the potential to produce different flavors.

Fermentation is a traditional approach to food preservation
that improves food safety and also confers enhanced
organoleptic, nutritional and health-promoting attributes
(Macori and Cotter, 2018). Fermentation also influences
flavors, which are chemical sensations produced by particular
molecules released from food during consumption (Voilley and
Etiévant, 2006). To identify isolates with potential as starter
cultures, that will result in fermented milk with a good flavor
following industrial production, we focused on the 16 isolates
that completed fermentation within 12 h. These 16 isolates
underwent sensory evaluation and their fermentation time was
re-evaluated. Isolates IMAU11823 and IMAU11919 had the
highest sensory scores and faster fermentation speed.

SPME-GC-MS was then used to evaluate the volatile
compounds in fermented milk with and without the special
flavors; this showed that isolates IMAU11823 and IMAU11919
produced various desirable volatile flavors that were probably
the main source of the malt odor (Dan et al., 2017), and
included diacetyl, acetoin, 3-methyl butanal and 3-methyl-2-
butanone. The compounds 3-methyl butanal and 3-methyl-
2-butanone are known to endow fermented dairy products
with fresh malt, nutty, floral and fruit flavors (Jensen et al.,
1994; Adhikari et al., 2010; Galvão et al., 2011). Because the
content of 3-methyl-butyraldehyde was relatively high and its
threshold value is lower than 3-methyl butanal and 3-methyl-
2-butanone (0.06 µg/mL in aqueous solution), it makes a large
contribution to the flavor of nuts (Bertuzzi et al., 2018). Isolates

IMAU11823 and IMAU11919 have the greatest potential for
use in the industrial production of fermented dairy products,
although this needs to be tested for stability and the presence
of bacteriophages.

Fermented foods are known to have higher nutritional and
functional values compared with their unfermented counterparts
(Hasan et al., 2014). As a result, fermentation processes are
amongst the most popular food processing techniques to increase
nutritional value (Panda et al., 2014). Start cultures, as the
soul of fermented food of starter cultures food plays a vital
role. Natural dairy production contains the rich resources of
LAB and it can continuously provide a wide variety of start
cultures isolates for fermentation industry, so from the natural
fermented dairy products development of LAB resource is
of great significance. Our study found that L. lactis subsp.
lactis in naturally fermented dairy products has extremely rich
phenotypic and technological diversity, which deserves further
development and utilization.

CONCLUSION

In summary the findings from this study contribute to the
existing phenotypic data on L. lactis subsp. lactis fermentation
characterization. In addition, we identified two isolates with
potential as starter cultures (IMAU11823 and IMAU11919); these
isolates had a good fermentation capacity and yielded good
sensory profiles. Both isolates produced fermented milk with a
good malt and nut flavor; this was as a result of the production
of 3-methyl butanal and 3-methyl-2-butanone, as identified by
SPME-GC-MS. These two isolates can also be used to study the
metabolic mechanism for production of branched aldehydes by
L. lactis subsp. lactis.
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