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Abstract Because multivariate autoregressive models have failed to adequately account for the

complexity of neural signals, researchers have predominantly relied on non-parametric methods

when studying the relations between brain and behavior. Using medial temporal lobe (MTL)

recordings from 96 neurosurgical patients, we show that time series models with volatility

described by a multivariate stochastic latent-variable process and lagged interactions between

signals in different brain regions provide new insights into the dynamics of brain function. The

implied volatility inferred from our process positively correlates with high-frequency spectral

activity, a signal that correlates with neuronal activity. We show that volatility features derived from

our model can reliably decode memory states, and that this classifier performs as well as those

using spectral features. Using the directional connections between brain regions during complex

cognitive process provided by the model, we uncovered perirhinal-hippocampal desynchronization

in the MTL regions that is associated with successful memory encoding.

DOI: https://doi.org/10.7554/eLife.42950.001

Introduction
Recent advances in neuroscience have enabled researchers to measure brain function with both high

spatial and temporal resolution, leading to significant advances in our ability to relate complex

behaviors to underlying neural signals. Because neural activity gives rise to electrical potentials,

much of our knowledge concerning the neural correlates of cognition derive from the analyses of

multi-electrode recordings, which yield a multivariate time series of voltage recorded at varying

brain locations (denoted here as yt). Such signals may be measured non-invasively, using scalp elec-

troencephalography (EEG), or invasively, using subdural grids or intraparenchymal depth electrodes

in human neurosurgical patients. In recent years, intracranially recorded (iEEG) signals have yielded

detailed information on correlations between time-series measures and a wide range of behaviors

including perception, attention, learning, memory, language, problem solving and decision making

(Jacobs and Kahana, 2010).

Whereas other fields that grapple with complex multivariate time series have made effective use

of parametric models such as economics and engineering (Kim et al., 1998; Blanchard and Simon,

2001; West, 1996), neuroscientists largely ceded early parametric approaches (e.g. linear autore-

gressive models) in favor of non-parametric spectral decomposition methods, as a means of uncover-

ing features of neural activity that may correlate with behavior. A strength of these non-parametric

methods is that they have enabled researchers to link fluctuations in iEEG signals to low-frequency

neural oscillations observed during certain behavioral or cognitive states, such as slow-wave sleep

(Landolt et al., 1996; Chauvette et al., 2011; Nir et al., 2011), eye closure (Klimesch, 1999;

Goldman et al., 2002; Laufs et al., 2003; Barry et al., 2007) or spatial exploration (Kahana et al.,

2001; Raghavachari et al., 2001; Caplan et al., 2003; Ekstrom et al., 2005; Byrne et al., 2007).

High-frequency neural activity, which has also been linked to a variety of cognitive and behavioral

states (Maloney et al., 1997; Herrmann et al., 2004; Canolty et al., 2006), is less clearly oscillatory,

and may reflect asynchronous stochastic volatility of the underlying EEG signal (Burke et al., 2015).
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Although spectral analysis methods have been used extensively in the neuroscience literature,

they assume that there is unique information in each of a discrete set of frequency bands. The num-

ber of bands and frequency ranges used in these methods have been the subject of considerable

controversy. Indeed Manning et al. (2009) have shown that broadband power often correlates

more strongly with neuronal activity than does power at any narrow band. Also, non-parametric

methods implicitly assume that the measured activity is observed independently during each obser-

vational epoch, and at each frequency, an assumption which is easily rejected in the data, which

show strong temporal autocorrelation as well as correlations among frequency bands (von Stein and

Sarnthein, 2000; Jensen and Colgin, 2007; Axmacher et al., 2010). Moreover, non-parametric

methods are typically applied to EEG signals in a univariate fashion that neglects the spatial correla-

tional structure. By simultaneously modeling the spatial and temporal structure in the data, paramet-

ric models confer greater statistical power so long as they are not poorly specified.

Parametric methods have been applied to various types of multivariate neural data including EEG

(Hesse et al., 2003; Dhamala et al., 2008; Bastos et al., 2015), magnetoencephalography (MEG)

(David et al., 2006), functional magnetic resonance imaging (FMRI) (Roebroeck et al., 2005;

Goebel et al., 2003; David et al., 2008; Luo et al., 2013), and local field potentials (LFP)

(Brovelli et al., 2004). These methods typically involve fitting vector autoregressive (VAR) models to

multivariate neural data that are assumed to be stationary in a specific time interval of interest. The

regression coefficient matrix derived from the VAR models can be used to study the flow of informa-

tion between neuronal regions in the context of Granger causality (G-causality). Neuroscientists have

used Gaussian VAR models to study the effective connectivity (directed influence) between activated

brain areas during cognitive and visuomotor tasks (Zhou et al., 2009; Deshpande et al., 2009;

Graham et al., 2009; Roebroeck et al., 2005). Although VAR models and G-causality methods have

been argued to provide useful insights into the functional organization of the brain, their validity

relies upon the assumptions of linearity and stationarity in mean and variance of the neural data.

When one of these assumptions is violated, the conclusions drawn from a G-causality analysis will be

inconsistent and misleading (Seth et al., 2015). One of the most common violations by EEG signals

is the assumption of variance-stationarity (Wong et al., 2006). Therefore, in the present work, we

adopt a stochastic volatility approach in which the non-stationary variance (also known as volatility)

of the neural time series is assumed to follow a stochastic process. Such models have been

extremely useful in the analyses of financial market data which, like neural data, exhibits high kurtosis

(Heston, 1993; Bates, 1996; Barndorff-Nielsen and Shephard, 2002).

We propose a multivariate stochastic volatility (MSV) model with the aim of estimating the time-

varying volatility of multivariate neural data and its spatial correlational structure. The MSV model

assumes that the volatility series of iEEG signals follows a latent-variable vector-autoregressive pro-

cess, and it allows for the lagged signals of different brain regions to influence each other by specify-

ing a full persistent matrix (typically assumed to be diagonal) in the VAR process for volatility.

We employed a Bayesian approach to estimate the latent volatility series and the parameters of

the MSV model using the forward filtering backward sampling and Metropolis Hastings algorithms.

We validated the MSV model in a unique dataset comprising depth-electrode recordings from 96

neurosurgical patients. These patients volunteered to participate in a verbal recall memory task while

they were undergoing clinical monitoring to localize the epileptogenic foci responsible for seizure

onset. Our analyses focused on the subset of electrodes (n ¼ 718) implanted in medial temporal lobe

(MTL) regions, including hippocampus, parahippocampal cortex, entorhinal cortex and perirhinal

cortex. We chose to focus on these regions given their prominent role in the encoding and retrieval

of episodic memories (Davachi et al., 2003; Kirwan and Stark, 2004; Kreiman et al., 2000;

Sederberg et al., 2007).

We show that the MSV model, which allows for interactions between regions, provides a substan-

tially superior fit to MTL recordings than univariate stochastic volatility (SV) models. The implied vola-

tility in these models positively correlates with non-parametric estimates of spectral power,

especially in the gamma frequency band.

We demonstrate the utility of our method for decoding cognitive states by using a penalized

logistic regression classifier trained on the implied volatility data across MTL electrodes to predict

which studied items will be subsequently recalled. We find that the MSV-derived features outper-

form spectral features in decoding cognitive states, supporting the value of this model-based time-

series analysis approach to the study of human cognition. Furthermore, using the MSV model to
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construct a directional MTL connectivity network, we find that significant bidirectional desynchroni-

zation between the perirhinal cortex and the hippocampus predicts successful memory encoding.

Multivariate Stochastic Volatility models for iEEG
Volatility of iEEG is stochastic
Previous studies have shown that variance of EEG recordings is time-varying (Wong et al., 2006;

Galka et al., 2010). Klonowski et al. (2004) demonstrated a striking similarity between the times-

eries of the Dow Jones index during economic recessions (big crashes) and the timeseries of iEEG

during epileptic seizures. These timeseries typically possess ’big spikes’ that are associated with

abrupt changes in the variance of the measured signal. There are two main approaches for modeling

the time-varying variance commonly known as volatility in the econometrics literature, both of which

assume that volatility is a latent autoregressive process, that is the current volatility depends on its

previous values. The first approach is the class of autoregressive conditional heteroscedastic (ARCH)

models developed by Engle (1982) and the generalized autoregressive conditional heteroscedastic

(GARCH) models extended by Bollerslev (1986). The ARCH/GARCH models assume that the cur-

rent volatility is a deterministic function of the previous volatilities and the information up to the cur-

rent time. The second approach is the class of stochastic volatility models proposed by

Heston (1993), which assume that volatility is non-deterministic and follows a random process with

a Gaussian error term. GARCH-type models have been popular in the empirical research community

since the 1980’s due to their computational attractiveness. Inference of GARCH models is usually

performed using maximum likelihood estimation methods (Engle and Bollerslev, 1986; Nel-

son, 1991). Until the mid 1990s, stochastic volatility models had not been widely used due to the

difficulty in estimating the likelihood function, which involves integrating over a random latent pro-

cess. With advances in computer technology, econometricians started to apply simulation-based

techniques to estimate SV models (Kim et al., 1998; Chib et al., 2002; Jacquier et al., 1994).

Despite their computational advantages, the GARCH model assumes a deterministic relationship

between the current volatility and its previous information, making it slow to react to instantaneous

changes in the system. In addition, Wang (2002) showed an asymptotic nonequivalance between

the GARCH model and its diffusion limit if volatility is stochastic. Therefore, we employ a more gen-

eral stochastic volatility approach to analyze iEEG signals.

To motivate the discussion of the MSV model, we first examine the distributional property of vola-

tility. Previous econometrics literature has shown that volatilities of various financial timeseries can

be well approximated by log-normal distributions such as the Standard and Poor 500 index

(Cizeau et al., 1997), stock returns (Andersen, 2001a), and daily foreign exchange rates

(Andersen et al., 2001b). The volatilities of these financial measures are found to be highly right-

skewed and their logarithmic volatilities are approximately normal. Volatility of iEEG also exhibits

this log-normality property. To demonstrate this property, we calculate and plot the density of the

empirical variance of a sample iEEG timeseries using a rolling variance of window size 20 (Hull, 2009,

chapter 17). Figure 1 demonstrates the distribution of the empirical volatility timeseries of the

detrended (after removing autoregressive components) raw iEEG signals. The distribution is right-

skewed and can be well approximated by a log-normal distribution. Due to this log-normality prop-

erty, the SV approach typically models the logarithm of volatility instead of volatility itself. The next

section describes the multivariate stochastic volatility model for iEEG data, which is a generalized

version of the SV model that accounts for the interactions between recording brain locations.

The model
Stochastic volatility models belong to a wide class of non-linear state-space models that have been

extensively used in financial economics. There has been overwhelming evidence of non-stationarity

in the variance of financial data (Black et al., 1972) and much effort has been made to model and

understand the changes in volatility in order to forecast future returns, price derivatives, and study

recessions, inflations and monetary policies (Engle and Patton, 2001; Cogley and Sargent, 2005;

Blanchard and Simon, 2001). There is by now a large literature on stochastic volatility models and

methods for estimating these models either by closed-form solutions (Heston, 1993; Heston and

Nandi, 2000) or by simulation (Harvey and Shephard, 1996; Kim et al., 1998; Omori et al., 2007).

Under the stochastic volatility framework, the variance (or its monotonic transformation) of a time
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series is assumed to be a latent process, which is typically assumed to be autoregressive. Latent pro-

cess models have also been widely applied to the neuroscience domain to model neuronal spiking

activity using point processes (Macke et al., 2011; Smith and Brown, 2003; Eden et al., 2004), to

study motor cortical activity using a state-space model (Wu et al., 2006), etc. These models have

provided many insights into the mechanisms underlying cognitive processes. GARCH-type models

have also been applied to EEG signals to study the transition into anesthesia in human, sleep stage

transitions in sheep, and seizures in epileptic patients (Galka et al., 2010; Mohamadi et al., 2017).

However, the applications of the GARCH models in the neuroscience literature remain on a small-

scale, which focus on individual recording locations and neglect the connectivity among different

regions of the brain. In this study, we provide a systematic way to study volatility of iEEG signals

using a large iEEG dataset from the MTL region during a verbal memory task as a medium to illus-

trate how volatility and its connectivity network among MTL subregions can provide insights into the

understanding of cognitive processes.

Following Harvey et al. (1994), we model the multivariate latent volatility process of the iEEG

signals in the MTL region to follow a vector autoregressive model. The original model assumes that

the coefficient matrix is diagonal, that is the past activity of one region does not have any influence

Figure 1. Empirical characteristics of iEEG. (A) Sample raw iEEG time series during a resting state (count down non-task) period for subject R1240T. (B)

Detrended iEEG timeseries after removing autoregressive components. (C) Empirical variance timeseries calculated using a rolling-window of size 20.

(D) Distribution of empirical variance with the blue curve showing the estimated empirical density using kernel density estimation and the red curve

showing the best-fitting log-normal density to the data.

DOI: https://doi.org/10.7554/eLife.42950.002
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on the others. In many financial applications, it is convenient to make this diagonality assumption to

reduce the number of parameters of the MSV model, otherwise, a very large amount of data would

be required to reliably estimate these parameters. We generalize the MSV model to allow for a full

coefficient matrix in order to study the directional connections between different subregions in the

MTL. This generalization is feasible due to high-temporal-resolution neural time series collected

using the intracranial electroencephalography. Let yt ¼ ðy1;t; � � � ; yJ;tÞ be a multivariate iEEG time-

series recordings at J electrodes at time t. We model yj;t, 1 � j � J, as follows:

yj;t ¼ expð
xj;t

2
Þ�yj;t; (1)

and

xj;t ��j ¼
XJ

k¼1

bj;kðxk;t�1 ��kÞþ �xj;t; (2)

where the error terms follow multivariate normal distributions: �yt ¼ ð�y
1;t; � � � ; �

y
J;tÞ~MVNð0; IJÞ,

�xt ¼ ð�x
1;t; � � � ; �

x
J;tÞ~MVNð0;SÞ denotes the identity matrix of rank J, and S¼ diagðs2

1
; � � � ;s2

JÞ is

assumed to be diagonal. That is, fyj;tg is a time series whose conditional log-variance (log-volatility),

fxj;tg, follows an AR(1) process that depends on its past value and the past values of other electro-

des. The series {y1;tg
T
t¼1

; � � � ;fyJ;tg
T
t¼1

are assumed to be conditionally independent given their log-vol-

atility series fx1;tg
T
t¼1

; � � � ;fxJ;tg
T
t¼1

. The coefficient bj;k models how the past value of channel k affects

the current value of channel j and �k is the unconditional average volatility at channel k. We can

rewrite Equation 2 in a matrix form

xt ��¼ bðxt�1 ��Þþ �xt ; (3)

where xt ¼ ðx1;t; � � � ;xJ;tÞ;�¼ ð�1; � � � ;�JÞ, and bðj;kÞ ¼ bj;k. The vector error terms �yt and �xt are assumed

to be independent. The parameters in the system above are assumed to be unknown and need to

be estimated.

Following a Bayesian perspective, we assume that the parameters are not completely unknown,

but they follow some prior distributions. Then, using the prior distributions and the information pro-

vided by the data, we can make inferences about the parameters from their posterior distributions.

Priors and estimation method
We specify prior distributions for the set of parameters � ¼ ð�;b;SÞ of the MSV model. The mean

vector � follows a flat multivariate normal distribution � ~MVNð0; 1000IJÞ. Each entry of the persis-

tence matrix bi;j 2 ð�1; 1Þ is assumed to follow a beta distribution,

ðbi;j þ 1Þ=2~Betað20; 1:5Þ (Kim et al., 1998). The beta prior distribution ensures that the entries of

the persistent matrix are between �1 and 1, which guarantees the stationarity of the volatility pro-

cess. For volatility of volatility, we utilize a flat gamma prior, sj ~Gð1=2; 1=2� 10Þ (Kastner and Früh-

wirth-Schnatter, 2014), which is equivalent to �
ffiffiffiffiffi

s2
j

q

~Nð0; 10Þ. We estimated the latent volatility

processes and the parameters of the MSV model using a Metropolis-within-Gibbs sampler

(Kim et al., 1998; Omori et al., 2007; Kastner and Frühwirth-Schnatter, 2014) (see Appendix 1

for derivation and 2 for discussion of parameter identification). Here, we choose hyperparameters

which provide relatively flat prior distributions. In addition, due to a large amount of data ( »1 million

time points per model for each subject) that was used to estimate the MSV model, the choice of the

hyperparameters has little effect on the posterior estimates of the parameters in the MSV model.

Applications to verbal-free recall task
We analyzed the behavioral and electrophysiological data of 96 subjects implanted with MTL sub-

dural and depth electrodes during a verbal free recall memory task (see Materials and methods sec-

tion for details), a powerful paradigm for studying episodic memory. Subjects learned 25 lists of 12

unrelated words presented on a screen (encoding period) separated by 800–1200 ms interstimulus

intervals (ISI), with each list followed by a short arithmetic distractor task to reduce recency effects

(subjects more likely to recall words at the end of the list). During the retrieval period, subjects
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recalled as many words from the previously studied list as possible, in any order (Figure 2). In this

paper, we focused our analyses on the MTL regions that have been implicated in episodic memory

encoding (Squire and Zola-Morgan, 1991; Solomon et al., 2019; Long and Kahana, 2015). To

assess a particular effect across subjects, we utilized the maximum a posteriori (MAP) estimate by

taking the posterior mean of the variable of interest (whether it be the volatility time series xt or the

regression coefficient matrix b) (Stephan et al., 2010).

Figure 2. Task design and analysis. (A) Subjects performed a verbal free-recall task which consists of three phases: (1) word encoding, (2) math

distraction, and (3) retrieval. (B) 96 Participants were implanted with depth electrodes in the medial temporal lobe (MTL) with localized subregions: CA1,

CA3, dentate gyrus (DG), subiculum (Sub), perirhinal cortex (PRC), entorhinal cortex (EC), or parahippocampal cortex (PHC). (C) To construct a

directional connectivity network, we applied the MSV model to brain signals recorded from electrodes in the MTL during encoding. We analyzed the

1.6 s epochs during which words were presented on the screen. The network reflects directional lag-one correlations among the implied volatility

timeseries recorded at various MTL subregions. (D) The upper row shows a sample of an individual patient’s raw voltage timeseries (blue) recorded

from two electrodes during a word encoding period of 1.6 s, and the lower row shows their corresponding implied volatility timseries (gray) estimated

using the MSV model.

DOI: https://doi.org/10.7554/eLife.42950.003
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Model comparison
To establish the validity of the MSV model, we compared its performance to that of univariate sto-

chastic volatility models (equivalent to setting all the off-diagonal entries of the matrix b in Equa-

tion 2 to 0) in fitting iEEG data. We applied the MSV model to the multivariate neural data

combined across encoding periods (regardless of whether the word items were later recalled) and

SV models to datasets of individual electrodes with the assumption that the parameters of these

models were shared across encoding events. We utilized the deviance information criterion (DIC)

(Spiegelhalter et al., 2002; Gelman et al., 2014) considered to be a Bayesian analogue of the

Akaike information criterion (AIC) to evaluate the performance of the models. The DIC consists of

two components: the negative log-likelihood, �D ¼ E�;x j y½�2 logPðy j �;xÞ�, which measures the

goodness-of-fit of the model and the effective number of parameters,

pD ¼ �D� Dð��; �xÞ ¼ E�;x j y½�2 logPðy j �;xÞ� þ 2 logPðy j ��; �xÞ, which measures the complexity of the

model (see Appendix 5 for details on how to compute DIC for the MSV model). Where �� and �x

denote the posterior means of the latent volatility series and the parameters of the MSV model. The

DIC balances the trade-off between model fit and model complexity. Models with smaller DICs are

preferred. To account for the varying amount of data each subject had, we averaged the DIC by the

number of events and electrodes. We found the MSV model to have a consistently lower DIC value

than the SV model with a mean difference of 23 (±5.9 SEM). This indicates that the MSV model is

approximately more than 150 times as probable as the SV models (Kass and Raftery, 1995), sug-

gesting that the MSV model is a more appropriate model for iEEG data.

Relation to spectral power
We next analyzed the relation between volatility and spectral power (see Materials and methods)

over a wide range of frequencies, from 3 to 180 Hz with 1 Hz steps). For each subject, we computed

the correlation between volatility and spectral power for each encoding event and then averaged

these correlations across all events. Since spectral powers of neighboring frequencies exhibit high

correlations, we utilized a Gaussian regression model (Rasmussen, 2004) to estimate the correlation

between volatility and spectral power as a function of frequency, which allows for a non-linear rela-

tion. Figure 3 indicates that the correlation between volatility and spectral power is significantly pos-

itive across the spectrum and increasing in frequency. This illustrates the broadband nature of the

volatility measure, but also suggests that volatility may more closely relate to previous neuroscientific

findings observed for high-frequency as compared with low-frequency activity. Having established

that the MSV model outperforms the more traditional SV approach, and having shown that the

implied volatility of the series reliably correlates with high-frequency neural activity, we next asked

whether we can use the model-derived time series of volatility to predict subjects’ behavior in a

memory task.

Classification of subsequent memory recall
Extensive previous work on the electrophysiological correlates of memory encoding has shown that

spectral power, in both the low-frequency (4–8 Hz) theta band and at frequencies about 40 Hz (so-

called gamma activity), reliably predicts which studied words will be subsequently recalled or recog-

nized (Sederberg et al., 2003). Here, we ask whether the implied volatility derived from the MSV

model during word encoding can also reliably predict subsequent recall. To benchmark our MSV

findings, we conducted parallel analyses of wavelet-derived spectral power at frequencies ranging

between 3 and 180 Hz. To aggregate across MTL electrodes within each subject we applied an L2-

penalized logistic regression classifier using features extracted during the encoding period to predict

subsequent memory performance (Ezzyat et al., 2017; Ezzyat et al., 2018). To estimate the gener-

alization of the classifier, we utilized a nested cross-validation procedure in which we trained the

model on N � 1 sessions using the optimal penalty parameter selected via another inner cross-valida-

tion procedure on the same training data (see Appendix 6 for details). We then tested the classifier

on a hold-out session collected at a different time. We computed the receiver operating characteris-

tic (ROC) curve, relating true and false positives, as a function of the criterion used to assign regres-

sion output to response labels (see Appendix 6 for illustrations of ROC curves). We then use the

AUC metric (area under the ROC curve) to characterize model performance. In order to perform a

nested cross-validation procedure, we focused on 42 subjects (out of 96 subjects with at least two
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sessions) with at least three sessions of recording. We find that MSV-model implied volatility during

item encoding reliably predicts subsequent recall, yielding an average AUC of 0.53 (95% CI, from

0.51 to 0.55). AUCs reliably exceeded chance levels in 72 percent of subjects (30 out of 42 subjects

who contributed at least 3 sessions of data). Figure 4 compares these findings against results

obtained using wavelet-derived power. Here we see that implied volatility does as well as, or better

than, spectral measures at nearly all frequencies. In order to capture the correlation between spec-

tral powers (thus their corresponding classifiers’ performances), we fit a Gaussian regression model

to test the functional form of DAUC. We find that the DAUC function is significantly different from

the 0 function (�2

11
¼ 42, P < 10

�5Þ (Benavoli and Mangili, 2015), which indicates that on average

volatility performs significantly better than spectral power in predicting subsequent memory recall.

Figure 3. Correlation between volatility and spectral power over a frequency range from 3 to 180 Hz. We fit a Gaussian process model to estimate the

functional form of the correlation function between volatility and spectral power (solid blue line). The 95% confidence bands were constructed from 96

subjects (dashed gray lines). The red line shows the null model. We observe a significantly positive correlation between volatility and spectral power,

and the correlation increases with frequency.

DOI: https://doi.org/10.7554/eLife.42950.004
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Directional connectivity analysis
Having established that volatility is predictive of subsequent memory recall, we now seek to identify

directional connections between MTL subregions that are related to successful memory encoding. To

investigate the intra-MTL directional connectivity patterns that correlate with successful memory

encoding, we utilize a subsequent memory effect (SME) paradigm in which we compare the MTL direc-

tional connectivity patterns (regression coefficient matrix b) associated with recalled (R) word items to

those associated with non-recalled (NR) items. The SME paradigm has been widely used in the mem-

ory literature to study neural correlates (typically spectral power in a specific frequency band) that pre-

dict successful memory formation (Sederberg et al., 2003; Long et al., 2014; Burke et al., 2014). The

intra-MTL connectivity SME was constructed using the following procedure. First, we partitioned the

word items into recalled and non-recalled items offline. Using the MSV model, we constructed an

intra-MTL connectivity network for each memory outcome. We compared the distribution of the ele-

ments of these matrices across subjects. For the analysis, we considered four subregions of the MTL:

hippocampus (Hipp), entorhinal cortex (EC), perirhinal cortex (PRC), and parahippocampal cortex

(PHC). Each MTL subregion contains a different number of recording locations depending on the sub-

ject’s electrode coverage. We then computed the contrast between the two intra-MTL networks corre-

sponding to recalled and non-recalled items for each ordered pair of subregions excluding the ones

with fewer than 10 subjects contributing to the analysis. To compute the directional connectivity from

region I to region J, we took the average of the lag-one ’influences’ that electrodes in region I have on

electrodes in region J, where jIj denotes the number of electrodes in region I. We then computed the

contrast between the two connectivity networks associated with recalled and non-recalled items:

DI!J ¼ CR
I!J � CNR

I!J . Finally, we averaged the contrast for each ordered pair of MTL subregions across

sessions within a subject. From now on, we refer to this contrast as simply connectivity network.

Figure 5 illustrates the intra-MTL connectivity SME for the left and right hemispheres. Directed

connections between the left hippocampus and the left PRC reliably decrease (false-discovery-rate-

corrected) during successful memory encoding (DHipp!PRC ¼ �0:04; t47 ¼ �3:49, adj. P <0:01 and

DPRC!Hipp ¼ �0:06; t47 ¼ �2:66, adj. P <0:05Þ. The difference between the directional connections

! " "

Figure 4. Classification of subsequent memory recall. (A) Average AUC of the classifier trained on spectral power across 42 subjects with at least three

sessions of recording (blue). The red line indicates the average AUC of the classifier trained on volatility. (B) DAUC = AUCvol�AUCpower as a function of

frequency estimated by using a Gaussian regression model (dashed gray lines indicate 95% confidence bands). The red line shows the null model. We

observe that the classifier trained on volatility performs at least as well as the one trained on spectral power across the frequency spectrum. We find

that functional form of DAUC is significantly different from the function (�2

11
¼ 42, P < 10

�5) using a Gaussian process model, suggesting that the

difference in performance between the volatility classifier and the spectral power classifier is significant.

DOI: https://doi.org/10.7554/eLife.42950.005
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between these two regions is not significant (t47=0.53, p=0.60). The decreases in the bi-directional

connections within the left MTL are consistent with the findings in Solomon et al. (2017) which

noted memory-related decreases in phase synchronization at high frequencies. We did not, however,

find any other significant directional connections among the remaining regions (Figure 5, Appen-

dix 7—tables 1 and 2).

Discussion
The ability to record electrophysiological signals from large numbers of brain recording sites has cre-

ated a wealth of data on the neural basis of behavior and a pressing need for statistical methods suited

to the properties of multivariate, neural, time-series data. Because neural data strongly violate vari-

ance-stationarity assumptions underlying standard approaches, such as Granger causality (Stokes and

Purdon, 2017), researchers have generally eschewed these model-based approaches and embraced

non-parameter data analytic procedures. The multivariate stochastic volatility framework that we pro-

pose allows for non-stationary variance in the signals. This framework allows us to explicitly model the

time-varying variance of neural signals. Similar stochastic volatility models have been used extensively

in the financial economics literature to characterize a wide range of phenomena.

The MSV models proposed in this paper provide a new framework for studying multi-channel

neural data and relating them to cognition. Using a large MTL intracranical EEG dataset from 96

neurosurgical patients while performing a free-recall task, we found that volatility of iEEG timeseries

is correlated with spectral power across the frequency spectrum and the correlation increases with

frequency. To further test the ability of the MSV model to link iEEG recordings to behavior, we asked

!"#$%$&'&$%$("#$
("#$%$&'&$%$)"#
&'&$*$)"#
("#$%$&'&$%$)"#
&'&$*$)"#

Figure 5. MTL directional connectivity network. The MTL electrodes were divided into four subregions:

hippocampus (Hipp.), parahippocampal cortex (PHC), entorhinal cortex (EC), and perirhinal cortex (PRC). The

directional connectivity from region I to region J, CI!J ¼ 1

jIjjJj

P

i2I;j2J bij, was calculated by averaging the entries of

the sub-matrix of the regression coefficient matrix b, whose rows and columns correspond to region I and J

respectively. We computed the contrast between the directional connectivity of recalled and non-recalled events:

DI!J ¼ CR
I!J � CNR

I!J for each subject. Solid lines show significant (FDR-corrected) connections between two regions

and dashed lines show trending but insignificant connections. Red indicates positive changes and blue indicates

negative changes. The directional connectivity from Hipp. to PRC is significant (adj. P < 0.01) and the reverse

directional connectivity is also significant (adj. P < 0.05).

DOI: https://doi.org/10.7554/eLife.42950.006
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whether MTL volatility features during encoding can predict subsequent memory recall as well as

spectral power features. Our findings indicate that volatility features significantly outperform the

spectral features in decoding memory process in the human brain, suggesting that volatility can

serve as a reliable measure for understanding cognitive processes.

A key strength of the MSV approach is its ability to identify directed interactions between brain

regions without assuming variance-stationarity of neural signals. We therefore used this approach to

determine the directional connections between MTL subregions that correlate with successful mem-

ory encoding. Using the regression coefficient matrix of the multivariate volatility process, we found

that periods of decreased connectivity in the volatility network among MTL subregions predicted

successful learning. Specifically, we found that the hippocampus and the perirhinal cortex in the left

hemisphere desynchronize (exerting less influence on one another) during successful learning, which

is consistent with the late-phase gamma decoupling noted in Fell et al. (2001). A more recent study

by Solomon et al. (2019) also examined the association between intra-MTL connectivity and suc-

cessful memory formation using phase-based measures of connectivity. Solomon et al. (2019) noted

intra-MTL desynchronization at high frequencies during successful memory formation, aligning with

the finding here that the volatility network tended to desynchronize. Furthermore, Solomon, et al.

found broad increases in low-frequency connectivity, which did not appear to be captured by our

stochastic model. This suggests that volatility features reflect neural processes that are also captured

by high-frequency phase information.

We further noted more statistically reliable changes in volatility networks in the left MTL compared

to the right. This result is in line with a long history of neuroanatomical, electrophysiological, and imag-

ing studies (e.g. Ojemann and Dodrill, 1985; Kelley et al., 1998) that found an association between

verbal memory and the left MTL. It is possible that the verbal nature of our memory task specifically

engaged processing in the left MTL, resulting in a lateralization of observed volatility phenomena.

Prior studies implicate the perirhinal cortex in judgement of familiarity and in recency discrimination

system, while the hippocampus supports contextual binding (Eichenbaum et al., 2007; Diana et al.,

2007;Hasselmo, 2005). These two systems play important roles in memory associative retrieval as sug-

gested by animal studies (Brown and Aggleton, 2001), but it is still unclear how the hippocampus and

PRC interact duringmemory processing. Fell et al. (2006) suggested that rhinal-hippocampal coupling

in the gamma range is associated with successful memory formation. Our results show no evidence for

such a phenomenon, but rather agree with more recent studies demonstrating memory-related overall

high-frequency desynchronization in theMTL (Solomon et al., 2019; Burke et al., 2015).

This paper presents the first major application of stochastic volatility models to neural time-series

data. The use of a multivariate modeling approach allows us to account for interactions between dif-

ferent subregions in the MTL and thus provides a better fit to the neural data than a univariate

approach. Our MSV model fully captures how changes in neural data measured by volatility in one

region influences changes in another region, providing insights into the complex dynamics of neural

brain signals. We further demonstrated that volatility can be a promising biomarker due to its broad-

band nature by comparing its performance to one of spectral power in classifying subsequent mem-

ory. Finally, researchers can extend these models to broader classes of neural recordings, and

exploit their statistical power to substantially increase our understanding of how behavior emerges

from the complex interplay of neural activity across many brain regions.

Materials and methods

Key resources table

Reagent, type
(species) or
resource Designation

Source
or reference Identifiers

Additional
Information

Software
and algorithm

Avants et al., 2008 http://picsl.upenn.edu/
software/ants

advanced normalization
tool

Software
and algorithm

Yushkevich et al., 2015 https://www.nitrc.org/
projects/ashs

ashs

Continued on next page
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Continued

Reagent, type
(species) or
resource Designation

Source
or reference Identifiers

Additional
Information

Software
and algorithm

sklearnc Pedregosa et al., 2011 https://scikit-learn.
org/stable/

Software
and algorithm

This paper http://memory.psych.upenn.
edu/
Electrophysiological_Data

custom
processing
scripts

Software
and algorithm

PTSA This paper https://github.com/
pennmem/ptsa_new

processing pipeline for
reading in iEEG

Participants
Ninety six patients with drug-resistant epilepsy undergoing intracranial electroencephalographic

monitoring were recruited in this study. Data were collected as part of a study of the effects of elec-

trical stimulation on memory-related brain function at multiple medical centers. Surgery and iEEG

monitoring were performed at the following centers: Thomas Jefferson University Hospital (Philadel-

phia, PA), Mayo Clinic (Rochester, MN), Hospital of the University of Pennsylvania (Philadelphia, PA),

Emory University Hospital (Atlanta, GA), University of Texas Southwestern Medical Center (Dallas,

TX), Dartmouth-Hitchcock Medical Center (Lebanon, NH), Columbia University Medical Center (New

York, NY) and the National Institutes of Health (Bethesda, MD). The research protocol was approved

by the Institutional Review Board at each hospital and informed consent was obtained from each

participant. Electrophysiological signals were collected from electrodes implanted subdurally on the

cortical surface and within brain parenchyma. The neurosurgeons at each clinical site determined the

placement of electrodes to best localize epileptogenic regions. Across the clinical sites, the following

models of depth and grid electrodes (electrode diameter in parentheses) were used: PMT Depthalon

(0.86 mm); Adtech Spencer RD (0.86 mm); Adtech Spencer SD (1.12 mm); Adtech Behnke-Fried

(1.28 mm); Adtech subdural and grids (2.3 mm). The dataset can be requested at http://memory.

psych.upenn.edu/RAM_Public_Data.

Free-recall task
Each subject participated in a delayed free-recall task in which they were instructed to study a list of

words for later recall test. The task is comprised of three parts: encoding, delay, and retrieval. Dur-

ing encoding, the subjects were presented with a list of 12 words that were randomly selected from

a pool of nouns (http://memory.psych.upenn.edu/WordPools). Each word presentation lasts for 1600

ms followed by a blank inter-stimulus interval (ISI) of 800 to 1200 ms. To mitigate the recency effect

(recalling last items best) and the primacy effect (recalling first items better than the middle items),

subjects were asked to perform a math distraction task immediately after the presentation of the

last word. The math problems were of the form A+B+C = ?, where A,B,C were randomly selected

digits. The delay math task lasted for 20 s, after which subjects were asked to recall as many words

as possible from the recent list of words, in any order during the 30 s recall period. Subjects per-

formed up to 25 lists per session of recording (300 words). Multiple sessions were recorded over the

course of the patient’s hospital stay.

Electrophysiological recordings and data processing
iEEG signals were recorded from subdural and depth electrodes at various sampling rates (500,

1000, or 1600 Hz) based on the the amplifier and the preference of the clinical team using one of

the following EEG systems: DeltaMed XlTek (Natus), Grass Telefactor, and Nihon-Kohden. We

applied a 5 Hz band-stop fourth order Butterworth filter centered on 60 Hz to attenuate signal from

electrical noise. We re-referenced the data using the common average of all electrodes in the MTL

to eliminate potentially confounding large-scale artifacts and noise. We used Morlet wavelet trans-

form (wave number = 5) to compute power as a function of time for our iEEG signals. The frequen-

cies were sample linearly from 3 to 180 Hz with 1 Hz increments. For each electrode and frequency,

spectral power was log-transformed and then averaged over the encoding period. Within a session

of recording, the spectral power was z-scored using the distribution of power features across events.
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To extract volatility feature, we applied the MSV model to the dataset constructed from the

encoding events with an assumption that the parameters governing the dynamics of the volatility

process does not change within a session of recording, that is the parameters of the MSV model are

assumed to be shared across encoding events. Since we were only interested in the dynamics of the

volatility time series of the brain signals, not the orignal time series themselves, we detrended the

raw time series using vector autoregressive models of order p, where p was selected based on the

Akaike information criterion (AIC) to remove any autocorrelation in the raw signals and to make the

time series more suited for an MSV application.

In the present manuscript, we used the common average reference (of MTL electrodes) to remove

large-scale noise from our MTL recordings. While the bipolar reference is frequently used for such

analyses, due to its superior spatial selectivity, several factors limit its utility in this context. First, con-

nectivity between a pair of adjacent bipolar electrodes is contaminated by signal common to their

shared monopolar contact; as such, it is difficult to interpret connectivity between such pairs. In the

setting of linear depth electrodes placed within the MTL, a substantial portion of the data between

pairs of nearby MTL subregions would have to be excluded due to shared monopolar contacts. Sec-

ond, bipolar re-referencing within the MTL produces the undesirable outcome that a bipolar mid-

point ’virtual’ electrode could fall in a subregion where neither physical contact was placed, making

observed connectivities difficult to interpret.

Anatomical localization
The MTL electrodes were anatomically localized using the following procedure. Hippocampal sub-

fields and MTL cortices were automatically labeled in a pre-implant 2 mm thick T2-weighted MRI

using the Automatic segmentation of hippocampal subfields (ASHS) multi-atlas segmentation

method (Yushkevich et al., 2015). A post-implant was co-registered with the MRI using Advanced

Normalization Tools (Avants et al., 2008). MTL depth electrodes that were visible in the CT were

then localized by a pair of neuroradiologists with expertise in MTL anatomy.

Statistical analyses
To assess an effect across subjects, we applied classical statistical tests on the maximum a posteriori

(MAP) estimate of the parameter of interest . This approach has been used in many Bayesian appli-

cations to FMRI studies (Stephan et al., 2010) to test an effect across subjects. For analyses con-

cerning frequencies, we applied Gaussian regression models (Rasmussen, 2004) to take the

correlations among frequencies into account. We used the Matern (5/2) kernel function for all analy-

ses that used Gaussian regression models, which enforces that the underlying functional form be at

least twice differentiable. p-values were FDR-corrected at a ¼ 0:05 significance level when multiple

tests were conducted.
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MCMC Algorithm for MSV Models
In this section, we derive an MCMC algorithm, which consists of Metropolis-Hastings steps

within a Gibbs sampler, for estimating the latent volatility process and its parameters. As

before, let xt denote the latent multivariate volatility time-series and � ¼ ð�;b;
P
Þ the

parameters of the MSV model. Following (Kim et al., 1998; Omori et al., 2007), we log-

transform Equation 1

y�j;t ¼ xj;t þ log ð�yj;tÞ
2

n o

; (4)

where y�j;t is defined to be logðy2j;t þ cÞ with a fixed offset constant to c ¼ 10
�4 avoid values

equal to 0. Equation 4 is linear but non-Gaussian. To ameliorate the non-Gaussianity problem,

we approximate the log-transformed error term logfð�yj;tÞ
2g ~ logð�2

1
Þ by a mixture of 10 normal

distributions as in Omori et al. (2007):

logð�2

1
Þ~

X10

k¼1

PkNðmk;v
2

kÞ:

The values of pk;mk and vk are tabulated in Omori et al. (2007). As a result, we introduce a

latent mixture component indicator variable, rj;t, for channel j at time t such that

logfð�yj;tÞ
2g j ðrj;t ¼ kÞ~Nðmk; v

2

kÞ. The indicator variable is also estimated in the MCMC sampler.

Given the mixture indicator rt and the vector parameter �, the latent volatility series xt can be

sampled using a forward-filtering and backward-sampling (FFBS) procedure (West, 1996). The

mixture indicator rt can be sampled from a multinomial distribution

Pðrj;t ¼ k j xt; �Þ / Pðrj;t ¼ kÞ
1

vk
expf�

ð~yj;t � xj;t �mkÞ
2

2v2k
g: (5)

Finally, the vector parameter � can be sampled using an ancillarity-sufficiency interweaving

strategy (ASIS) (Yu and Meng, 2011; Kastner and Frühwirth-Schnatter, 2014) which involves

sampling the vector parameter � given the unstandardized volatility series xj;t via a Metropolis-

Hasting step (non-centered step) and then sampling � again given the standardized volatility

series ~xj;t ¼
xj;t � �j

sj

(centered step). Yu and Meng (2011) argued that by alternating between

the non-centered and centered steps, we obtain a more efficient MCMC sampler that has a

better mixing rate and converges faster. In addition, Kastner and Frühwirth-Schnatter (2014)

showed that the ASIS can accurately sample latent volatility time-series that have low

persistences, which is often the case for iEEG signals.
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Parameter Identification

Identification with Different Signal-to-noise Ratios
To demonstrate that the Gibbs sampler can accurately estimate the latent volatility process

and its associated parameters, we conducted a simulation study in which we generated N ¼ 5

time series of length T ¼ 50; 000 according to Equations 1 and 2 with various signal-to-noise

ratios (SNR), which is controlled by varying the volatility of the volatility series, to mimic the

typical length and the number of electrodes in our iEEG datasets. The SNR is calculated by

taking the ratio of the average volatility of volatility across electrodes to the expected

standard deviation of the noise term in Equation 4. We sampled 10,000 posterior draws and

discarded the first 5000 draws as a burn-in period to allow for convergence to the stationary

distribution. Appendix 2—table 1 reports the posterior means of the parameters of the MSV

model. Throughout the simulation, we use priors whose means are equal to the true values of

the parameters. We observe that the Gibbs sampler can reliably estimate the parameters of

the MSV model from datasets with various signal-to-noise ratios. The identification of the

parameters in the MSV model comes from the strength of our large iEEG dataset which

typically has hundreds of thousands of data points per session, an amount of data that rarely

exists in any financial application.

Phan et al. eLife 2019;8:e42950. DOI: https://doi.org/10.7554/eLife.42950 20 of 29

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.42950


A
p
p
e
n
d
ix

2
—

ta
b
le

1
.
P
a
ra
m
e
te
r
R
e
co

ve
ry
.

T
ru
th

M
S
V

D
a
ta
se

t
S
N
R

C
h
a
n
n
e
l

a
b
1

b
2

b
3

b
4

b
5

s
a

b
1

b
2

b
3

b
4

b
5

s

1
0
.1
6

1
3
.3
9

0
.8
5

0
.2
0

0
.0
0

0
.0
0

0
.0
0

0
.1
7

3
.3
9

0
.8
6

0
.1
9

0
.0
0

�
0
.0
4

0
.0
0

0
.1
7

2
3
.6
0

0
.0
0

0
.8
8

�
0
.1
0

0
.0
0

0
.0
0

0
.1
9

3
.6
0

0
.0
0

0
.8
7

�
0
.1
0

�
0
.0
0

�
0
.0
1

0
.1
9

3
3
.5
5

0
.0
0

0
.0
0

0
.8
7

0
.3
0

0
.0
0

0
.1
9

3
.5
3

�
0
.0
0

�
0
.0
0

0
.8
5

0
.2
9

0
.0
1

0
.2
0

4
3
.5
1

0
.0
0

0
.0
0

0
.0
0

0
.7
1

0
.0
0

0
.1
2

3
.5
1

0
.0
1

�
0
.0
0

0
.0
1

0
.6
9

�
0
.0
3

0
.1
4

5
3
.3
8

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.8
0

0
.1
5

3
.3
8

0
.0
0

�
0
.0
1

�
0
.0
1

0
.0
6

0
.7
9

0
.1
5

2
0
.2
7

1
3
.6
0

0
.9
5

0
.2
0

0
.0
0

0
.0
0

0
.0
0

0
.2
1

3
.9
3

0
.9
5

0
.1
9

�
0
.0
0

0
.0
0

0
.0
0

0
.2
4

2
3
.7
4

0
.0
0

0
.9
0

�
0
.1
0

0
.0
0

0
.0
0

0
.2
5

3
.8
2

�
0
.0
0

0
.9
0

�
0
.1
0

0
.0
0

�
0
.0
0

0
.2
5

3
3
.8
9

0
.0
0

0
.0
0

0
.9
3

0
.3
0

0
.0
0

0
.2
9

3
.8
1

�
0
.0
0

0
.0
0

0
.9
3

0
.3
0

0
.0
0

0
.2
9

4
3
.0
5

0
.0
0

0
.0
0

0
.0
0

0
.9
1

0
.0
0

0
.2
8

3
.0
4

�
0
.0
0

0
.0
1

0
.0
1

0
.9
1

0
.0
0

0
.2
8

5
3
.9
6

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.9
5

0
.2
2

3
.9
7

�
0
.0
0

0
.0
0

0
.0
0

�
0
.0
0

0
.9
4

0
.2
2

3
0
.4
2

1
3
.2
5

0
.5
2

0
.2
0

0
.0
0

0
.0
0

0
.0
0

0
.4
2

3
.2
5

0
.5
1

0
.2
0

0
.0
1

�
0
.0
2

0
.0
1

0
.4
3

2
3
.6
4

0
.0
0

0
.5
7

�
0
.1
0

0
.0
0

0
.0
0

0
.4
6

3
.6
3

0
.0
1

0
.5
5

�
0
.1
4

0
.0
2

0
.0
2

0
.4
6

3
3
.1
8

0
.0
0

0
.0
0

0
.5
8

0
.3
0

0
.0
0

0
.3
1

3
.1
8

0
.0
3

0
.0
1

0
.5
6

0
.3
2

0
.0
3

0
.3
1

4
3
.4
4

0
.0
0

0
.0
0

0
.0
0

0
.6
5

0
.0
0

0
.4
1

3
.4
5

0
.0
0

�
0
.0
0

�
0
.0
0

0
.6
4

0
.0
0

0
.4
1

5
3
.2
6

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.6
0

0
.3
6

3
.2
6

�
0
.0
2

�
0
.0
0

0
.0
0

�
0
.0
1

0
.6
0

0
.3
6

W
e
g
e
n
e
ra
te
d
th
re
e
d
a
ta
se
ts

w
it
h
d
if
fe
re
n
t
si
g
n
a
l-
to
-n
o
is
e
ra
ti
o
s.
T
h
e
o
b
se
rv
e
d
m
u
lt
iv
a
ri
a
te

ti
m
e
-s
e
ri
e
s
y
t
w
a
s
si
m
u
la
te
d
a
cc
o
rd
in
g
to

th
e
d
a
ta
-g
e
n
e
ra
ti
n
g
p
ro
ce

ss
sp

e
ci
fi
e
d
b
y
th
e
M
S
V
m
o
d
e
l

w
it
h
p
re
-s
p
e
ci
fi
e
d
p
a
ra
m
e
te
rs

(t
ru
th
).
W
e
th
e
n
a
p
p
lie
d
th
e
M
S
V
m
o
d
e
l
to

th
e
si
m
u
la
te
d
se
ri
e
s
y
t
to

re
co

ve
r
th
e
p
a
ra
m
e
te
rs

o
f
th
e
M
S
V
m
o
d
e
l.
In

th
is
si
m
u
la
ti
o
n
st
u
d
y,
th
e
n
o
n
-z
e
ro

o
ff
-d
ia
g
o
n
a
l

e
n
tr
ie
s
o
f
th
e
m
a
tr
ix
b
w
e
re

fi
xe
d
a
cr
o
ss

d
a
ta
se
ts
.
T
h
e
d
ia
g
o
n
a
l
e
le
m
e
n
ts

o
f
b
w
e
re

g
e
n
e
ra
te
d
fr
o
m

a
u
n
if
o
rm

d
is
tr
ib
u
ti
o
n
o
n
½0
:7
;0
:9
�,
½0
:9
;1
:0
�,
a
n
d
½0
:5
;0
:7
�
re
sp

e
ct
iv
e
ly
.
T
h
e
vo

la
ti
lit
ie
s
o
f
vo

la
-

ti
lit
y
o
f
th
e
e
le
ct
ro
d
e
s
w
e
re

g
e
n
e
ra
te
d
fr
o
m

a
u
n
if
o
rm

d
is
tr
ib
u
ti
o
n
o
n
½0
:1
;0
:2
�,
½0
:2
;0
:3
�,
a
n
d
½0
:3
;0
:5
�
re
sp

e
ct
iv
e
ly
.

D
O
I:
h
tt
p
s:
//
d
o
i.o

rg
/1
0
.7
5
5
4
/e
Li
fe
.4
2
9
5
0
.0
1
0

Phan et al. eLife 2019;8:e42950. DOI: https://doi.org/10.7554/eLife.42950 21 of 29

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.42950.010
https://doi.org/10.7554/eLife.42950


Appendix 3

DOI: https://doi.org/10.7554/eLife.42950.008

How Much Data is Enough?
Here we provide an analysis of the amount of data needed to estimate the MSV model. The

number of parameters of the MSV model is on the order of OðJ2Þ, where J is the dimension of

the multivariate time series. In our case, J is just the number of recording locations. To justify

this claim, we observe in Equation 2 that the variable reflecting the unconditional mean � has

J parameters, the persistent matrix b has J2 parameters and the covariance matrix S has J

parameters, totaling to J þ J2 þ J ¼ J2 þ 2J ¼ OðJ2Þ parameters. As the dimension of the

timeseries increases, the amount of data required will need to increase quadratically for a

good estimation of the model.

To assess the performance of various time lengths, we repeated the simulation study in

Appendix .2 in which we simulated 30 datasets for each T ¼ kðJ2 þ 2JÞ for k ranging from 30

to 180 with an increment of 30. We used the log-determinant error, which is defined to be

log�determinanterror¼ logðjdetðb�1

MSVbtrue � IJÞjÞ; (6)

where bMSV is the estimated connectivity matrix from the MSV model and btrue is the true

simulated connectivity matrix. If bMSV is close to btrue, then the b�1

MSVb is close to the identity

matrix IJ , and therefore, the log determinant error will be very negative.

Appendix 3—figure 1 shows that as we increase the amount of data, the log-determinant

error becomes more negative. With T ¼ 30ðJ2 þ 2JÞ, the average determinant error is

approximately 8:5� 10
�9, which is very close . Therefore, we recommend the amount of data

to be at least 30OðJ2Þ for the MSV model.

Appendix 3—figure 1. Time length analysis. For k ranging from 30 to 180 with 30 increments

and for each T ¼ kðJ2 þ 2JÞ, we simulated 30 datasets according to the data-generating

process specified by the MSV model. Then, we estimated the connectivity matrix bMSV for each
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dataset. We assess the performance of the MSV model in estimating the true connectivity

matrix btrue using the log-determinant error metric, logðj detðb�1

MSVbtrue � IJÞjÞ. The figure shows

the average performance at each time length with the standard error bars.

DOI: https://doi.org/10.7554/eLife.42950.012

Appendix 3—figure 2 demonstrates that the MSV model can recover the latent volatility

timeseries with T ¼ 30ðJ2 þ 2JÞ, validating the algorithm that is used to estimate the paramters

of the model.

Appendix 3—figure 2. Volatility Timeseries Recovery. The red lines show the true simulated

log-volatility timeseries for the first 1000 time points for two channels . The blue timeseries

show the estimated log-volatility time series using the MSV model and the gray timeseries are

the 95% posterior confidence intervals. The figure demonstrates that the MSV model can

estimate the latent log-volatility timeseries well.

DOI: https://doi.org/10.7554/eLife.42950.013
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Model Fit Plots
We provide a visualization of the latent volatility series. Appendix 4—figure 1 illustrates the

recordings from a hippocampal electrode during encoding of a list of 12 word items from a

subject performing a verbal free-recall task at the University of Pennsylvania Hospital. The top

panels show the detreneded iEEG series using AR(p) models. The bottom panels show the

respective latent volatility series associated with the detrended signals. We observe that the

latent volatility series capture the instantaneous variance of the original series.

Appendix 4—figure 1. Model fit plots for a hippocampal electrode. The upper panels show

the detrended iEEG signals using an AR(p) model for encoding periods of a list of words. The

lower panels show the associated estimated latent volatility processes. The red lines indicate

the average volatility during the encoding period. Red words are later recalled and blue words

are not recalled.

DOI: https://doi.org/10.7554/eLife.42950.015
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Model Selection Details

Deviance Information Criterion (DIC)
The deviance information criterion introduced in Spiegelhalter et al. (2002) is a Bayesian

analogue of the Akaike information criterion (AIC), which is typically used to assess model

performance. Given the observed data y and a parameter set � of a model, the AIC is defined

to be

AIC¼�2 logfpðy j �̂Þg
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

goodnessoffit

þ 2k
|{z}

numberofparameters

; (7)

where �̂ is the maximum likelihood estimate and k is the number of parameters of the model.

The AIC is just the negative log-likelihood (deviance) Dð�Þ ¼ logfpðy j �̂Þ penalized by the

number of parameters used in the model. AIC has been shown to be asymptotically equivalent

to leave-one-out cross-validation (Stone, 1977). A small AIC indicates that the model fits the

data well after accounting for the number of parameters. Under the MCMC framework,

Spiegelhalter et al. (2002) proposed a Bayesian equivalence of Equation 7 such that the

maximum likelihood estimate �̂ is replaced by the posterior mean of ~� ¼ E½� j y� and the

number of parameters is replaced by the effective number of parameters

pD ¼ E� j y½�2 log pðy j �Þ� þ 2 logfpðy j ~�Þg

DIC¼�2 logfpðy j ~�Þg
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

goodnessoffit

þ 2pD
|{z}

effectivenumberofparameters

: (8)

The calculation of DIC can be readily done using the samples from the posterior

distribution of Pð� j yÞ. Next we will derive the calculation of DIC for the MSV model.

DIC Calculation for MSV Model
The MCMC algorithm derived in Appendix 1 provides a way to sample from the posterior

distribution of � ¼ ðx; �;b;SÞ j y. We assume that there are K (typically 1000) samples

f�ð1Þ; � � � �ðKÞg from the posterior distribution Pð� j yÞ. The posterior mean in Eqn. in eight can

be estimated by ~� ¼ ð~x; ~�; ~b; ~SÞ ¼
1

K

XK

k¼1

�ðkÞ. The goodness-of-fit term can be calculated as

follows:

�2 logpðy j ~�Þ ¼�2 logpðy j ~x; ~�; ~b; ~SÞ (9)

¼�2

XT

t¼1

logpðyt j ~xtÞ (10)

¼�2

XT

t¼1

logfðyt expð�~xt=2ÞÞ; (11)

where f is the probability density function of the standard normal distribution. To calculate

the effective number of parameters, we first need to compute the posterior mean of the log-

likelihood function. This can be done using Monte Carlo integration
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E� j y½�2 logpðy j �Þ� ¼
�2

K

XK

k¼1

logpðy j �ðkÞ (12)

¼
�2

K

XK

k¼1

XT

t¼1

logfðyt expð�x
ðkÞ
t =2ÞÞ: (13)
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Classification of Subsequent Memory Details
In this section, we explain the details of the penalized logistic regression classifier and the

nested cross-validation approach (Krstajic et al., 2014) that is used to evaluate the classifier’s

predictive performance. We ask whether the implied volatility features across brain regions

during the encoding period can reliably predict subsequent memory recall. Let fyig
N
i¼1

be the

binary outcomes (recalled versus non-recalled) of N word-trials and fXig
N
i¼1

be their

corresponding features of interest (volatility or spectral power). Here, we wish to distinguish yi

and Xi, which are the output and input variables of the classification model, from fytg
T
t¼1

and

fXtg
T
t¼1

, which are iEEG and volatility timeseries respectively. The penalized L-2 logistic

classifier aims to find the optimal set of weights ! that minimizes the cross-entropy between

the outcome variable yi and the logistic transformation of !TXi while limiting the contributions

of individual features by penalizing the L2-norm of !

lð!Þ ¼�l
XN

i¼1

yi log ŷiþð1� yiÞ logð1� ŷiÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cross�entropy

þ0:5jj!jj2
2

|fflfflfflffl{zfflfflfflffl}

penalty

; (14)

where ŷi ¼
expð!TXiÞ

1þ expð!TXiÞ
is the predicted probability of recall success, and l is the penalty

parameter that controls the degree to which the classifier limits the contribution of individual

features. A low value of l indicates that the classifier downgrades the contribution of the

cross-entropy in the loss function, and therefore penalizing the L-2 norm of ! more severely

and vice versa. In addition, minimizing the cross-entropy loss between the empirical

distribution (observed data) and distribution given by the model (predicted data) is equivalent

to maximizing the log-likelihood function (Goodfellow et al., 2016). To test the ability of the

classifier to generalize to new data, we employ a k-fold nested cross-validation approach in

which we split the data naturally into different recording sessions (folds) illustrated in

Appendix 6—figure 1. We hold out one session as the test data and train the classifier on the

remaining session(s). The optimal hyperparameter l is optimized via another cross-validation

within the training set. The procedure is repeated until we obtain out-of-sample prediction for

the entire dataset.

Appendix 6—figure 1. Cross-validation scheme. For each subject, we train our classifier on all

(yellow) but one session and test the performance on the hold-out session (green) and repeat

the procedure for each session.

DOI: https://doi.org/10.7554/eLife.42950.018

We assess the classifier’s performance using the area under the receiver operating curve

(AUC), which relates the true positive rate and the false positive rate for various decision

thresholds. An AUC of 1.0 implies that the classifier can perfectly discriminate between

recalled and non-recalled items and an AUC of 0.5 implies that the classifier is at chance.

Appendix 6—figure 2 illustrates the classifier’s predictive performance for two subjects. The

ROCs for these subjects sit above the 45-degree line, indicating that the classifier can reliably

discriminate subsequent memory recall above chance.
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Appendix 6—figure 2. Sample ROC curves (gray). The black dashed lines indicate ROC curves

of at-chance classifiers. The area under the ROC curve (AUC) is a measure of the performance

of the classifier across a spectrum of decision thresholds. An AUC of 1 indicates that the

classifier can classify recalled items perfectly. An AUC of 0.5 indicates that the classifier is at

chance, that is as good as a random coin flip.

DOI: https://doi.org/10.7554/eLife.42950.019
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Appendix 7

DOI: https://doi.org/10.7554/eLife.42950.008

Output Tables of Statistical Tests
This section reports the statistical tests for directional connection SME that contain at least 10

subjects. Appendix 7—tables 1 and 2 show the results of these tests for the left and right

hemispheres.

Appendix 7—table 1. intra-MTL directional connectivity in the left hemisphere.

Region I ! region J Mean DI!J Se T N P adj. P

Hipp ! PRC �0.044 0.013 �3.494 48 0.001 0.009**

PRC ! Hipp �0.060 0.022 �2.667 48 0.011 0.045*

Hipp ! EC 0.010 0.032 0.312 14 0.768 0.953

EC ! Hipp �0.077 0.067 �1.158 14 0.285 0.569

PHC ! PRC �0.006 0.040 �0.146 16 0.889 0.953

PRC ! PHC �0.037 0.028 �1.348 16 0.212 0.564

PRC ! EC 0.001 0.022 0.061 21 0.953 0.953

EC ! PRC 0.005 0.030 0.168 21 0.872 0.953

DOI: https://doi.org/10.7554/eLife.42950.021

Appendix 7—table 2. intra-MTL directional connectivity in the right hemisphere.

Region I ! region J Mean DI!J Se T N P adj. P

Hipp ! PRC �0.010 0.020 �0.471 40 0.645 0.838

PRC ! Hipp �0.016 0.029 �0.575 40 0.574 0.838

Hipp ! EC 0.011 0.030 0.361 14 0.733 0.838

EC ! Hipp 0.054 0.047 1.144 14 0.290 0.838

Hipp ! PHC �0.027 0.032 �0.837 15 0.432 0.838

PHC ! Hipp 0.044 0.035 1.232 15 0.254 0.838

PRC ! EC 0.020 0.052 0.378 14 0.722 0.838

EC ! PRC �0.002 0.081 �0.020 14 0.985 0.985

� : P<0:05, �� : P<0:01, adjusted p-values were calculated using the Benjamini-Hochberg

procedure.
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