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Simple Summary: This study investigated the effects of fermented bamboo powder as a new feed
ingredient by replacing wheat bran in swine diets. The results indicated that there were no nega-
tive effects on the growth performance, and that it exerted beneficial effects on promoting serum
biochemical and immune indices, as well as modulating the fecal microbiota of pigs, when the
wheat bran was replaced by fermented bamboo powder at 5% or 10% in the control diets. These
results suggest that the fermented bamboo powder could be one potential fiber-rich ingredient for
growing–finishing pigs.

Abstract: This experiment aimed to investigate the effects of fermented bamboo powder (FBP) on the
growth performance, serum biochemical parameters, immunoglobulins and inflammatory cytokines,
and fecal microbial composition of growing–finishing pigs. A total of 108 barrows (initial body weight,
56.30± 0.55 kg) were randomly allocated to three dietary treatments in a 75 d trial, including a control
(CON) diet and two FBP supplementation diets. The CON diet was formulated to three-phase diets
according to the body weight of pigs, and the FBP diets were formulated used 5.00% (FBP1) or 10.00%
(FBP2) FBP to replace the wheat bran in the CON diet, respectively. The results showed that there
were no influences on growth performances between the CON diet and FBP addition diets, whereas
the 5% FBP addition decreased the feed:gain of pigs compared to the pigs fed the FBP2 diet from
d 0–75 (p < 0.05). Meanwhile, the FBP addition increased the high-density lipoprotein cholesterol
(HDLC) and immunoglobulin A (IgA) content in serum (linear, p < 0.05), and pigs fed the FBP1 diet
had greater HDLC and IgA contents in serum than those in the pigs fed the CON diet (p < 0.05).
Microbial analysis showed that the FBP addition diets decreased the abundance of Spirochaetes,
and the FBP2 diet increased the abundance of Firmicutes more than the CON diet (p < 0.05). In
addition, the pigs fed the FBP2 diet increased the abundance of uncultured_bacterium_f_Lachnospiraceae,
Ruminococcaceae_UCG-005, Prevotellaceae_UCG-003, Lachnospiraceae_XPB1014_group, and Lactobacillus
more than the CON group (p < 0.05). In conclusion, the FBP supplementation to the diet had no
negative effects on the growth performance and exerted beneficial effects on promoting serum
biochemical and immune indices, as well as modulating the fecal microbiota of pigs. Therefore, these
results showed that the fermented bamboo powder could be one potential fiber-rich ingredient for
growing–finishing pigs, and that the recommended addition proportion in the growing–finishing
pigs’ diet is 5%.

Keywords: fermented bamboo powder; growth performance; serum indices; fecal microbiota;
growing–finishing pigs
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1. Introduction

To solve the shortage of feed resources and alleviate the current situation of human and
animal competition for food, there is a great need to find more sustainable feed materials
for livestock production [1,2]. Fiber-rich ingredients as cost-effective alternative feedstuffs
in swine diets have been observed over the last decade; however, the presence of lignin
hinders their efficient utilization [3,4]. Therefore, pretreatment is required to open the
complex network of lignocellulose and primarily to make the cellulose and hemicellulose
amenable to microbiota or enzyme conversion [5]. Mechanical comminution and microbial
fermentation are the most used pretreatment methods, where microbial fermentation
pretreatment is under mild conditions and requires a lower energy consumption compared
to mechanical pretreatment [6,7]. Additionally, fermentation could improve the nutritional
values of common feed ingredients (such as soybean) or fiber-rich ingredients (such as
corn-ethanol co-products or soybean hull) for monogastric animals [8,9].

Bamboo is a fast-growing perennial plant widely distributed in China and Southeast
Asia areas and produces large amounts of biomass materials, thus having great potential
to be used as a valuable feedstock for a variety of areas such as biomaterials, biofuel,
and food, as well as for livestock production [10,11]. Previous studies showed that fresh
bamboo and bamboo powder could be used as ruminant feed [12–14]. In addition, bamboo
by-products such as bamboo charcoal, bamboo vinegar, and micronized bamboo powder
could also be used as alternatives to antibiotics in the diet of pigs or broilers [15–17].
However, little is known about the fermented bamboo powder (FBP) used in swine diets.
Therefore, the objective of this study was to evaluate the effects of graded levels of FBP
on the growth performance, nutrient digestibility, serum antioxidant status, and fecal
microbiota of growing–finishing pigs.

2. Materials and Methods

The experimental procedures were approved by the Experimental Animal Welfare and
Ethical Committee of the Institute of Animal Science and Veterinary, Tianjin Academy of
Agriculture Sciences. The FBP was kindly provided by Liuyang Huanan Bamboo Industry
Company (Changsha, China), and was produced by Yarrowia lipolytica and Lactobacillus
plantarum under solid-state fermentation. The analyzed nutrient composition is presented
in Table 1.

Table 1. Analyzed composition of the fermented bamboo powder (%, as-fed basis).

Item Fermented Bamboo Powder

Dry matter 89.80
Crude protein 2.28
Ether extract 0.18

Neutral detergent fiber 60.80
Acid detergent fiber 47.36

Calcium 0.12
Total phosphorus 0.02

Gross energy, MJ/kg 16.85

2.1. Animals, Diets, and Experimental Design

A total of 108 Duroc× Yorkshire× Landrace crossbred barrows (initial body weight of
56.34± 0.65 kg) were randomly divided into 3 dietary treatments; each treatment contains 6
replicate pens and 6 pigs per pen. Pigs were housed in fully slatted pens and had free access
to feed and water. Dietary treatments included a control diet (CON) and 2 FBP diets. The
CON diet was composed of corn, wheat bran, soybean meal, and corn distillers’ dried grains
with soluble (Table S1), whereas the FBP diets were formulated by replacing wheat bran in
the three-phase CON diet with 5.0% (FBP1) or 10.0% FBP (FBP2), respectively. The nutrients
of the three-phase CON diets were formulated to meet or exceed the nutrient requirements
of growing–finishing pigs recommended by the National Research Council [18]. All pigs
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were allowed ad libitum access to feed and water throughout the 75 days experiment
period. The room temperature and the relative humidity were controlled at 25 ± 2.5 ◦C
and 60 ± 10% during the experimental periods.

2.2. Sample Collection

Each pen’s pigs’ body weight was recorded on day 0 and days 76 of the experiment,
and feed consumption per pen was recorded at the end of the experiment to calculate
average daily gain (ADG), average daily feed intake (ADFI), and feed-to-gain ratio (F:G).

On the morning of day 75, the fresh fecal samples of pigs were collected per pen in
each dietary group to analyze the bacterial community, and were obtained using 5 mL
centrifuge tubes, placed in liquid nitrogen, and then stored at a temperature of −80 ◦C.

The blood samples were collected from one pig from each pen via jugular vein punc-
ture, and 5 mL was collected into a vacutainer on the morning of day 75. After 2 h, the
blood samples were centrifuged at 1600× g at 4 ◦C for 15 min to recover serum, which was
stored at −20 ◦C until analysis.

2.3. Chemical Analyses

The FBP and experimental diets were ground to pass through a 0.5 mm screen before
analyses. The crude protein (method 990.03), ether extract (method 920.39), crude fiber
(method 978.10), and ash (method 942.05) content of the diets and fecal samples were deter-
mined according to AOAC [19]. The gross energy content in diets and feces samples was
analyzed using an adiabatic oxygen bomb calorimeter (model 6400, Parr Instruments, Mo-
line, IL). Neutral detergent fiber and acid detergent fiber in the diets were determined using
filter bags and fiber analyzer equipment (Fiber Analyzer; ANKOM Technology, Macedon,
NY, USA) following a modification of the procedures [20]. After the samples underwent
dry ashing at 550 ◦C for 4 h and wet digestion with nitric acids, the calcium contents were
analyzed using EDTA titration method (method 967.30) according to AOAC [19]. The
acid molybdate and Fiske–Subbarow reducer wet digestion solutions were added to the
digested samples to determine phosphorus concentration by spectrophotometric reading
of absorption at 620 nm (method 985.01) according to AOAC [19].

The alanine transaminase (ALT), aspartate transaminase (AST), total protein, total
bilirubin, glucose, cholesterol, triglyceride, high-density lipoprotein cholesterol (HDLC),
and low-density lipoprotein cholesterol (LDLC) in serum were measured from each sam-
ple using an automatic biochemical analyzer (Roche Hitachi 911 Chemistry Analyzer,
Tokyo, Japan) according to the instructions their corresponding kits (Nanjing Jiancheng
Bioengineering Company, Jiangsu, China). The serum levels of immunoglobulin A (IgA),
immunoglobulin G (IgG), and immunoglobulin M (IgM) were measured by assay kits
(Beijing Kangjiahongyuan Biotechnology Institute, Beijing, China). The cytokine levels
of interleukin (IL)-4, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the
serum were determined by enzyme-linked immunosorbent assay (ELISA) kits (Bio-function
Technology Co., Ltd., Beijing, China) according to the instructions.

2.4. DNA Extraction and 16S rDNA Gene Sequencing

Fecal microbial DNA was isolated with DNA Kit (Omega, Bio-Tek, Norcross, GA, USA)
according to the protocol of the manufacturer. The V3–V4 regions of bacteria 16S rDNA
were amplified using the gene-specific primers 338F (5′-ACTCCTACGGGAGGCAGCAG-
3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). The library was sequenced on the
Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA) according to the standard
protocols by Biomarker Technologies Co., Ltd. (Beijing, China). Operational taxonomic
units (OTUs) were clustered with a 97% similarity cutoff while using UPARSE. Then,
chimeric sequences were identified and removed using UCHIME. The RDP database
(http://rdp.cme.msu.edu/ (accessed on 21 April 2021)) was also referenced to take the
taxonomy-based analysis for OTUs using the RDP classifier at a 90% confidence level.
Taxonomy was assigned using the Silva (Release132 http://www.arb-silva.de (accessed on

http://rdp.cme.msu.edu/
http://www.arb-silva.de
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1 April 2021)). The representative sequences of OTUs and their relative abundance were
used to calculate the rarefaction analysis.

2.5. Statistical Analysis

The growth performance, digestibility of GE and nutrients of diets, and serum bio-
chemical parameters were analyzed using the PROC GLM of SAS (Version 9.4, SAS Institute,
Cary, NC, USA). Multiple comparisons were carried out with Duncan’s multiple compari-
son method at a 5% significant level. Orthogonal polynomial contrast was conducted to
determine the linear and quadratic effects of the dietary FBP inclusion levels. A statistically
significant difference was considered at p < 0.05.

Alpha-diversity, Chao1, ACE, Shannon, and Simpson’s evenness indexes were calculated
at 97% identity. Beta-diversity was investigated with QIIME using principal component
analysis (PCA) and principal coordinated analysis (PCoA) based on the weighted Unifrac
distance matrix, and permutational multivariate analysis of variance (PERMANOVA) was
calculated to determine significant differences in the microbial community. Statistical
differences in phyla and genera among the groups were calculated by the Kruskal–Wallis
rank-sum test with a corrected p-value < 0.05 (using Storey-FDR) representing statistical
significance. The linear discriminant analysis (LDA) effect size (LEfSe) analysis using
the non-parametric factorial Kruskal–Wallis sum-rank test was performed to find out the
biomarker species in each group and characterize the difference (LDA score ≥ 4). The
Spearman correlation analysis was applied to analyze the associations of the differential
microbial species with the measured parameters.

3. Results
3.1. Growth Performance

There was no difference in the initial BW, ADG, and ADFI among the dietary treat-
ments (Table 2). There was a linear effect of FBP on the final BW (p < 0.05), although ANOVA
showed a tendency. The F:G was affected by the FBP levels: quadratically (p < 0.05), a 5%
FBP addition decreased the feed:gain of the pigs compared to the pigs fed the FBP2 diet
from d 0–75 (p < 0.05), whereas there was no difference in the F:G of pigs between the CON
group and the FBP addition groups.

Table 2. Effects of fermented bamboo powder supplementation on growth performance of growing–
finishing pigs.

Item 1 CON FBP1 FBP2 SEM
p-Value

ANOVA Linear Quadratic

Initial body weight, kg 56.28 56.47 56.28 0.15 0.864 0.649 0.782
Final body weight, kg 131.80 132.81 131.66 0.21 0.052 0.047 0.131
Average daily gain, kg 1.03 1.05 1.03 0.00 0.265 0.197 0.315

Average daily feed intake, kg 2.91 2.93 2.94 0.01 0.438 0.316 0.426
Feed:gain 2.81 a,b 2.80 b 2.84 a 0.01 0.016 0.479 0.005

1 CON, control diet; FBP1, the 5% fermented bamboo powder supplementation diet; FBP2, the 10% fermented
bamboo powder supplementation diet; SEM, standard error of mean. a,b Values in the same row with different
superscript letters were significantly different (p < 0.05).

3.2. Serum Biochemical Parameters, Immunoglobulins, and Inflammatory Cytokines

The ALT, AST, total protein, total bilirubin, glucose, cholesterol, triglyceride, and LDLC
contents in serum were not affected by the dietary treatments (Table S2). The HDLC content
in serum was linearly increased with the FBP addition levels in the dietary treatments, and
the FBP1-fed pigs had a greater HDLC content in serum than those in the pigs of the CON
group (p < 0.05).

The results of serum immunoglobulins and inflammatory cytokines are shown in
Table 3. No difference was observed in the contents of IgG, IgM, IL-4, IL-10, TNF-α, and
IFN-γ in serum among the four dietary treatments. However, the IgA content in serum
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increased linearly with an increased inclusion level of FBP, and the 5% FBP supplementation
had a greater IgA content in the serum of pigs than in the CON group (p < 0.05).

Table 3. Effects of fermented bamboo powder supplementation on serum immunoglobulins and
inflammatory cytokines of growing–finishing pigs.

Item 1 CON FBP1 FBP2 SEM
p-Value

ANOVA Linear Quadratic

IgG, g/L 8.71 8.78 8.62 0.15 0.925 0.875 0.722
IgA, g/L 0.97 b 1.27 a 1.04 a,b 0.05 0.046 0.019 0.401
IgM, g/L 0.78 0.75 0.76 0.01 0.586 0.369 0.625

IL-4, pg/mL 23.66 30.19 21.41 2.88 0.482 0.390 0.401
IL-10, pg/mL 17.80 28.71 8.85 5.19 0.334 0.412 0.218

TNF-α, pg/mL 36.38 35.45 19.19 6.28 0.502 0.955 0.249
IFN-γ, pg/mL 47.73 42.89 34.09 2.91 0.172 0.496 0.082

1 CON, control diet; FBP1, the 5% fermented bamboo powder supplementation diet; FBP2, the 10% fermented
bamboo powder supplementation diet; SEM, standard error of mean; IgG, immunoglobulin G; IgA, immunoglob-
ulin A; IgM, immunoglobulin M; IL-4, interleukin-4; IL-10, interleukin-10; TNF-α, tumor necrosis factor-α; IFN-γ,
interferon-γ. a,b Values in the same row with different superscript letters were significantly different (p < 0.05).

3.3. Fecal Bacterial Community

The rate of emergence of new OTUs in this experiment tended to level off under
continuous sampling, demonstrating that the number of species in this experiment did
not increase significantly with the number of sequencings (Figure S1). Four α diversity
indices of fecal bacteria were calculated, the Chao index and Ace index were used to
estimate species richness, and Shannon and Simpson diversity values were used to estimate
the microbial diversity in the samples. There was no difference in the species richness
and microbial diversity in the samples among the three dietary treatments (Figure 1A).
Regarding the fecal bacterial composition in terms of β-diversity clustering by PCA and
PCoA based on the weighted Unifrac distance matrix, the results revealed a significant
separation of fecal microbiome between the CON and FBP2 groups (Figure 1B).

The composition of the top 10 phyla and top 15 genera in the fecal contents of pigs is
shown in Figure 2. At the phylum level, the Firmicutes, Bacteroidetes, and Spirochaetes were the
dominant bacteria, and accounted for more than 94% of the whole phyla (Figure 2A). The pigs in
the FBP2 group had a higher relative abundance of Firmicutes compared with the CON group
(p < 0.05, Figure 2A); however, they had a lower abundance of Spirochaetes compared with
the CON and FBP1 group (p < 0.05, Figure 2A). At the genus level, the dominant microbiota
consisted of Treponema_2, Rikenellaceae_RC9_gut_group, uncultured_bacterium_f_Lachnospiraceae, un-
cultured_bacterium_f_Prevotellaceae, uncultured_bacterium_f_Muribaculaceae, Ruminococcaceae_UCG-
005, Prevotellaceae_NK3B31_group, Prevotellaceae_UCG-003, Prevotellaceae_UCG-001, Strepto-
coccus, Lachnospiraceae_XPB1014_group, and Lactobacillus, which contained approximately
60% of the total sequences (Figure 2B). The 5% FBP supplementation increased the abun-
dance of Rikenellaceae_RC9_gut_group compared with the FBP2 group (p < 0.05, Figure 2B).
Compared to the CON group, the 10% FBP addition group had an increased abundance of
uncultured_bacterium_f_Lachnospiraceae, Ruminococcaceae_UCG-005, Prevotellaceae_UCG-003,
Lachnospiraceae_XPB1014_group, and Lactobacillus, whereas it had a decreased abundance of
Treponema_2 and Prevotellaceae_NK3B31_group (p < 0.05, Figure 2B).

The LEfSe analysis identified 14 biomarkers with LDA scores > 4. The results showed
that seven bacterial taxa were found to be enriched in the FBP2 group, including Firmicutes
(phylum), Ruminococcaceae (family), Lachnospiraceae (family), Lactobacillaceae (family), Lacto-
bacillus (genus), uncultured_bacterium_f_Lachnospiraceae (genus), and Ruminococcaceae_UCG-
005 (genus). Two bacterial taxa were found to be enriched in both FBP1 groups: were
Rikenellaceae (family) and Rikenellaceae_RC9_gut_group (genus). In addition, Spirochaetes
(phylum), Spirochaetia (class), Spirochaetales (order), Spirochaetaceae (family), and Treponema_2
(genus) were enriched in the CON group (Figure 3).



Animals 2022, 12, 3127 6 of 11

Animals 2022, 12, x FOR PEER REVIEW 6 of 12 
 

Regarding the fecal bacterial composition in terms of β−diversity clustering by PCA and 
PCoA based on the weighted Unifrac distance matrix, the results revealed a significant 
separation of fecal microbiome between the CON and FBP2 groups (Figure 1B).  

 
Figure 1. Diversity analyses of microbial communities among dietary groups. (A) Alpha diversity 
analysis. (B) Beta diversity with principal component analysis (PCA) and principal coordinates anal-
ysis (PCoA) based on unweighted Unifrac distance. CON, control diet. FBP1, the 5% fermented 
bamboo powder supplementation diet. FBP2, the 10% fermented bamboo powder supplementation 
diet. 

The composition of the top 10 phyla and top 15 genera in the fecal contents of pigs is 
shown in Figure 2. At the phylum level, the Firmicutes, Bacteroidetes, and Spirochaetes were 
the dominant bacteria, and accounted for more than 94% of the whole phyla (Figure 2A). 
The pigs in the FBP2 group had a higher relative abundance of Firmicutes compared with 
the CON group (p < 0.05, Figure 2A); however, they had a lower abundance of Spirochaetes 
compared with the CON and FBP1 group (p < 0.05, Figure 2A). At the genus level, the 
dominant microbiota consisted of Treponema_2, Rikenellaceae_RC9_gut_group, uncul-
tured_bacterium_f_Lachnospiraceae, uncultured_bacterium_f_Prevotellaceae, uncultured_bacte-
rium_f_Muribaculaceae, Ruminococcaceae_UCG−005, Prevotellaceae_NK3B31_group, Prevotel-
laceae_UCG−003, Prevotellaceae_UCG−001, Streptococcus, Lachnospiraceae_XPB1014_group, 
and Lactobacillus, which contained approximately 60% of the total sequences (Figure 2B). 
The 5% FBP supplementation increased the abundance of Rikenellaceae_RC9_gut_group 
compared with the FBP2 group (p < 0.05, Figure 2B). Compared to the CON group, the 
10% FBP addition group had an increased abundance of uncultured_bacterium_f_Lachno-
spiraceae, Ruminococcaceae_UCG−005, Prevotellaceae_UCG−003, 

Figure 1. Diversity analyses of microbial communities among dietary groups. (A) Alpha diversity
analysis. (B) Beta diversity with principal component analysis (PCA) and principal coordinates
analysis (PCoA) based on unweighted Unifrac distance. CON, control diet. FBP1, the 5% fermented
bamboo powder supplementation diet. FBP2, the 10% fermented bamboo powder supplementa-
tion diet.
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FBP2, the 10% fermented bamboo powder supplementation diet.

The results of Spearman’s correlation analysis between growth performance from
day 1 to 75 and the top 15 genera in the pigs are presented in Figure 4. The average
abundance of the genera Rikenellaceae_RC9_gut_group and Prevotellaceae_NK3B31_group
were negatively correlated with F:G, whereas the genera of Prevotellaceae_UCG-003 were
positively correlated with F:G (p < 0.05). Additionally, the average abundance of Rikenel-
laceae_RC9_gut_group was also positively correlated with ADG (p < 0.05).



Animals 2022, 12, 3127 8 of 11Animals 2022, 12, x FOR PEER REVIEW 9 of 12 
 

 
Figure 4. The Spearman correlation analysis of fecal microbial species at genus level with growth 
performance of pigs. Spearman correlation coefficients are represented by color ranging from red, 
positive correlation (0.6), to blue, negative correlation (−0.6). * indicates statistically significant dif-
ference (p < 0.05). ADFI, average daily feed intake. ADG, average daily gain. F:G, feed−to−gain ratio. 

4. Discussion 
Fiber−rich ingredients as alternative feedstuffs in swine diets have been observed 

over the last decade, and were thought to be an effective way to reduce feed costs and 
improve the gut health of pigs [4,21]. Bamboo is a fast−growing perennial plant, and bam-
boo powder contains abundant dietary fiber; therefore, it was considered an important 
alternative feed feedstock in ruminants’ production [11–13]. However, there is still a need 
for more research to study the application of FBP in swine production. There were no 
negative influences in the growth performance, such as ADG and ADFI, for growing–
fattening pigs fed the FBP addition diets during the experimental period in the current 
study. In addition, the 5.0% FBP addition diet decreased the F:G compared to the pigs fed 
the 10% FBP addition diet. This was consistent with the previous study reported by Dai, 
et al. [22], where the weaned piglets fed diets with 1% micronized bamboo powder addi-
tion increased their ADG but decreased their F:G compared with the CON diet. Similarly, 
another study revealed that 1% micronized bamboo powder could also improve the 
growth performance of broilers in an antibiotic−free basal diet [16]. These results indicated 
that bamboo powder could be considered as a source of feed ingredients in monogastric 
livestock (pigs and chickens) production, and wheat bran could be replaced by FBP in the 
diets of growing–fattening pigs. 

The serum biochemical parameters, immunoglobulins, and inflammatory cytokines 
were usually used in the nutritional assessment to determine the quality of test feedstuffs 
or additives to reflect the physiological, metabolic, and humoral immunological status of 
animals [23–25]. In the current study, the addition of FBP had no effects on most serum 
biochemical parameters and inflammatory cytokines. However, the 5% FBP addition in-
creased the contents of HDLC in the serum more than in the CON group. A previous 

Figure 4. The Spearman correlation analysis of fecal microbial species at genus level with growth
performance of pigs. Spearman correlation coefficients are represented by color ranging from
red, positive correlation (0.6), to blue, negative correlation (−0.6). * indicates statistically significant
difference (p < 0.05). ADFI, average daily feed intake. ADG, average daily gain. F:G, feed-to-gain ratio.

4. Discussion

Fiber-rich ingredients as alternative feedstuffs in swine diets have been observed over
the last decade, and were thought to be an effective way to reduce feed costs and improve
the gut health of pigs [4,21]. Bamboo is a fast-growing perennial plant, and bamboo powder
contains abundant dietary fiber; therefore, it was considered an important alternative feed
feedstock in ruminants’ production [11–13]. However, there is still a need for more research
to study the application of FBP in swine production. There were no negative influences in
the growth performance, such as ADG and ADFI, for growing–fattening pigs fed the FBP
addition diets during the experimental period in the current study. In addition, the 5.0%
FBP addition diet decreased the F:G compared to the pigs fed the 10% FBP addition diet.
This was consistent with the previous study reported by Dai, et al. [22], where the weaned
piglets fed diets with 1% micronized bamboo powder addition increased their ADG but
decreased their F:G compared with the CON diet. Similarly, another study revealed that
1% micronized bamboo powder could also improve the growth performance of broilers
in an antibiotic-free basal diet [16]. These results indicated that bamboo powder could be
considered as a source of feed ingredients in monogastric livestock (pigs and chickens)
production, and wheat bran could be replaced by FBP in the diets of growing–fattening pigs.

The serum biochemical parameters, immunoglobulins, and inflammatory cytokines
were usually used in the nutritional assessment to determine the quality of test feedstuffs
or additives to reflect the physiological, metabolic, and humoral immunological status of
animals [23–25]. In the current study, the addition of FBP had no effects on most serum
biochemical parameters and inflammatory cytokines. However, the 5% FBP addition
increased the contents of HDLC in the serum more than in the CON group. A previous
study showed that serum HDLC levels are inversely related to cardiovascular disease
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risk, obesity, and metabolic syndrome [26]. Agreed with the previous study that the
addition of bamboo products increased the concentrations of IgA in serum [15], while
the IgA could play a role against bacterial or viral infections, both in serum and mucosal
secretions [27]. Therefore, the increased HDLC and IgA resulting from FBP addition may
improve the health condition of pigs, as well as protect pigs from diseases. The increased
contents of HDLC and IgA may be attributed to the richness of flavonoids, organic acids,
phenolic compounds, and polysaccharides in bamboo products, which can regulate the
lipid metabolism and immune function of animals [28,29].

The microbial community in the animal gut plays a critical role in intestinal mor-
phology, nutrition digestion, and host immune system modulation [30]. Previous studies
demonstrated that the addition of fermented feed has a positive effect on modulating the
intestinal microbiota, which could promote the presence of beneficial bacteria and reduce
potentially harmful bacteria populations in the gut of pigs [31]. Additionally, bamboo
powder is a kind of fiber-rich ingredient, which could also influence the composition
and functionality of the gut microbiota [32]. In the current study, the FBP addition had
no effects on the overall microbial diversity in the feces but did alter the composition
of intestinal bacterial microbiota in pigs. The LefSe results showed that FBP addition
induced differentially enriched bacterial species at different taxonomic levels. At the genus
level, the 5% FBP addition group enriched Rikenellaceae_RC9_gut_group, and the potential
biomarkers in the 10% FBP addition group were uncultured_bacterium_f_Lachnospiraceae,
Lactobacillus, and Ruminococcaceae_UCG-005. It was reported that these four bacteria could
degrade carbohydrates (such as indigestible oligosaccharide, cellulose, hemicellulose, or
resistant starch) and produce acetate, butyrate, or lactic acid. It can be inferred that they can
improve the host’s nutrient digestion and absorption through carbohydrate metabolism in
FBP-fed pigs [33–35]. However, the LefSe results suggested that the potential pathogens
(Treponema_2) may be the biomarker of the control group. These results implied that
the FBP supplementation may exert beneficial effects on modulating the intestinal mi-
crobiota of pigs. Rikenellaceae_RC9_gut_group is one genus of bacteria Bacteroidales, and
could degrade cellulose and hemicellulose that enhanced the fiber digestion [34,36]. The
Spearman correlation analysis in our study showed that Rikenellaceae_RC9_gut_group was
negatively correlated with FC but positively correlated with ADG, suggesting that the low
F:G in the 5% FBP addition group may be attributed to the increased abundance of Rikenel-
laceae_RC9_gut_group. Therefore, further studies are required to explore the evolution of
the intestinal microbiota in FBP-supplemented pigs and uncover the relationship between
the Rikenellaceae_RC9_gut_group and the growth performance of growing–finishing pigs.

5. Conclusions

In conclusion, the FBP supplementation to the diet had no negative effects on the
growth performance and exerted beneficial effects on promoting serum biochemical and
immune indices, as well as modulating the fecal microbiota of pigs. Therefore, these
results indicated that fermented bamboo powder could be one potential fiber-rich ingre-
dient for growing–finishing pigs, and that the recommended addition proportion in the
growing–finishing swine diet is 5%.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12223127/s1. Table S1. Ingredients composition and nutrient
values of control diets; Table S2. Effects of fermented bamboo powder supplementation on serum
biochemical parameters of growing-finishing pigs, Figure S1. Rarefaction curves. The horizontal
coordinate is the number of randomly selected sequencing strips, and the vertical coordinate is the
number of features obtained based on the number of sequencing strips. Each curve represents one
sample, marked with different colors. CON, control diet; FBP1, the 5% fermented bamboo powder
supplementation diet; FBP2, the 10% fermented bamboo powder supplementation diet.
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