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Abstract

Background

Odd-numbered chain saturated fatty acids (OCSFA) have been associated with potential

health benefits. Although some OCSFA (e.g., C15:0 and C17:0) are found in meats and

dairy products, sources and metabolism of C19:0 and C23:0 are relatively unknown, and the

influence of non-dietary determinants, including genetic factors, on circulating levels of

OCSFA is not established.
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Objective

To elucidate the biological processes that influence circulating levels of OCSFA by investi-

gating associations between genetic variation and OCSFA.

Design

We performed a meta-analysis of genome-wide association studies (GWAS) of plasma

phospholipid/erythrocyte levels of C15:0, C17:0, C19:0, and C23:0 among 11,494 individu-

als of European descent. We also investigated relationships between specific single nucleo-

tide polymorphisms (SNPs) in the lactase (LCT) gene, associated with adult-onset lactase

intolerance, with circulating levels of dairy-derived OCSFA, and evaluated associations of

candidate sphingolipid genes with C23:0 levels.

Results

We found no genome-wide significant evidence that common genetic variation is associated

with circulating levels of C15:0 or C23:0. In two cohorts with available data, we identified

one intronic SNP (rs13361131) in myosin X gene (MYO10) associated with C17:0 level (P =

1.37×10−8), and two intronic SNP (rs12874278 and rs17363566) in deleted in lymphocytic

leukemia 1 (DLEU1) region associated with C19:0 level (P = 7.07×10−9). In contrast, when

using a candidate-gene approach, we found evidence that three SNPs in LCT (rs11884924,

rs16832067, and rs3816088) are associated with circulating C17:0 level (adjusted P =

4×10−2). In addition, nine SNPs in the ceramide synthase 4 (CERS4) region were associ-

ated with circulating C23:0 levels (adjusted P<5×10−2).

Conclusions

Our findings suggest that circulating levels of OCSFA may be predominantly influenced by

non-genetic factors. SNPs associated with C17:0 level in the LCT gene may reflect genetic

influence in dairy consumption or in metabolism of dairy foods. SNPs associated with C23:0

may reflect a role of genetic factors in the synthesis of sphingomyelin.

Introduction

The odd-numbered chain saturated fatty acids (OCSFA), i.e., pentadecanoic acid (C15:0) and

heptadecanoic acid (C17:0), are found in ruminant foods such as meats or dairy products syn-

thesized by the bacterial flora in the rumen [1] and seafood [2]. Multiple observational studies

have suggested potential health benefits of higher circulating C15:0 and C17:0, such as lower

risk of type 2 diabetes and cardiovascular disease [3–6], and improvement of risk factors such

as blood pressure, plasma triglycerides, and insulin resistance [3, 7]. Based on the hypothesis

that OCSFA cannot be synthesized by humans, circulating levels of C15:0 and C17:0 have been

used as objective markers of dairy fat consumption [7–13]. However, the correlation between

self-reported dairy fat consumption and levels of C15:0 or C17:0 has been modest [3, 14, 15],

raising questions as to whether intrinsic genetic factors may influence OCSFA incorporation,

metabolism or competition with other fatty acids (FA); whether self-reported intakes do not

accurately capture true consumption of dairy fat, for instance due to many hidden sources

(e.g., from milk, cream, butter) in numerous mixed dishes, bakery products, and processed
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and packaged foods [6], or alternatively whether other dietary sources, such as seafood, also

contribute to circulating levels of these FA [2]. Genetic factors could also influence dietary

consumption; for example, single nucleotide polymorphisms (SNPs) associated with reduced

lactose tolerance could influence dairy intake and thereby circulating levels of OCSFA. Yet, the

effects of common genetic variation on levels of C15:0 and C17:0 are not well-established.

In addition to C15:0 and C17:0, trace OCSFA, such as nonadecanoic acid (C19:0) and trico-

sanoic acid (C23:0), are found in the circulation, the sources and metabolism of which are rela-

tively unknown. No prior studies, to our knowledge, have assessed genetic determinants of

circulating levels of C19:0 or C23:0.

To elucidate the genetic factors influencing circulating OCSFA, we performed a genome-

wide association studies (GWAS) meta-analysis of plasma phospholipid/erythrocyte C15:0,

C17:0, C19:0, and C23:0 levels obtained from up to 11,494 individuals of European descent, as

part of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Con-

sortium. We also investigated the association between SNPs in lactase (LCT), a gene associated

with lactose intolerance [16, 17], with circulating levels of dairy-derived OCSFA. Finally, we

examined the association of C23:0 levels with SNPs in sphingolipid genes previously associated

with other very long chain saturated fatty acids (VLSFA) [18].

Materials and methods

Populations

We conducted a collaborative consortium investigation using data from 8 cohorts participat-

ing in the CHARGE Fatty Acid Working Group, comprising 11,494 individuals of European

descent (Table 1). Participating cohorts included the Atherosclerosis Risk in Communities

(ARIC) Study, the Coronary Artery Risk Development in Young Adults (CARDIA) Study, the

Cardiovascular Health Study (CHS), the Genetics of Lipid-Lowering Drugs and Diet Network

(GOLDN), the Health Professionals Follow-up Study (HPFS), the Multi-Ethnic Study of Ath-

erosclerosis (MESA), the Nurses’ Health Study (NHS), and the Prospective Investigation of the

Vasculature in Uppsala Seniors (PIVUS). Details of participating cohorts are presented in the

S1 Text. All participants provided informed written consent, including consent to participate

Table 1. Characteristics of study participants in the participating cohorts.

Cohort1 N Age (years) % Women FA Level (% of total FA)2

C15:0 C17:0 C15:0+C17:0 C19:0 C23:0

ARIC 3,269 53.8 (5.6) 51.3 0.17 (0.04) NA NA NA 0.25 (0.07)

CARDIA 1,507 45.6 (3.3) 53.3 0.20 (0.06) NA NA NA NA

CHS 2,403 75.0 (5.1) 61.5 0.16 (0.04) 0.40 (0.07) 0.56 (0.10) NA 0.75 (0.13)

GOLDN 774 48.6 (16.1) 50.4 1.08 (0.53) 0.36 (0.05) 1.44 (0.53) NA NA

HPFS 1,255 64.1 (8.5) 0 0.11 (0.05) 0.37 (0.10) 0.48 (0.14) 0.12 (0.05) 0.28 (0.05)

MESA 702 61.6 (10.4) 53.3 0.19 (0.05) NA NA NA NA

NHS 655 59.8 (6.5) 100 0.12 (0.04) 0.37 (0.08) 0.49 (0.11) 0.15 (0.09) 0.26 (0.06)

PIVUS 929 70.2 (0.16) 50.3 0.27 (0.08) 0.41 (0.07) 0.68 (0.13) NA NA

1Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium; Atherosclerosis Risk in Communities (ARIC) Study, the Coronary Artery

Risk Development in Young Adults (CARDIA) Study, the Cardiovascular Health Study (CHS), the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN), the

Health Professionals Follow-up Study (HPFS), the Multi-Ethnic Study of Atherosclerosis (MESA), the Nurses’ Health Study (NHS), and the Prospective Investigation of

the Vasculature in Uppsala Seniors (PIVUS)
2Values in the table are mean (standard deviation) except where specified otherwise. NA: not available. FA were measured in erythrocyte membrane phospholipids

(GOLDN, HPFS, NHS) and plasma phospholipids (ARIC, CARDIA, CHS, MESA and PIVUS).

https://doi.org/10.1371/journal.pone.0196951.t001
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in genetic studies; and all studies received approval from local ethical oversight committees.

This meta-analysis does not qualify as human subject research since no access to identifiable

private information was granted from any participating cohort.

Measurements of phospholipid FA

FA were measured as % of total FA in plasma phospholipids in ARIC, CARDIA, CHS, MESA

and PIVUS, and in erythrocyte membrane phospholipids in HPFS, GOLDN, and NHS. FA

levels in plasma phospholipids and erythrocyte phospholipids are correlated, with reported

correlations of 0.54 for C15:0 and 0.66 for C17:0 between these compartments [19]. Details of

the FA measurement methods in each study are provided in the S1 Text. We evaluated each

OCSFA separately, and also the combined levels of C15:0+C17:0.

Genotyping and genome wide association analysis

Genotyping was performed separately in each cohort using high-density SNP marker plat-

forms (ARIC, CARDIA, GOLDN and MESA: Affymetrix 6.0; CHS: Illumina 370; HPFS and

NHS: Illumina 550k, 610Q, 660Q, Affymetrix 6.0; PIVUS: Illumina OmniExpress and Cardio-

Metabochip). Samples with call rates <95–97% at genotyped markers were excluded. Geno-

types were imputed to approximately 2.5 million HapMap SNPs by using either BEAGLE[20]

(CARDIA), BIMBAM[21] (CHS), IMPUTE[22] (MESA, PIVUS), or MACH[23] (ARIC,

GOLDN, HPFS, NHS). Compared to 1000G imputation, HapMap imputation allows similar

identification of common variants when using appropriate Bonferroni correction [24]. SNPs

for which Hardy-Weinberg equilibrium testing resulted in significant deviations from expecta-

tion (P<10−4 to<10−6, cohort-specific) were excluded from imputation. Additional details on

genotyping and imputation in each cohort are provided in S1 Text.

We reviewed the influence of the number of measured FA in the assay on the relative con-

centrations of different FA. While the influence appeared modest to small, we evaluated associ-

ation between SNP genotype and each FA separately within each cohort, quantifying change

in FA levels associated with for each copy of specific alleles within each assay, in order to mini-

mize any potential influence of other FA in the quantification of circulating OCSFA concen-

trations. All studies conducted linear regression analysis measuring the additive effect of the

number of effect alleles, or equivalently the imputed number of effect alleles for imputed geno-

types. In absence of a known model, we chose the additive model a priori as it has good power

for all "monotone" models, including recessive and dominant [25]. The analyses used robust

standard errors and adjusted for age, sex, site of recruitment where appropriate, and where

needed, principal components to account for possible population genetic substructure.

Meta-analysis

For each SNP and FA, study-specific GWAS results were combined using inverse-variance

weighted meta-analysis using METAL (http://www.sph.umich.edu/csg/abecasis/metal). SNPs

with minor allele frequency (MAF)�1% or imputation quality <0.30 were excluded from the

meta-analyses. Genomic control correction was applied to each study prior to the meta-analy-

sis and correction factors ranged from 0.98 to 1.08 (C15:0), 0.98 to 1.12 (C17:0), 0.98 to 1.07

(C15:0+C17:0), 0.97 to 0.98 (C19:0) and 1.00 to1.02 (C23:0). Associations between SNP and

OCSFA were considered as “genome-wide significant” with P< 5×10−8.

We examined association of C15:0, C17:0 and C15:0+C17:0 levels in silico with SNPs in the

LCT gene. We also evaluated the association between level of C23:0 with SNPs in ceramide

synthase 4 (CERS4), and serine palmitoyltransferase long chain base subunit 3 gene (SPTLC3),
two genes in the sphingolipid de novo biosynthesis pathway that had reported association with

GWAS of odd-chain saturated fatty acids
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VLSFA levels [18]. Control of the false discovery rate (FDR) at 0.05 was applied to association

between FA and SNPs in the candidate genes using the Benjamini and Hochberg method [26]

(SAS PROC MULTTEST procedure, SAS version 9.4). FDR-adjusted P< 5×10−2 were consid-

ered as statistically significant [27].

Results

The eight participating cohorts included 11,494 subjects of European ancestry (Table 1), with

mean age range at the time of FA measurement between 45 and 75 years (Table 1). Data avail-

ability varied by FA, ranging from two cohorts with data available on circulating C19:0 level to

eight cohorts providing data on circulating C15:0 level.

Genome wide associations with circulating odd chain saturated FA

In GWAS meta-analyses, no SNP associations with C15:0 level attained genome-wide signifi-

cance (Table A in S1 Tables). The most strongly associated SNPs were located on chromosome

18, rs973730 (a synonymous SNP in establishment of sister chromatid cohesion N-acetyltrans-

ferase 1 gene (ESCO1), P = 6.50×10−7), rs10502435 (2.2kb 3’ of ESCO1, P = 6.55×10−7), and

rs12373434 (an intronic SNP in the establishment of sister chromatid cohesion N-acetyltrans-

ferase 1 gene (ESCO1), P = 6.84×10−7). The three SNPs rs973730, rs10502435 and rs12373434

are in high linkage disequilibrium (r2 = 1).

For C17:0 level, an infrequent (MAF = 1.1%) SNP in the myosin X gene (MYO10),
rs13361131, attained genome-wide significance (P = 1.4×10−8) in analyses limited to the two

cohorts with data on this SNP. Each copy of the rs13361131 G allele was associated with 0.14

percent of total FA higher level of C17:0 (Table 2). Compared to the mean level of C17:0 of

0.39 percent (weighted based on sample size, Table 2), this represented 36% higher level of

C17:0 for each copy of the G allele. The rs7719940 SNP in MYO10 is common (MAF = 27.9%)

Table 2. SNPs significantly associated with circulating OCSFA levels in European-ancestry participants.

Fatty Acid Chromosome Gene SNP Coded allele (frequency) P value Beta coefficient (SE)

Genome wide associations1

C17:0 5 MYO10 rs13361131 A/G (0.99) 1.37×10−8 0.1346 (0.0237)

C19:0 13 DLEU1 rs12874278 T/C (0.06) 7.07×10−9 0.0199 (0.0034)

13 DLEU1 rs17363566 A/G (0.06) 7.07×10−9 0.0199 (0.0034)

Candidate gene associations2

C17:0 2 LCT rs11884924 A/C (0.02) 4.3×10−2 -0.0208 (0.0068)

rs16832067 G/A (0.98) 4.3×10−2 -0.0204 (0.0068)

rs3816088 C/G (0.02) 4.3×10−2 -0.0201 (0.0068)

C23:0 19 CERS4 rs36251 C/G (0.55) 3.0 ×10−2 0.005 (0.002)

rs10409603 A/G (0.44) 3.0 ×10−2 -0.0041 (0.001)

rs2927718 C/G (0.42) 3.0 ×10−2 0.0036 (0.001)

rs1115199 T/C (0.48) 3.0 ×10−2 -0.0041 (0.001)

rs367443 A/G (0.46) 3.0 ×10−2 -0.004 (0.001)

rs2306199 T/G (0.58) 3.0 ×10−2 -0.0042 (0.002)

rs36249 A/G (0.44) 3.0 ×10−2 0.004 (0.001)

rs36258 A/G (0.53) 3.0 ×10−2 0.0045 (0.002)

rs17160348 T/C (0.16) 3.0 ×10−2 -0.0069 (0.003)

1Evaluated at genome-wide significance (alpha = 5.0×10−8).
2Evaluated at adjusted false discovery rate (alpha = 0.05).

https://doi.org/10.1371/journal.pone.0196951.t002

GWAS of odd-chain saturated fatty acids

PLOS ONE | https://doi.org/10.1371/journal.pone.0196951 May 8, 2018 5 / 12

https://doi.org/10.1371/journal.pone.0196951.t002
https://doi.org/10.1371/journal.pone.0196951


and its association with circulating levels of C15:0+C17:0 approached genome wide signifi-

cance, (P = 7.1×10−8), although not its association with C15:0 level (P> 1.0×10−4) or C17:0

level (P = 9.65 × 10−7) individually (Tables A-C in S1 Tables).

For C19:0 level, two common (MAF = 5.9%) intronic SNP in the deleted in lymphocytic

leukemia 1 gene (DLEU1), rs12874278 and rs17363566, achieved genome-wide significance

(P = 7.1 × 10−9). Each copy of the T allele was associated with a 0.02 percent of total FA higher

level of C19:0 (Table 2, Fig 1, and Table D in S1 Tables); or about a 15.4% higher level com-

pared to the weighted mean level of 0.13 in the two cohorts with C19:0. For C23:0 level, no

genome-wide significant association with any SNP was identified (Table E in S1 Tables).

Associations between common SNPs in the LCT gene and biomarkers of

dairy intake

In order to evaluate the potential influence of genetic variation related to lactase activity on

dairy consumption, we evaluated relations of 40 SNPs in LCT with levels of circulating C15:0

and C17:0, which are considered to be biomarkers of dairy or dairy fat consumption [3, 8, 9].

No significant associations were seen between any LCT SNP and C15:0 level (Table F in S1

Tables). In contrast, 3 SNPs in LCT were significantly associated with C17:0 level: rs11884924,

rs16832067, and rs3816088 (FDR-adjusted P = 4.0×10−2; Table 2, Table G in S1 Tables). Each

copy of the variant alleles in these SNPs was associated with approximately 0.02 unit lower

C17:0 levels, with consistent direction of association for all four cohorts included in the analy-

ses (Fig 2). No associations were observed for the combined sum of C15:0+C17:0 (Table H in

S1 Tables).

Tricosanoic acid (C23:0), SPTLC3 and CERS4 genes

Little is known about the metabolism of C23:0, a very long chain OCSFA. We examined corre-

lations of C23:0 level with levels of other FA in the CHS cohort. We observed significant corre-

lations of C23:0 level with the OCSFA C15:0 (r = 0.21, P = 6x10-22) and C17:0 (r = 0.33,

Fig 1. Single-nucleotide polymorphism (SNP) association plots for C19:0-associated region. Genetic coordinates

are along the x axis, and genome-wide association significance level is plotted against the y axis as–log10 (P value).

Linkage disequilibrium (LD) is indicated by color scale in relationship to marker rs12874278.

https://doi.org/10.1371/journal.pone.0196951.g001
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P = 3x10-55). In addition, C23:0 level was strongly associated with VLSFA with even carbon

numbers (r = 0.58 with C20:0 level, P = 1x10-192; 0.65 with C22:0 level, P = 4x10-269; and 0.57

with C24:0 level, P = 2x10-19). We recently reported genome wide associations of VLSFA with

SNPs in two genes in the de novo synthesis pathway of ceramides and other sphingolipids,

SPTLC3 and CERS4 [18]. Both VLSFA and C23:0 are components of sphingolipids [28, 29].

Thus, we investigated whether genetic variation in SPTLC3 and CERS4 was also associated

with variation in C23:0 level. The SNPs associated with VLSFA were not associated with C23:0

levels (Table I in S1 Tables); however, 9 SNPs in CERS4 were significantly associated with

C23:0 level (FDR-adjusted P<5×10−2) (Table 2). There was no significant association between

C23:0 level with SNPs in the SPTLC3 gene (Table J in S1 Tables).

Discussion

In this meta-analysis of 8 cohorts of adults of European ancestry, we found no evidence that

common genetic variations are associated with circulating levels of C15:0 or C23:0 at genome

wide significance threshold. Findings from C23:0 were limited to four cohorts with available

data. We found one SNP in the MYO10 gene associated with variation in circulating levels of

Fig 2. Change in percent units (95% CI) in circulating C17:0 levels for each copy of the C allele of rs11884924

(LCT). Although five cohorts had measures of C17:0 (CHS, GOLDN, HPFS, NHS, PIVUS), the CHS cohort did not

have results for the SNP rs11884924 (LCT), and therefore is not included. Findings for rs16832067 (LCT) and

rs3816088 (LCT) were similar in magnitude. The horizontal lines denote the 95% CIs and the squares represent the

point estimate of each study. The size of the square is proportional to its inverse-variance weight in the meta-analysis.

The diamond represents the pooled meta-analysis effect size estimate.

https://doi.org/10.1371/journal.pone.0196951.g002
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C17:0, and in analysis limited to two cohorts with available data, two SNPs in the DLEU gene

were associated with variation in levels of C19:0. The limited number of significant genome-

wide associations suggests that circulating levels of OCSFA may be predominantly influenced

by non-genetic factors. In contrast, using a candidate-gene approach, we found novel evidence

that circulating C17:0 levels are associated with genetic variation in LCT, the gene responsible

for adult-onset lactose intolerance [16]. In addition, C23:0 levels were associated with genetic

variation in CERS4, a candidate gene involved in ceramide synthesis.

Located on chromosome 2, LCT is the single gene encoding the lactase enzyme, which regu-

lates the hydrolysis of several molecules including the disaccharide lactose, the main carbohy-

drate in milk [16]. Characterized by reduced expression of the lactase enzyme in the intestine,

lactase non-persistence leads to inability to digest milk lactose in over 50% adults worldwide

[17]. The observed association of three HapMap SNPs in the LCT gene with C17:0 levels sug-

gests that other genetic variants in the LCT gene could potentially influence consumption of

dairy, which is one of the primary dietary sources of C17:0. With relatively modest correlations

with dairy fat or dairy foods (r ranging between 0.16 and 0.40) [3, 8, 14], plasma levels of C15:0

and C17:0 have been used as objective biomarkers of dairy fat intake [3, 7, 8, 14, 15], although

these FA also exist in seafood. The lack of significant associations between SNPs in the LCT
gene with C15:0 may be partially attributed to potential differences in biologic processes

related to FA absorption and incorporation into lipid fractions. For example, although the

content of C17:0 in dairy fat is lower than that of C15:0, the C17:0 levels in plasma is about two

times higher than that of C15:0 [30, 31]. It is also possible that differences in background diet,

especially as it relates to other food sources contributing to circulating levels of C15:0 and

C17:0 may vary, leading to differences in physiological response to changes in dairy consump-

tion. Further work in needed to investigate how genetic variation in LCT could affect circulat-

ing levels of dairy-derived OCSFA, particularly C17:0.

Could circulating levels of OCSFA be influenced by endogenous metabolic processes?

Although odd-chain FA are synthesized by the rumen bacterial flora and are known to derive

predominantly from ruminant foods, recent studies in rodents reported that plasma phospho-

lipid C15:0 and C17:0 may be endogenously produced by elongation of shorter OCSFA such

as propionic acid (3:0) and heptanoic acid (7:0) [31, 32], or by α-oxidation of stearic acid

(18:0) [33]. Whether such pathways contribute to C15:0 and C17:0 in humans is unknown. In

prior investigations from this CHARGE consortium, we found multiple genetic variants asso-

ciated with levels of FA known to be influenced by endogenous metabolism [18, 34–36], sup-

porting the hypothesis of endogenous synthesis in humans. In contrast, we found no or little

significant genome-wide associations with FA that cannot be synthesized endogenously by

humans, e.g. trans fatty acids [37]. This suggests that circulating levels of OCSFA, are not

appreciably influenced by genetic control, supporting primary influence of dietary sources of

these FA.

Little is known of the metabolism and sources of circulating C23:0, in spite of the associa-

tion of higher circulating levels with lower risk of diabetes in EPIC [38]. Sources of C23:0 may

be both exogenous and endogenous. For example, C23:0 is found in milk, in gangliosides [39],

although intestinal absorption of this particularly hydrophobic FA may be limited. In addition,

the OCSFA C17:0 has been shown to be elongated to C23:0 in rat brain [40], suggesting the

possibility of endogenous production of circulating C23:0. Possibly for this reason, we

observed a modest correlation between C23:0 and C17:0. As true for other VLSFA, C23:0 is

predominantly a component of sphingolipids, such as ceramides and sphingomyelins [28, 29].

Possibly for this reason, we saw an association of circulating C23:0 with common gene varia-

tion in CERS4, a ceramide synthase gene also associated with C20:0, 22:0 and C24:0 [18, 41,

42]. The two SNPs in CERS4 reportedly associated with C20:0 in one direction, and with C22:0
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and C24:0 in another direction [18], were not associated with C23:0. Instead, 9 other common

SNPs were associated with C23:0 levels. Altogether, these findings raise the intriguing possibil-

ity that gene variation in CERS4 may influence FA specificity of the enzyme, and that the

resulting ceramide is destined at least in part for circulating sphingomyelin. In fact, it has been

suggested that ceramides with VLSFA are prioritized for sphingomyelin production [43].

Our study has several strengths. The evaluation of genetic predictors of phospholipid

OCSFA, reflecting both membrane and tissue phospholipids, across 8 cohorts provided the

largest investigation of OCSFA to date among participants of European descent. We used both

an agnostic approach and a hypothesis-based approach. We evaluated associations of C17:0

and C15:0 with SNPs in the LCT, and C23:0 with SNPs in CERS4, and SPTLC3 genes, provid-

ing new insights on potential influence of adult-onset lactose intolerance and sphingolipid syn-

thesis on circulating levels of C17:0 and C23:0 respectively.

Potential limitations should also be considered. Not all the studies had measured all the FA,

limiting the sample size for some of the analyses. OCSFA are in small amounts in phospholip-

ids and erythrocytes, representing less than 1% of total FA and we cannot discard the potential

for type II error due to random measurement error associated with FA quantifying methods.

This investigation focused on genetic associations, and the potential biological effects of the

identified SNPs on circulating levels of OCSFA remain unknown. The SNPs associated with

OCSFA are in high linkage disequilibrium with other SNPs in the region, and sequencing of

the region is needed to identify potential causal variants. Finally, this analysis only included

participants of European ancestry; further studies are needed to expand these findings to other

ethnicities.

In conclusion, in this first GWAS investigation of OCSFA, we found no strong evidence for

genetic control of circulating levels of these FA. Using a candidate-gene approach, we identi-

fied novel associations of genetic variants in the LCT gene associated with circulating level of

C17:0. We also found that circulating level of C23:0 was associated with genetic variation in

CERS4.
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