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Abstract: Background: Nutritional supplements, such as bovine lactoferrin (bLF), have been studied
for their immunomodulatory properties, but little is known of their effect on the gut microbiota
composition of the elderly when supplemented alone or combined with other nutritional supplements
such as prebiotics and micronutrients. In the present study, fecal samples from a double-blind,
placebo-controlled nutritional intervention study were analysed. At baseline (T1), 25 elderly women
were distributed into two groups receiving dietary intervention (n = 12) or placebo treatment (n = 13)
for 9 weeks. During the first 3 weeks of the study (T2), the intervention group consumed 1 g/day bLF,
followed by 3 weeks (T3) of 1 g/day bLF and 2.64 g/day active galactooligosaccharides (GOS), and
3 weeks (T4) of 1 g/day bLF, 2.64 g/day GOS and 20 µg/day of vitamin D. The placebo group received
maltodextrin, in dosages matching those of the intervention group. Fecal bacterial composition was
profiled using partial 16S rRNA gene amplicon sequencing. Short-chain fatty acids (SCFA) were
determined in fecal water as were levels of calprotectin, zonulin, and alpha-1-antitrypsin, as markers
of gastrointestinal barrier and inflammation. Results: A significant increase was observed in the
relative abundance of the genus Holdemanella (p < 0.01) in the intervention group compared to the
placebo at T1. During T2, Bifidobacterium relative abundance increased significantly (p < 0.01) in the
intervention group compared to the placebo, and remained significantly higher until the end of the
study. No other effect was reported during T3. Furthermore, concentrations of SCFAs and calprotectin,
zonulin and alpha-1-antitrypsin did not change during the intervention, although zonulin levels
increased significantly within the placebo group by the end of the intervention. Conclusions: We
conclude that supplementation of bLF enhanced the relative abundance of Holdemanella in the fecal
microbiota of healthy elderly women, and further addition of GOS enhanced the relative abundance
of Bifidobacterium.

Keywords: bovine lactoferrin; galactooligosaccharides; gut microbiota; elderly

1. Introduction

Aging is associated with a decline in immune system functioning known as immuno-
senescence, characterized by poor pathogen clearance, and low-grade chronic inflamma-
tion [1], making the elderly population more susceptible to infections and to age-related
comorbidities [2,3]. With the worldwide elderly population increasing, especially in most
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Western countries, managing the healthcare system is a major challenge for future genera-
tions [4]. Hence solutions are necessary to support immune function and promote healthy
aging in our societies.

In recent years, dietary interventions with immunomodulatory supplements were
explored as an alternative to pharmacological interventions [5]. Among others, bovine
Lactoferrin (bLF) has attracted attention, due to its immuno-modulatory [6,7], antimicro-
bial [8], antiviral [9], and antioxidative abilities [10,11]. In vitro studies showed that bLF
has the potential to suppress the growth of enteric pathogenic bacteria [12], through iron
scavenging [13] or through antimicrobial peptides that derive from proteolytic degrada-
tion of bLF [14]. Furthermore, bLF inhibits viral attachment and replication through the
modulation of the immune system or through the binding with heparan sulfate proteogly-
cans, which blocks the entry of virus to the host cell and prevents infections [15]. These
characteristics make bLF a relevant candidate as a nutritional supplement for the elderly,
but in vivo studies, in this age group are limited [16].

Despite the evidence that bLF can modulate the immune system and affect pathogen
survival, little is known of its effect on the gut microbiota composition when adminis-
trated to the elderly. Gut microbiota composition and metabolic activity is increasingly
acknowledged as an important component of gastrointestinal homeostasis [17] and micro-
bial disbalances have been associated with the progression of disease during aging [18].
Several studies identified differences in the gut microbiota composition of elderly and
young adults, [19] the metagenomic content [20], carbohydrate degradation and metabo-
lite production capacity of the elderly in in vitro experiments [21]. Overall, compared to
younger adults, the gut microbiota in the elderly has frequently been reported to contain
lower levels of bifidobacteria and higher levels of potential pathogens, such as members
of the Enterobacteriaceae family [18]. Bifidobacteria play an important role in gut health
throughout life [22], and nutritional interventions with prebiotics such as galactooligosac-
charides (GOS) have been shown to promote bifidobacteria in the elderly and modulate
the immune system through the reduction of the levels of circulating pro-inflammatory
cytokines [23].

Previously, we have shown that bLF can enhance TLR-7 responses in plasmacytoid
dendritic cells, suggesting that bLF may support antiviral immunity to single-stranded
RNA viruses [7]. Currently, in the literature only one small pilot study has examined
the effect of bLF on the gut microbiota composition of participants, with minor effects
recorded [24]. In our previous study, we focused on the effect of staged supplementation
of bLF, followed by addition of GOS and vitamin D, and determined immune parameters
in elderly women [7]. In the current study we aimed to characterize the effects of the
intervention on gut microbiota composition and function and explored the effect on gut
health based on intestinal inflammatory and barrier markers.

2. Materials and Methods
2.1. Study Design

The effect of bLF in combination with GOS and vitamin D in elderly females (65–85 years)
was studied in a double-blind placebo-controlled nutritional intervention study. The pro-
tocol was approved by the Medical Ethics Committee of Wageningen University, the
Netherlands (protocol no. NL57345.081.16), registered at clinicaltrials.gov (identifier
NCT03026244) and was published previously [7]. Briefly, female subjects (65–85 years)
were recruited with a BMI of 20–30, good mental status, non-smoking, and following
regular and normal Dutch eating habits, as assessed by the NIZO lifestyle and health
questionnaire which corresponds to three main meals per day. Exclusion criteria were
chronic inflammatory, autoimmune, or gastrointestinal diseases or compromised immune
system and medication with hormone replacement therapy, anti-inflammatory drugs
(>1 × week), immunosuppressive drugs, consumption of more than three units of alcohol
per day and use of prebiotics within two months prior to the start of the study.



Nutrients 2022, 14, 2468 3 of 12

Stratification and randomization were performed by a non-blinded person not in-
volved in the study, and all investigators were blinded until all data were collected. Women
were stratified according to age, BMI, reported arthrosis, use of vitamin D supplements
preceding the study, and use of medication for blood pressure or cholesterol. Subjects were
randomly assigned to treatment or placebo using a random number generator. See Table 1
for subject characteristics.

Table 1. Baseline characteristics of the participants.

Total Group Intervention
Group Placebo Group

Number of subjects n = 25 n = 12 n = 13

Age: median (range) 74.5 (69–85)
74 (70–84) 76 (69–85) 74 (69–85) 74 (70–84) 74 (69–85)

BMI: median (range) 24.5(20.3–29.4) 23.2 (20.3–29.0) 24.7 (20.8–29.4)

Reported arthrosis: number Y/N 6/25 3/12 3/13

Use of vitamin D before
the study: 9/25 5/12 4/13

Medication blood
pressure/cholesterol: 10/25 5/12 5/13

Women (n = 15) in the nutritional intervention group were supplemented for 3 weeks
with bLF (1.026 g/day Vivinal Lactoferrin powder, containing an active dose of bLF
of 1 g/day; FrieslandCampina Ingredients, Amersfoort, The Netherlands), followed by
3 weeks bLF + GOS (1 g/day bLF as above; 3.67 g/day BiotisTM GOS powder, containing an
active dose of GOS of 2.64 g/day; FrieslandCampina Ingredients, Amersfoort, The Nether-
lands), followed by 3 weeks bLF + GOS + vitamin D (Supra D Forte Supradyn, Berlin,
Germany) contained 20 µg cholecalciferol (=800 IU) per capsule). In parallel, the placebo
group (n = 15) received maltodextrin (Glucidex, IT19 premium, Roquette, Nord-Pas-de-
Calais, France), as placebo for bLF and GOS, whereas maltodextrin capsules were provided
as placebo for the weeks 6–9 when vitamin D was supplemented to the intervention group.
Subjects were instructed to maintain their habitual diet, but to stop any vitamin D or
prebiotic supplementation during the study and for 2 weeks before the beginning of the
study. Fecal samples were collected by subjects at home at four time points, namely before
the start of the intervention (T1), and at the end of week 3 (T2), week 6 (T3) and week 9 (T4),
using a Fecotainer stool collection device (AT Medical BV, Enschede, The Netherlands) and
were stored frozen at home until the end of the study, when they were transported to NIZO
for storage at −20 ◦C. Two participants from the intervention group did not follow the
collection protocol and their samples were excluded from downstream analysis. Moreover,
use of antibiotics was considered as exclusion criterium, which resulted in exclusion of two
participants from the placebo group and one from the intervention group.

2.2. Fecal Microbiota Profiling

The V5-V6 region of the 16S rRNA gene was sequenced to profile fecal microbiota
composition using Illumina Hiseq2500 technology, following the same procedures as de-
scribed previously [25]. Briefly, DNA was isolated from the fecal samples using repeated
Beat-Beating and purified using the Maxwell® 16 Instrument (Promega, Leiden, The Nether-
lands). The V5–V6 region (F784-R1064) of the 16S rRNA gene was amplified in duplicate
PCR reactions, as described previously [25]. Subsequently, the duplicate PCR amplicons
were pooled for each sample, purified with the CleanPCR kit (CleanNA, The Netherlands),
and quantified using the Qubit dsDNA BR Assay kit (Invitrogen, Thermo Fisher Scientific,
Eugene, OR, USA). In total, we obtained 16S rRNA gene amplicons sequences for 100 fecal
samples (four samples for the 25 subjects included in the study), one PCR negative control
which included water as DNA template and two artificial mock communities. Negative
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controls were included to identify potential contaminants in our dataset which may have
been introduced during the laboratory preparation, and none of the identified taxa were
present in our biological samples. The mock communities were artificially assembled
communities of known 16S rRNA genes, which were included as a positive control for
sequencing procedures.

2.3. Microbiota Data Processing and Analysis

Data filtering and taxonomy assignment were performed using the NG-Tax pipeline [26]
with default parameters. The sequence read counts were normalized to microbial relative
abundance and were used for α- and β-diversity analyses which were performed using
the publicly available Microbiome R package [27]. ADONIS permutational multivariate
analyses of variance (PERMANOVA) using the weighted UniFrac distances were calculated
using the Vegan package [28] and were used to determine the amount of variation explained
by the grouping variables, within each timepoint. Intervention effects between the two
groups were analysed with the Mann-Whitney test comparing the changes in relative
abundance (delta) between the consecutive timepoints. Paired Wilcox test was calculated
with the function wilcox.exact from the exactRankTests package, and was used to compare
the bacterial composition of the subjects within each group between timepoints. For the
Wilcoxon analyses, 54 bacterial genera were tested after filtering using the function core
from the Microbiome package [27] selecting the taxa that were present in at least 50% of the
samples with relative abundances higher than 0.001%.

Wilcoxon test was applied to determine whether alpha diversity indexes (phylogenetic
diversity and Shannon indexes) were significantly different between groups using a linear
mixed model from the lme package [29].

2.4. Fecal Short Chain Fatty Acid Analysis

Fecal SCFAs were measured as described previously [30]. Standard solutions of acetic
acid, lactic acid, propionic acid, butyric acid, and iso-butyric acid were used for the creation
of the standard curves. Two hundred and fifty microliters of internal standard solution
(0.45 mg/mL 2-ethylbutyric acid in 0.3 M HCl and 0.9 M oxalic acid) was added to 500 µL
of the standard solutions and centrifuged samples. After mixing and centrifugation, 150 µL
supernatant was used for analysis of SCFAs with a Thermo Scientific Spectrasystem high-
performance liquid chromatography (HPLC) system equipped with a Varina Metacarb 67H
300 × 6.5 mm column kept at 45 ◦C and 0.005 mM sulfuric acid as eluent.

2.5. Measurement of Fecal Calprotectin, α1-Antitrypsin, and Zonulin

Fecal water was prepared as described above, and the proinflammatory markers
calprotectin and α1-antitrypsin, as well as the intestinal barrier marker zonulin, were
measured by ELISA. The ELISAs were performed as indicated by the suppliers. Human
calprotectin (Human S100A8/S100A9) and human α1-antitrypsin (SERPIN A1) ELISA
(DY-8226-05 and DY-1268 respectively) were purchased from R&D systems, and the human
zonulin ELISA from Alere YY5600.

Fecal markers and SCFAs measured during the study were analysed using linear
mixed effect models as implemented in the lme package [29], where subject identity was
used as random intercept to account for the longitudinal nature of our data.

3. Results

In the present study, we analysed fecal samples from 25 elderly women that completed
the study and did not use any antibiotics during it. Of these subjects, 12 were included in
the intervention group, and 13 in the placebo group. The baseline characteristics of the two
groups can be found in Table 1.
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4. Gut Microbiota Composition between the Groups

We first compared overall microbiota composition including samples from both groups
and all timepoints. Principle coordinate analysis (PCoA) based on the pairwise Bray-
Curtis dissimilarity index and weighted UniFrac distance matrix did not show significant
differences in the microbiota composition between the placebo and the intervention group
(Supplementary Figure S1) and subject identity was the variable explaining the biggest
part of the variation (ADONIS; R2:0.654 p = 0.001). PERMANOVA analysis within each
timepoint did not reveal any significant difference between the placebo and the intervention
group (Figure 1), and neither did any of the environmental variables tested contribute
significantly to explaining the observed variance (Table 2). No significant differences
were detected between placebo and intervention group or within each group over time
for alpha diversity, as determined by Faith’s phylogenetic diversity and Shannon index
(Supplementary Figure S2).
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Figure 1. Principal coordinates analysis within each timepoint, based on weighted UniFrac distances.
(A) At baseline between the intervention (BL Interv) and placebo (BL Placebo) group. (B) After
3 weeks, when the intervention group was receiving bovine lactoferrin (bLF). (C) After 6 weeks, when
the intervention group was receiving bovine lactoferrin and galactoligosacharides (bLF GOS). (D) Af-
ter 9 weeks, when the intervention group was receiving bovine lactoferrin, galactoligosacharides and
vitamin D (bLF GOS VitD). No differences were observed between the two groups as determined by
ADONIS analysis of variance with significance set at p < 0.05. Shapes represent the treatment each
subject received at the respective timepoint. Percentages at the axes indicate the fraction of observed
variation explained.
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Table 2. PERMANOVA results at the different timepoints.

T1 T2 T3 T4

Age R2 = 0.035 R2 = 0.028 R2 = 0.018 R2 = 0.017
p-value = 0.47 p-value = 0.67 p-value = 0.86 p-value = 0.87

BMI
R2 = 0.033 R2 = 0.036 R2 = 0.024 R2 = 0.011

p-value = 0.51 p-value = 0.47 p-value = 0.71 p-value = 0.97

Medication
R2 = 0.032 R2 = 0.046 R2 = 0.061 R2 = 0.064

p-value = 0.58 p-value = 0.31 p-value = 0.93 p-value = 0.17

Osteoarthritis
R2 = 0.074 R2 = 0.086 R2 = 0.064 R2 = 0.059

p-value = 0.09 p-value = 0.07 p-value = 0.67 p-value = 0.2

Use of vitamin D
before the study

R2 = 0.017 R2 = 0.024 R2 = 0.025 R2 = 0.063
p-value = 0.91 p-value = 0.75 p-value = 0.69 p-value = 0.17

We next compared the changes in relative abundance for consecutive timepoints for
each bacterial group at genus level, between the two treatment groups. During weeks
1–3 when only bLF was supplemented, the changes in the relative abundances of the bac-
terium Holdemanella were significantly higher in the intervention group (p = 0.01) compared
to the placebo group (Figure 2A). The increase in the relative abundance of the genus
Holdemanella was observed only after the first three weeks of intervention, after which it did
not change anymore until the end of the study (Figure 2B). During weeks 4–6, when GOS
was added along with the bLF supplementation, the change in the relative abundances
of the genus Bifidobacterium increased significantly (p = 0.03) compared to the placebo
group (Figure 2C). For the last phase of the study, weeks 7–9 when Vitamin D was also
added along with bLF and GOS, no differences were reported in the changes of the relative
abundances of the bacterial genus-level taxa for the two groups. Despite the fact that no
further increase was recorded for bifidobacteria during the last three weeks of the study,
their abundances remained significantly higher compared to the T2 (week 6), when only
bLF was supplemented (Figure 2D).

Overall these results suggest that, during the nine weeks of the study, no significant
differences were observed at the community level and only specific bacterial taxa were
affected upon bLF supplementation and GOS addition.
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Figure 2. Bacterial taxa that are differentially abundant between the two groups. (A) Differences
in relative abundances between two consecutive timepoints for the genus Holdemanella. (B) The
relative abundances of the genus Holdemanella through time within the two groups. (C) Differences
in relative abundances between two consecutive timepoints for the genus Bifidobacterium. (D) The
relative abundances of the genus Bifidobacterium through time within the two groups. The boundaries
of the box on the bottom indicate the 25th percentile, and the line within the box represents the
median, and the boundary of the box on the top the 75th percentile. For panels (A,C), the differences
between groups were calculated using Mann-Whitney test. For panels (B,D), the differences through
time were calculated using the paired Wilcoxon Rank test, and data from individual participants
are connected by dotted lines. Stars above bars represent statistical differences compared to the
time-matched control samples (* p < 0.05).

4.1. Fecal Short Chain Fatty Acids

To characterise the metabolic activity of the fecal microbiota, the concentration of
the SCFAs acetate, propionate, butyrate, iso-butyrate and succinate was determined in
fecal water of all samples. Results showed that acetate, propionate and butyrate were the
main SCFAs detected in the fecal samples but they did not differ significantly between the
placebo and the intervention group at any of the timepoints or within the groups between
the different treatment phases (Figure 3).
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4.2. Intestinal Inflammatory Markers

To determine if the nutritional intervention had an effect on inflammatory status and
barrier function in the subjects, levels of the pro-inflammatory markers calprotectin, and
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α-1-antitrypsin, and the intestinal barrier marker zonulin were measured in fecal water. No
differences in any of these markers were apparent between the two groups at any timepoint.
When looking for differences in time within groups, a significant increase over time was
detected in zonulin levels (p < 0.05) for the placebo group, while no effect was observed for
the intervention group (Figure 4).
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between groups and within groups were calculated using Linear mixed effects models.

5. Discussion

In the present study, we investigated the effect of bLF, administered alone (first
three weeks) or combined with GOS (week 4–9) and vitamin D (week 7–9) on gut microbiota
composition, metabolites and intestinal inflammatory status of healthy elderly women,
selected from a general population. Results showed that minor effects were observed
on overall gut microbiota composition of the intervention group, compared with the
placebo. No difference was observed in the levels of any of the fecal SCFAs between the
two groups, suggesting that metabolic activity of the gut microbiota was not affected by
the supplements. Overall these results suggest that bLF administration, when combined
with GOS and vitamin D, is safe for elderly women and does not significantly modify the
gut microbiota.

For a period of nine weeks, bLF was supplemented at a dose of 1 g/day, but only
during the first three weeks of the study, when only bLF was supplemented, was the
relative abundance of the bacterial genus Holdemanella increased. This finding suggests
that bLF can promote an abundance of Holdemanella but the effect is diminished after
the addition of GOS. The bacterium Holdemanella bioformis is the only described species
from the genus Holdemanella, and it has been isolated previously from human feces [31].
H. bioformis can produce SCFAs, mainly butyrate, but also long chain fatty acids, such as
the anti-inflammatory 3-hydroxyoctadecaenoic acid (C18-3OH) [32]. Beneficial effects of
this bacterium have been reported in mice studies, where administration of H. bioformis
isolated from the feces of a metabolically healthy human to obese mice, was able to improve
glucose tolerance through the restoration of GLP-1 function and production of C18 fatty
acid in the cecum, suggesting that H. biformis could be potentially used for management
of type-2 diabetes [33]. Nevertheless, since only one bacterium was affected by the bLF
supplementation, we can conclude that bLF has a minor effect on the fecal microbiota
composition of the elderly. To the best of our knowledge, to date there is only one study
available testing for the effect of bLF in adults and elderly and, similarly to our results, no
significant changes were reported post-supplementation of 200 mg bLF/day in healthy
adults for four weeks [24]. After the two-week washout period, bLF was supplemented
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again to the same cohort at a dose of 600 mg bLF/day and the authors report minor
differences. The minor effects of bLF on the gut microbiota might be explained by the
fact that bLF is mainly digested in the small intestine, and only fractions of the bLF reach
the colon [34]. Hence, future studies could consider focusing on the effect of bLF on the
small intestinal microbiota to better understand how bLF affects the microbiome in the
elderly population.

At the end of week 6, after GOS was supplemented combined with bLF to the inter-
vention group for three weeks, the relative abundances of bifidobacteria were increased
in the intervention group, in comparison to the placebo group. GOS are well known for
their prebiotic effect and are among the main components of infant formula aiming to
stimulate growth of intestinal bifidobacteria and to compensate for the absence of human
milk oligosaccharides. In both adults [35] and the elderly [36], GOS has been shown to
possess a bifidogenic effect, and increases in bifidobacterial abundances have been reported
in comparison with placebo group. In line with these findings, in the present study we
also observed an increase in bifidobacterial relative abundance after GOS supplementation,
and the increase was significantly higher compared to the placebo group. Previous studies,
suggested that a GOS dosage of 5 g/day had a bifidogenic effect in healthy adults after
three weeks of supplementation, but a dosage of 2.5 g/day did not [37]. In the current
study, elderly subjects were supplemented with 3.67 g/day containing 2.64 g/day of pure
(active) GOS and we observed the bifidogenic effect. This dosage is the same as the pure
GOS contained in 5 g of GOS as described by Vulevic et al. [36], and thus the bifidogenic
effect observed in our cohort is in line with this earlier study. Nevertheless, our study is the
first to demonstrate that, upon concurrent supplementation of bLF with low levels of GOS,
GOS is still able to promote bifidobacteria in the gut of elderly women.

We also examined the subjects’ feces for markers related to gut health and no signifi-
cant changes were found for calprotectin as marker of gut inflammation [38] and zonulin
as marker of gut integrity [39]. The baseline levels for these parameters were all within
the normal range, indicating that the subjects did not have gut health issues [39,40]. Inter-
estingly, for the placebo group there was an increasing trend in the levels of fecal zonulin,
which reached significance in comparison with baseline levels after timepoint 2. During
the first three weeks the subjects received maltodextrin at a total dose of 5 g/day, but
after timepoint 3 subjects received an increased dosage of 9 g/day to match the amount of
ingested compounds in the treatment group and GOS supplementation. Hence it is possible
that the amount of maltodextrin affected zonulin levels in this study, which to the best of
our knowledge has not been recorded previously in the literature. Maltodextrin is generally
considered as safe, but some recent evidence supports a potential pro-inflammatory effect
for a specific maltodextrin in the murine gut [41], although there is no evidence to the best
of our knowledge for such activity in humans.

Limitations of our study include the small sample size, and further clinical trials with
bigger cohorts will be necessary to verify our findings. Moreover, due to the variation
in diet in the general population, inclusion of a food frequency questionnaire is highly
recommended, to account for habitual diet. For example, information on fiber consumption
is an important parameter for gut microbiota composition. Finally, since bLF is mainly
digested in the small intestine the effects on the small intestinal microbiota should be
considered in future studies.

We previously reported that the supplementation of bLF in this intervention study
enhanced innate immune responses of plasmacytoid dendritic cells to TLR7 stimulation in
elderly women, suggesting enhanced anti-viral immune function [7]. Overall, the results
from this study show that supplementation of bLF increased the relative abundance of the
genus Holdemanella in the fecal microbiota of healthy elderly women, and further addition
of GOS enhanced the relative abundance of bifidobacteria. Moreover, bLF supplementation
did not have an adverse effect on intestinal health based on the gut markers measured and
did not affect prebiotic activity of GOS.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14122468/s1, Figure S1. Principal coordinates analysis using
weighted UniFrac distances from all the samples included in our study. No differences were observed
between the two groups at any of the timepoints tested, as determined by ADONIS analysis of
variance with significance set at p < 0.05. Colours represent the groups each sample belongs to
and symbols the corresponding treatment. Percentages at the axes indicate the fraction of observed
variation explained. Figure S2. Alpha diversity as determined by the (A) phylogenetic diversity,
(B) Shannon Index and (C) Observed OTU’s. No significant differences were detected between the
two groups. The boundaries of the box on the bottom indicate the 25th percentile, the line within the
box represents the median, and the boundary of the box on the top the 75th percentile. No significant
differences between or within the groups were detected using Linear mixed effects models.
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