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Abstract: The rapidly increasing interest from various verticals for the upcoming 5th generation
(5G) networks expect the network to support higher data rates and have an improved quality of
service. This demand has been met so far by employing sophisticated transmission techniques
including massive Multiple Input Multiple Output (MIMO), millimeter wave (mmWave) bands as
well as bringing the computational power closer to the users via advanced baseband processing
units at the base stations. Future evolution of the networks has also been assumed to open many
new business horizons for the operators and the need of not only a resource efficient but also an
energy efficient ecosystem has greatly been felt. The deployment of small cells has been envisioned
as a promising answer for handling the massive heterogeneous traffic, but the adverse economic
and environmental impacts cannot be neglected. Given that 10% of the world’s energy consumption
is due to the Information and Communications Technology (ICT) industry, energy-efficiency has
thus become one of the key performance indicators (KPI). Various avenues of optimization, game
theory and machine learning have been investigated for enhancing power allocation for downlink
and uplink channels, as well as other energy consumption/saving approaches. This paper surveys
the recent works that address energy efficiency of the radio access as well as the core of wireless
networks, and outlines related challenges and open issues.
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1. Introduction

Advances in telecommunication systems around the world have always been pushing the wireless
infrastructure to be more resilient and scalable. Ever growing faster data rates and a demand for
the highest quality of service has been a strong constraint when energy conservation needs to be
considered. Data rates as high as that of 1 Gbps have been foreseen with the advent of 5G. In
addition, with an explosive number of heterogeneous devices coming online, including sensors for
home security, tablets, and wearable health monitors, the computational power of base stations must
increase. An estimated 50% increase in the computing power of baseband units has been predicted
to handle this traffic burst [1]. Thus, the focus on energy-efficiency needs to include optimization of
computational complexity in addition to optimization of transmission power.

An estimated 75% of the Information and Communications Technology (ICT) industry is supposed
to be wireless by 2020 and today 5% of the world’s carbon footprint is coming from this industry alone.
A consensus between academia and industry dictates that the foreseen 1000× capacity gain must be
achieved with either the present energy consumption or lower [2]. Thanks to energy-efficiency efforts
world-wide, energy consumption in the 5G realm, in terms of bits/joule, has been considered as an
important design parameter. In 4th generation (4G), the concept of small cells has been introduced
to increase the coverage and capacity. Therefore, [3] conducted an analysis on energy consumption
per unit area for a heterogeneous deployment of cells for fourth generation networks. With 5G, small
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cells are inevitable in deployments due to their advantage of improved traffic handling within a
smaller area as well as the shorter cell ranges that result from the use of higher frequencies. Yet, the
increasing number of base stations translate into more energy consumption, although the increase
in consumption will not be linear. Small cells, or in other words densification, calls for sophisticated
management of resources. Most recently, intelligent resource allocation and control techniques
utilizing machine learning algorithms have been suggested to help next generation radios in their
autonomous reconfiguration for improving the data rates, energy efficiency and interference mitigation.
Overall, the emerging sophistication in both User Equipment (UE) and network side has increased
the energy consumption and thus objective functions have been devised to maximize the energy
efficiency, harvested energy and energy aware transmission [4]. Many of the existing energy efficiency
improvement techniques include the use of green energy sources for base stations, modifying the
coverage area of a base station depending upon the load level, putting lightly loaded base stations
to sleep and load balancing by handing over the UEs to the macro base station. A survey on these
technologies for the 5G Radio Access Network (RAN) can be found in [5].

This survey has been aimed to contribute towards a greener and a sustainable telecommunication’s
ecosystem by reviewing and bringing together some of the latest ideas and techniques of energy
conservation at base station and network level. A high level diagram shows the areas addressed in
Figure 1. A few of the prominent examples include the introduction of a newer Radio Resource Control
(RRC) state for context signalling and cutting down on the redundant state changes [6]. Utilization
of advanced clustering and caching techniques on the RAN side have been highly appreciated for
their benefits of improving the latency of getting the data requested by a group of users and possibly
eliminating the factor of clogging the network by a huge number of requests for the same content [7,8].
A case study of commercial resource sharing among different operators bears fruitful results in
terms of reduced deployment costs and good data rates with minimum interference among them [9].
The upcoming sections introduce the basics of energy efficiency, provide justification for the need
of gauging the energy consumption and then present the most recent research works carried out for
the optimization at different levels of the architecture. This survey bears its uniqueness in its holistic
approach to energy-efficiency by covering radio, core and computing side of 5G. This paper is also
different than the surveys in the literature [1–4], as it focuses on works published in the last few years
where the majority of the studies focus on concepts specific to the new 5G standard.

Figure 1. Outline of the energy-efficiency schemes included in this survey.

2. Background on Energy Efficiency

A formal relationship between energy efficiency and Signal to Interference Noise Ratio (SINR)
has been presented in [2] using the bit/joule notion. Meanwhile, Reference [4] lays the foundation
for energy efficiency in different parts of the network including base stations and the core network.
In the literature, energy saving and use of green energy resources have been the two mainstream
approaches to offer energy efficiency. Among the energy saving techniques, cell-switch off techniques
have been widely exploited. For instance, in the EU FP7 ABSOLUTE project, an energy aware
middleware has been proposed that would use the capacity-based thresholds for activation of the
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base stations [10]. In several other studies, data offloading has been considered as an energy-efficient
approach. Furthermore, authors in [11] have put together several techniques for not only reducing
the energy consumption from the traditional energy sources but also for surveying newer Energy
Efficiency (EE) schemes in the End-to-End (E2E) system. One of the remarkable mentions by the authors
includes the implementation of 3rd Generation Partnership Project (3GPP) compliant EE manager that
would be responsible for monitoring energy demands in an E2E session and for implementation of the
policies needed for catering to the ongoing energy demand.

In addition to energy saving approaches, recently simultaneous wireless energy transfer has
been studied. Furthermore, local caching techniques have been proved to be beneficial for relieving
the load on the backhaul network by storing the content locally and limiting the re-transmissions,
hence reducing energy consumption. Similarly, a cloud based RAN has been envisioned as a possible
solution for the computational redistribution in [2,4,12]. Many of the tasks previously performed by a
base station (BS) would be taken away to a data center and only decision making for Radio Frequency
(RF) chains as well as baseband to RF conversion would be given to base stations. Traffic pattern
and demands would then be catered for well before time and redundant BS would be put to sleep
mode according to [13]. Furthermore, full duplex Device-to-Device (D2D) communication with uplink
channel reuse has been considered to improve SINR and transmission power constraints. A gain of 36%
energy efficiency has been demonstrated using the full duplex scheme with enhanced self-interference
mitigation mechanism instead of half duplex [14].

As machine learning is penetrating more and more into the operation of wireless networks,
Reference [15] suggests that machine learning algorithms would greatly help to predict the hot spots
so that other resources could be switched off when not needed.

The concept of energy efficiency being treated as a key performance indicator in the upcoming
5G standard considers it to be a global ambition, but it cannot be declared as a specific actionable
item on either the operator or vendor side. Divide and conquer approach has been applied to the
entire network and improvements have been targeted at either component level, equipment level or at
network level employing newer algorithms at both BS and UE side. This discussion advocates the fact
that operators would have the leverage of tuning their network for a balance between quality of service
and energy consumption. In the following sections, we introduce the recent works in energy-efficiency
in 5G as highlighted in Table 1 preceding to a discussion on open issues and challenges.

Table 1. Summary of surveyed works.

Optimization Scope Problem Addressed Citation

EE at the BS level

Dissection of a BS and figures for energy consumption [1]

Downlink Massive MIMO Systems: Achievable Sum Rates
and Energy Efficiency Perspective for Future 5G Systems

[16]

Energy Efficiency in massive MIMO based 5G networks:
Opportunities and Challenges

[17]

EE improvement by a Centralized BB processing design [18]

Analytical modelling of EE for a heterogeneous network [19]

Energy Efficiency Metrics for Heterogeneous Wireless
Cellular Networks

[20]

Incentive based sleeping mechanism for densely deployed
femto cells

[21]

EE at the BS level

Sector based switching technique [22]
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Table 1. Cont.

Optimization Scope Problem Addressed Citation

On interdependence among transmit and consumed power
of macro base station technologies

[23]

Utilization of Nash product for maximizing cooperative EE [24]

Energy Efficiency in Wireless Networks via Fractional
Programming Theory

[25]

Energy efficiency maximization oriented resource
allocation in 5G ultra-dense network: Centralized and
distributed algorithms

[26]

Comparison of Spectral and Energy Efficiency Metrics
Using Measurements in a LTE-A Network

[27]

Energy Management in LTE Networks [28]

Energy-efficient resource allocation scheduler with QoS
aware supports for green LTE network

[29]

Interference-area-based resource allocation for full-duplex
communications

[30]

A resource allocation method for D2D and small cellular
users in HetNet

[31]

Highly Energy-Efficient Resource Allocation in Power
Telecommunication Network

[32]

EE enhancement with RRC Connection Control for 5G New
Radio (NR)

[6]

Proactive caching based on the content popularity on small
cells

[7]

Cooperative Online Caching in Small Cell Networks with
Limited Cache Size and Unknown Content Popularity

[33]

Economical Energy Efficiency: An Advanced Performance
Metric for 5G Systems

[34]

Energy-efficient design for edge-caching wireless networks:
When is coded-caching beneficial?

[35]

Content caching in small cells with optimized UL and
caching power

[36]

An effective cooperative caching scheme for mobile P2P
networks

[37]

EE analysis of heterogeneous cache enabled 5G hyper
cellular networks

[8]

EE at the network level

Motivation for infrastructure sharing based on current
energy consumption figures

[2,38]

Energy efficiency in 5G access networks: Small cell
densification and high order sectorisation

[39]
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Table 1. Cont.

Optimization Scope Problem Addressed Citation

EE at the network level

Energy-Efficient User Association and Beamforming for 5G
Fog Radio Access Networks

[40]

Global energy and spectral efficiency maximization in a
shared noise-limited environment

[9]

EE Resource Allocation in NOMA [41]

Concept and practical considerations of non-orthogonal
multiple access (NOMA) for future radio access

[42]

Optimum received power levels of UL NOMA signals for
EE improvement

[43]

Spectral efficient nonorthogonal multiple access schemes
(NOMA vs RAMA)

[44]

Non-Orthogonal Multiple Access: Achieving Sustainable
Future Radio Access

[45]

Mode Selection Between Index Coding and Superposition
Coding in Cache-based NOMA Networks

[46]

Use case of shared UE side distributed antenna System for
indoor usage

[47]

Optimized Energy Aware 5G Network Function
Virtualization

[48]

Energy Efficient Network Function Virtualization in 5G
Networks

[49]

Network Function Virtualization in 5G [50]

A Framework for Energy Efficient NFV in 5G Networks [51]

Energy efficient Placement of Baseband Functions and
Mobile Edge Computing in 5G Networks

[52]

Energy Efficiency Benefits of RAN-as-a-Service Concept for
a Cloud-Based 5G Mobile Network Infrastructure

[53]

Dynamic Auto Scaling Algorithm (DASA) for 5G Mobile
Networks

[54]

Design and Analysis of Deadline and Budget Constrained
Autoscaling (DBCA) Algorithm for 5G Mobile Networks

[55]

EE using SDN technology

Impact of software defined networking (SDN) paradigm
on EE

[56]

EE gains from the separated control and data planes in a
heterogeneous network

[57]

EE using ML techniques

Machine Learning Paradigms for Next-Generation Wireless
Networks

[58]

Switch-on/off policies for energy harvesting small cells
through distributed Q-learning

[59]



Sensors 2019, 19, 3126 6 of 23

Table 1. Cont.

Optimization Scope Problem Addressed Citation

EE using ML techniques

Duty cycle control with joint optimization of delay
and energy efficiency for capillary machine-to-machine
networks in 5G communication system

[60]

Distributed power control for two tier femtocell networks
with QoS provisioning based on Q-learning

[61]

Spectrum sensing techniques using both hard and soft
decisions

[62]

EE resource allocation in 5G heterogeneous cloud radio
access network

[63]

3. Review of EE Techniques at the Base Station Level

Radio access network (RAN) has been considered as single unit for energy efficiency improvement,
and inclusion of these enhancements across the network would have a significant impact on the
overall energy efficiency. Metrics for gauging EE in this perspective include the improvements in the
architecture and chipset design for the baseband units, cell switch off techniques, incorporation of
small cells, interference reduction among the neighboring cells and caching as well as the newer RRC
state for UEs for conservation of the battery power.

3.1. Base Station Energy Consumption and Cell Switch Off Techniques

Knowing the accurate energy consumption of a base station constitutes an important part of
the understanding of the energy budget of a wireless network. For this purpose, authors in [1] have
specifically discussed energy conservation at equipment level by presenting the breakdown of a base
station. A typical BS has been presented by dividing it into five parts, namely antenna interface,
power amplifier, RF chains, Baseband unit, mains power supply and the DC-DC supply. These
modules have been shown in Figure 2. An important claim has been made stating that up to 57% of the
power consumption at a base station is experienced at the transmission end, i.e., the power amplifier
and antenna interface. Yet, with small cells, the power consumption per base station has been reduced
due to shorter distances between the base stations and the users [1,19]. In [19], analytical modelling
of the energy efficiency for a heterogeneous network comprising upon macro, pico and femto base
stations has been discussed. To a certain extent emphasis has been put on the baseband unit which
is specifically in charge of the computing operations and must be sophisticated enough to handle
huge bursts of traffic. A baseband unit has been described to be composed of four different logical
systems including a baseband system used for evaluating Fast Fourier Transforms (FFT) and wireless
channel coding, the control system for resource allocation, the transfer system used for management
operations among neighbouring base stations and finally the system for powering up the entire base
station site including cooling and monitoring systems. Furthermore, the use of mmWave and massive
MIMO would need an even greater push on the computation side of the base station since more
and more users are now being accommodated. The study in [16] discusses the achievable sum rates
and energy efficiency of a downlink single cell M-MIMO systems under various precoding schemes
whereas several design constraints and future opportunities concerning existing and upcoming MIMO
technologies have been discussed in [17]. The computation power of base station would increase when
number of antennas and the bandwidth increases. In the case of using 128 antennas the computation
power would go as high as 3000 W for a macrocell and 800 W for a small cell according to [1].
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Figure 2. Modules of a typical base station.

Authors in [18] have discussed the utility of taking most of the baseband processing functionality
away from the base station towards a central, more powerful and organized unit for supporting higher
data rates and traffic density. Users have envisioned experiencing more flexibility using this central
RAN since they would be able to get signaling from one BS and get data transfer through another best
possible neighboring BS. Visible gains in latency and fronthaul bandwidth have thus been observed by
having stronger backhaul links but this research avenue still needs to be formally exploited for devising
globally energy efficient mechanisms. The choice of the best suited BS would allow the network to
have a lower transmission power thus increasing the energy efficiency. An analysis of throughput as a
performance metric has been provided for a two-tier heterogeneous network comprising upon macro
and femto cells in [20]. The claimed improvement in throughput originates from a distributed mesh of
small cells so that the minimal transmission distance between the end user and the serving base station
would be cashed out in terms of reduced antenna’s transmission power. Considering these findings on
BS energy consumption, cell switch-off techniques have been explored in the literature. An incentive
based sleeping mechanism for densely deployed femtocells has been considered in [21] and energy
consumption reduction up to 40% has been observed by turning the RF chains off and only keeping
the backhaul links alive. The key enabler here would be to have prompt toggling between active and
sleep modes for maintaining the quality of service. According to [21], a “sniffer” component installed
at these small cells that would be responsible for detecting activity in the network by checking the
power in uplink connections, a value surpassing the threshold, would indicate a connection with the
macrocell. Mobility Management Entity (MME) has also been suggested to potentially take a lead by
sending wake up signals to the respective femtocells and keeping others asleep. In contrast to the usual
techniques of handing their users over to the neighbouring base stations and turning that cell off, it
would be beneficial to give incentives to users for connecting to a neighbouring cell if they get to have
better data rates. Authors in [22] have conducted a thorough study for classification of the switching
techniques as well as calculation of the outage probability of UEs, under realistic constraints. Their
claim states that the energy consumption of the base station is not directly proportional to its load so an
improved switching algorithm was needed that would allow the UEs to maintain the SINR thresholds.
They have thus brought forward a sector based switching technique for the first time. Furthermore,
their claim favors an offline switching technique instead of a more dynamic online scheme because of
practical constraints such as random UE distribution and realistic interference modelling. Authors
in [23] discuss influence of the transmit power scaling and on/off switching on instantaneous macro
base stations power consumption. The proposed power consumption models have been claimed to be
used as generic models for the relationship between transmitted and consumed power for macro base
stations of different technologies and generations. In addition to these techniques, recently, machine
learning techniques have been used to implement cell switch off which are discussed in Section 6.
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3.2. Interference-Aware Energy Efficiency Techniques in 5G Ultra Dense Networks

The advantages of small cell deployment, in terms of increased system capacity and better load
balancing capability, have been discussed in the previous sections. Yet, it is important to mention
that densification suffers from added system complexity. Therefore, energy efficiency as well as
spectral efficiency becomes harder to evaluate. Nash energy efficiency maximization theory has been
presented for discussing the relationship between energy and spectral efficiency in [24]. Both are
inversely related to each other, increase in one of them demands a natural decrease in the other
quantity which usually has been the case of medium to high transmission power. Most of the research
conducted in ultra-dense small cell networks has been on coming up with techniques optimizing
both energy efficiency (EE) and spectral efficiency (SE). Authors in [24] also brings forth the idea of
gaining energy efficiency at the cost of spectral efficiency where the small cells are under the coverage
of a macro cell and pose interference issues due to the sharing of bandwidth among them.In such a
scenario, all the small cells participate in energy efficiency maximization according to a game theoretic
methodology. The suggested game theoretic model has been deemed to be a distributed model and
utilizes Nash product for maximizing cooperative energy efficiency. Analysis of the algorithms shows
that energy efficiency, although it increases with the increase in the number of small cells, it saturates
after about 200 cells and afterwards only experiences a minor increase. Fractional programming
has been extensively used in [25] for modelling the energy efficiency ratio for a Point-to-Point (P2P)
network as well as for a full scaled communication network using MIMO. EE has been considered
as a cost benefit ratio and minimum rate constraints have been put together for modelling real life
scenarios. In addition, fairness in resource allocation has been considered a major factor in the overall
energy distribution. These two constraints might tend to increase the power consumption in case the
minimum thresholds tend to be too high. Adding to the use cases of fractional programming, [26] laid
out a robust distributed algorithm for reducing the adverse effects of computational complexity and
noise towards resource allocation. Authors in [27], have presented an experimental setup for defining
the right kind of key performance indicators when measuring either EE or SE. The setup includes
a set of UE(s), three small BS(s) and running iperf traffic using User Datagram Protocol (UDP) and
File Transfer Protocol (FTP). Results have indicated that utilization of a higher bandwidth would not
increase the power consumption, that throughput must incorporate the traffic density and that the idle
power of the equipment needs to be considered for energy consumption calculations. In [28], use of
varying transmission power levels by the aid of custom power levels in a two-tier network has been
encouraged for the optimization of needed power in Long Term Evolution (LTE). Intelligent switching
of control channels in the DL and tuning the power levels according to the UE’s feedback have been
envisioned to aid in allocation of the resource blocks with an optimum power. Authors in [29], have
discussed the opportunities for the less explored domain of user scheduling in LTE. 3GPP has no
fixed requirement on scheduling and thus researchers have devised their own mechanisms depending
upon their pain points. Authors have proposed the idea of associating Quality of Service (QoS) with
scheduling for accommodating cell edge users. Authors in [30] have proposed a resource allocation
technique for minimizing the interference at the UE side. Considering a full duplex communication
setup, a circular interference area for a DL UE has been demarcated by the BS based upon a predefined
threshold. Resource block for this UE has been shared by an UL UE from outside the interference
region for keeping the mutual interference to a minimal level. Simulation results claim to improve the
overall network throughput based on the efficient pairing of UEs but the throughput might degrade
with a large increase in the distance between the paired UEs. A heuristic algorithm presented in [31]
improves the system throughput using resource reuse in the three-tier architecture while regulating
the interference regions of UEs being served by either macro BS, small BS or in a D2D way. Visible
gains in the throughput have been noted with an increased user density for an efficient user selection
and having a minimum distance between the UEs being served in a D2D fashion for a stronger link
retention. Moreover in [32], authors have constructed objective functions for EE maximization and have
thus compared max-min power consumption model against their nonlinear fractional optimization
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model. Results have been promising for a reduction in the power consumption because of the mutual
participation of cells as their number starts to increase.

3.3. Energy Efficiency Enhancement with RRC Connection Control for 5G New Radio (NR)

In [6], the authors discuss the rapid UE battery drainage which is due to the fact that terminals
remain in radio resource control’s (RRC) ACTIVE state even when they are not interacting with the
network. In the 5G networks, the RRC INACTIVE state has greatly been altered where a UE could
benefit from the stored context and go through a lower number of state transitions. 5G NR would thus
get rid of the constant monitoring of physical downlink control channel (PDCCH) for the incoming
transmissions. The proposed improvement brings a 50% less energy consumption at the modem and
18% for the entire device. Referring to the traditional RRC mechanism, only two states were available,
namely RRC ACTIVE and RRC IDLE mode. Consumer’s usage mainly dictates the time being spent in
either of the two states. Typically, when a phone has not been used, the user inactivity timer would
expire, putting the UE in IDLE state and as soon as it would go into the IDLE state its context would
be removed from the core network. With the new RRC INACTIVE state, the UE context would still
be stored when it would stop its communication with the network resulting in a reduced signaling
overhead. However, the UE would still need to update eNodeB/gNodeB (evolved NodeB/next
generation evolved NodeB) with its context for a valid state change. Figure 3 illustrates the state
diagram of the new model. For this state to be widely utilized it should ensure minimum signaling
and power consumption. The authors have evaluated the performance of this proposed scheme
based on the shorter user inactivity timer achieving quicker state transitions to INACTIVE state and
incurring less signaling. Power consumption analysis has been conducted for usage between different
applications which validates the claim of authors. Similar analyses have been conducted to eliminate
the prolonged connected mode discontinuous reception or better known as the Connected mode
DRX (C-DRX) of upto 10 s for short data transfers and avoid the state changes. Signaling overhead
also increases with the increase in either UE mobility or shorter user activity timers. However, the
worst-case scenario would be to have the UE receive content just after its transition to the INACTIVE
state, thus incurring extra RRC signaling. According to the proposed scheme, 5G NR can greatly
benefit from this state by having an extended UE life and a lower need for S1 signaling.

Figure 3. State diagram for radio resource control (RRC) signalling including the ’inactive’ state.

3.4. Energy Efficient and Cache-Enabled 5G

In [7], the idea of proactive caching based on the content popularity on small cells has been
proposed for improving the energy efficiency. Owing to the abundance of small cells, networks are
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getting constrained by the overall backhaul link capacity and much of the load is corresponding to
transactions of the same requests repeatedly. Energy efficiency has been evaluated with regards to
the content placement techniques and more emphasis has been put into organizing the content based
on user locations and constantly fine tuning the clusters based on the content popularity distribution
instead of spanning the same content across the network. Various topologies are shown in Figure 4.
Energy efficiency has been formulated in relation to the small cell density vector. A heterogeneous file
popularity distribution has been considered and a popularity vector has been maintained at every user.
Users have been grouped into clusters depending upon the similarity in their interests and the cached
files are an average of these popularity vectors. Users would usually be allowed to communicate
with the base station within a specified distance of their cluster and in case of a cache miss event, the
content would then be requested from the core via backhaul links. Spanning the same data across the
network tends to sacrifice the information diversity and hence a content-based clustering approach
has been brought forward. Simulations have been presented to demonstrate that with the increased
base station density, significant energy efficiency gains have been experienced since the allocation
problem gets simplified and interference and transmission powers would be reduced. In [34] a unique
approach for addressing the energy efficiency challenge has been presented. The proposed E3 ratio
thus incorporates a cost factor when calculating the number of UEs being served against the power
spent over this operation by the BS. It has been made clear that although the cost factor might not have
a direct impact on the spectral efficiency, it would be an important factor when regulating the cost of
the entire network. Thus, operators have been addressed to carefully incorporate the features of edge
caching and gigabit X-haul links to strike a fair balance between the cost overhead and the need of the
feature. Otherwise it would be an overkill which has been meant to be strictly avoided. Mathematical
analysis for EE maximization presented in [35] supports the fact that for the cases of low user cache
size, non coded schemes should be utilized for a faster delivery system. Highlight of the research work
conducted in [33] has been the assumption of a finite cache memory for a more realistic analysis. Delay
bounds of an online cooperative caching scheme have been brought forward as compared to offline
and a random caching scheme. The cache being periodically updated promises to deliver a tighter user
association and aims to have minimum possible latency. The algorithm also aims to accurately cache
the data in highest demand with an increased user density. Application of cooperative caching on P2P
networks has been discussed in [37], authors have demonstrated the effectiveness of the algorithm by
the segmentation of cache memory at the base stations. It would not only keep track of the cached
data of the highly demanded information but would also record data paths and the newly requested
data. The simulations have illustrated the usefulness of this optimization technique by the reduced
number of hops and latency. On the other hand, uplink energy conservation has been considered in
the context of dense small cells [36].

In [8], energy efficiency analysis of heterogeneous cache enabled 5G hyper cellular networks was
performed. The control and user plane separation is considered to aid in devising enhanced access
schemes and retain fairness in service. Furthermore, base station on-off strategy is taken into account
to help in cutting down costs spent on redundant small cells [8]. In that scenario, macro cells would be
the masters handling mobility, home subscriber and the user admission whereas small cells would be
the slave part of the radio resource management scheme. With this increasing growth of the network
infrastructure, irregularities in traffic behavior must be taken into account along with the actual user
distribution for a realistic scenario. Caching has been sought after as a viable solution for reducing the
end to end latency by storing content at the base stations. Small cells would typically involve macro
base station in its communication with the UE in a semi sleep mode and ensure that it would always
be aware of the UE positioning in the network as well as the cache memory statistics. Macro cell also
ensures that the UE would be served by the closest and best possible small cell and would turn off
the remaining ones to concentrate on a specified area for improving the throughput. On the other
hand, there would be a predefined search radius and content would be fetched from a neighbouring
base station within that distance. Otherwise, UE would associate to the macro base station for getting
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access to the needed content. Expressions for the coverage probability for the UE to get signal to
interference (SIR) ratio within the threshold, throughput and power consumption and efficiency have
been documented in [8].

Figure 4. Illustration of different cache topologies.

4. Review of EE Techniques at the Network Level

A collective approach has been adopted for addressing the overall EE challenge considering
both access and core network. EE has thus been gauged by the extent of resource sharing among
different operators in the urban environment, utilization of efficient resource allocation schemes for
fully exploiting the available spectrum, deploying middle ware for coverage enhancement (reduction in
the distance between UE and BS would lower the needed transmission power), harnessing maximum
computational muscle for accommodating massive incoming user requests yet have the ability to
scale instantly (virtualization) and deploying machine learning and Software Defined Network (SDN)
technologies for a fine grained control over the resources. An efficient usage of these capabilities would
thus lead to the quality of service retention as well as an excellent power management methodology.

4.1. Resource Sharing in 5G with Energy-Efficiency Goal

Spectrum and physical resource sharing needs to be considered for accomplishing the energy
efficiency goal of 5G. However, the need of service quality retention with respect to throughput and
packet drops must also be addressed. Thoughts on infrastructure sharing have been gaining enough
traction owing to several factors, for example, lack of space acquisition for site deployment or utilizing
the available resources at their full potential and refraining from any new deployment. This section
puts together the studies for bringing improvements in energy efficiency by a mutual sharing of
infrastructure. Operators would have the flexibility of resource sharing at either full or partial level
naturally emphasizing improved security for their equipment. Additionally, the cost of commissioning
every site would lead to a higher expenditure and would minimize the expected revenues. Projects
such as EARTH and GREEN TOUCH detail this avenue and brings forth an expectation of a decreased
energy consumption by 1000 folds [2,38]. For this level of sophisticated resource sharing, a complete
knowledge about the functionality and capacity of the network entities needs to be available which
may not be possible in practice. However, the avenue of spectrum sharing still welcomes more
discussion and aims to be a potential pathway for gaining solutions to the resource scarcity problem.
Details of system level simulations for comparisons drawn between energy consumption and shared
infrastructure at different load levels have been documented in [38] where a gain of up to 55% for energy
efficiency in the dense areas has been demonstrated. Other significant advantages of resource sharing
would include less interference by a planned cell deployment in accordance with the user demands
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per area. These efforts aim to eliminate the problems of either over provisioning or under-utilization
of the deployed network entities. Authors in [40] have discussed the application of an improved
resource allocation in a fog RAN. The suggested idea relies upon the fact that the usage of a centralized
baseband processing unit, which, while increasing the processing power of the system, remains at
risk of getting outdated measurements from the radio heads because of larger transport delays. The
suggested algorithm starts off by switching off the redundant access points for conserving the energy
and then modifying the beam weights for providing the end user with an optimum signal to leakage
and noise ratio. User association is made centrally and then the information gets passed on to the fog
access points after being scheduled for users. Following this phase, the proposed greedy algorithm
tracks the global as well as the local energy efficiency readings and switches off the access points not
needed until the rising trend of global energy efficiency ceases. Simulations have been carried out
using a layout of macro and pico cells showing about a three-fold increase in the reported Channel
State Information (CSI). Furthermore, authors in [39] have demonstrated the EE gains in a dynamic
six-sector BS, capable of operating at either one or a maximum of all the sectors fully functioning, to be
up to 75% as compared to the case of an always on approach.

In [9], a case study of infrastructure sharing between different operators has been presented
as well. Service level agreement between the participating operators is defined and handled by
multi-objective optimization methods. In such a shared environment, QoS should go hand in hand
with fair resource utilization. Authors have specifically considered the case of obeying operator
specific energy and spectral efficiency criteria along with the global spectral and energy efficiency
maximization. The most prominent outcomes of this research are the global energy and spectral
efficiency maximization in a shared noise-limited environment and the application of the framework to
a network shared by any number of operators each serving different numbers of users and an optimal
fulfillment of utility targets. Detailed mathematical analysis has been presented for system modelling
with noise and interference constraints. SINR equations, which originally were used as a starting
point, were thus gradually modified by incorporating weighting factors for influencing the priorities.
This model turns out to be working in a polynomial complexity and maximizes the given objective
function. Moreover, maximum and minimum bounds have been enclosed. In the paper, authors have
presented the application of the mathematical tools by presenting the case of a base station installed in
a crowded place such as an airport or shopping mall where the site owner is the neutral party and
the frequency resources are either pooled or one of the operators grants some of his portion to others.
Firstly, the case of two operators has been presented when they do not have any global constraints and
the multi-objective problem set of noise limited scenario would be used. Secondly, site owner restricts
the interference level or the global energy efficiency for both the operators and both of them target a
minimum QoS constraint. Thirdly, there would be three operators with the same condition as of the
first case. The work has laid the foundation to establish the criterion for the energy-spectral trade off
in a single/multi carrier scenario.

4.2. Energy Efficient Resource Allocation in NOMA

In 5G, attempts have been made to possibly explore the area of non-orthogonal multiple
access (NOMA), employing power control for saving resources in both time and frequency domain.
This concept is highlighted in the following Figure 5. Operators would benefit from this technique
by getting to serve the maximum number of users within the same frequency band, thus improving
spectral efficiency [41]. This research area has been active for a while now for the reasons of increasing
the network capacity and improving the data rates. An intelligent coordination among the base stations
must be in place for maximum utilization of the available overall network energy. This corresponds to
the fact that the harvested green energy has mostly been volatile, and a constant input source could
not be guaranteed. For this reason, a detailed mathematical model has been presented for the power
control of the UEs being serviced for minimizing interference as much as possible. A comparison of
user association based genetic algorithms against a fixed transmit power was drawn. NOMA based
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techniques were demonstrated to outperform the conventional techniques for EE improvement for a
larger number of nodes. The application was extended to a two-tier RAN having a macro base station
covering a region of several pico base stations, being powered by both green and conventional energy
sources. The proposed mathematical model uses a ratio of the network’s data rate over the entire
energy consumption as the network utility. Incorporation of improved user association techniques
were suggested in [42] for improvement of user throughput and error containment in NOMA. In [43],
authors presented the mathematical feasibility for the utilization of successive interference cancellation
at the receiver side. The signal that is being processed considers others to be noise, cancels them out
and its iterative nature aims to decode all of them. With an increase in the number of transmitters
having a fixed SINR, a linear relationship has been observed. On the other hand, this formulation
might lead to a saturation point for the explosive number of IoT devices.

The authors in [44], have taken an interesting approach for a fair comparison of NOMA and a
relay-aided multiple access (RAMA) technique and a simulation was carried out for maximization of
the sum rate. It was established via mathematical formulation that sum rate is an increasing function
of user’s transmission power and for the cases of a high data rate demand of the farthest user, NOMA
proved to have maximized the sum rate. Distance between the users has been a key figure and with
an increased separation between them, NOMA provides maximum rates whereas for the smaller
separation relay-based setup provides a good enough sum rate. Authors in [45] have endorsed the
advantages of nonorthogonal multiple access (NOMA) for the future radio access networks. Apart
from the fact that the technique aids in getting a better spectral efficiency, authors instead have analyzed
the feasibility of acquiring a better energy efficiency out of it as well. Considering the example of one
base station serving two users, relationships between SE and EE have been observed which reflects that
NOMA can potentially regulate the energy within the network by the allocation of more bandwidth to
a cell center user in the uplink and more power to the cell edge user in the downlink. Considering
the potential of NOMA, the problem was tackled with respect to its deployment scenario for the
maximum exploitation. For a single cell deployment, EE mapping against resource allocation was
considered as an NP hard problem because each user would be competing for the same radio resource,
however, user scheduling and multiple access methods would aid for improving this situation. For
the network level NOMA, a joint transmission technique could be beneficial for organizing the traffic
load on the radio links and users must be scheduled accordingly when it comes to energy harvesting
to keep the users with critical needs prioritized. Lastly, Grant free transmission has been studied
for saving the signaling overhead, as soon as the user acquires data in its buffer it should start the
uplink transmission and selection of the received data would be based upon its unique multiple access
signature. Multiple access signature is deemed to be the basis of this proposal, but the signature pool
must be carefully devised with an optimal tradeoff between the pool size and mutual correlation.
It would greatly help for collision avoidance and detection. The users remain inactive for cutting
down on the grant signaling and hence more energy is typically conserved. The proposed hybrid
technique transitions between grant free and scheduled NOMA based on the current traffic load which
eventually lowers down the collision probability and improves latency. In contrast with the above
works that have discussed the use cases of caching in orthogonal multiple access (OMA), authors in
[46] explored index based chaching instead of superposition chaching while adopting a sub optimal
user clustering technique for significant reductions in the transmitted power while using NOMA.
Owing to the enormous number of users, optimal user clustering was discouraged and user association
based upon their differences in terms of link gain and cached data was suggested instead. The iterative
power allocation algorithm was demonstrated to converge after several iterations.
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Figure 5. Concept of non-orthogonal multiple access (NOMA) technology.

4.3. Energy Efficient 5G Outdoor-Indoor Communication

The research in [47] discusses a use case of shared UE side distributed antenna system for
indoor usage where a combination of distributed antenna and MIMO technology is used for getting
enhancements in the coverage area and utilization of unlicensed frequencies for accommodating more
users. The use of both licensed as well as unlicensed bands simultaneously needs a redesign of the
current resource allocation algorithms [47]. In this work, resource allocation has been considered
to be a non-convex optimization for increasing the end to end energy efficiency. The suggested
topology demands installation of a shared UE side multiple antenna hardware between a single
antenna base station (outdoor) and arbitrary number of single antenna UEs (indoor) which are called
shared user equipment (UE)-side distributed antenna system (SUDACs). These SUDACs would be
able to communicate the channel information with their neighbouring SUDAC units installed. In
contrast with the relaying in the LTE-A system, SUDACs could be installed at different locations by the
users and still be able to operate in both licensed and unlicensed bands simultaneously. The problem
statement boils down to defining the energy efficiency in terms of the bits exchanged between base
station and the UEs via SUDACs per joule of energy. It has been shown in [47] that application of this
model exploits the frequency and spatial multiplexing of UEs and increases the system efficiency as
compared to the case when SUDACs is not involved.

4.4. Energy Efficient Virtualization in 5G

Virtualization has been a very sought out way of reducing the time to market for the newer mobile
technologies but with the emerging technological trends it might be a very useful way forward for
reducing the energy consumption. In this case, hardware would serve as a bare metal for running
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multiple applications simultaneously for saving up on the cost of additional deployments of dedicated
hardware and software components [48]. Most of the functions previously deployed on dedicated
hardware would now be rolling out as software defined network functions thus promising scalability,
performance maximization and mobility with in the cellular network. The virtual network architecture
described in [50] lays out the interconnection between several virtual as well as the physical units being
interconnected to form a larger system. A generalized 5G architecture incorporating virtualization
has been illustrated in Figure 6. The smooth integration of different technologies with virtualized
environment thus becomes the key of reaping the expected efficiency outcomes. Resource and
operations management plays a vital role in actively regulating the system for a fine tuned state
of execution that helps mitigate issues including redundancy and keeping the operating expenses
under control. Furthermore, usage of an openflow switch would come in handy for efficient packet
traversal within the network. Significant advantage in terms of reduced energy consumption of
about 30% have been experienced by incorporating the current architecture with Network Function
Virtualization (NFV). Authors have assumed an ideal case scenario that the virtual BBU will not
consume any energy when it stays idle and also the advantage of the enormous computational pool in
the form of cloud have been used.

Authors in [49] presented the significant energy conservation advantages of having virtual nodes
in both access as well as the core network instead of having the physical nodes for executing only
a single function. The proposed topology suggests baseband pooling for higher performance in the
cloud, a direct gigabit optical connection from the remote radio heads to the core network and an
even distribution of the core network nodes. The nearest available core network node would then be
the one responsible of serving the incoming requests from the respective radio heads. The proposed
architecture boasts the flexibility of resource distribution by having a single node running multiple
virtualized access/core network functions e.g., serving gateway, packet gateway, etc. and the readiness
of activating these functions wherever needed based on the work load. A visible gain of about 22%
was recorded using mixed integer linear programming for modelling the work load across the nodes
and both the core and access network were virtualized. Apart from the EE gains, a higher performance
would also be achieved because of a reduced distance between the node requesting and the node
serving the request. Research in [51] extends the same idea where the EE gains are deemed to be higher
with an increased number of virtual function deployments in the access network which typically
consumes more energy, about 70% of the entire demand of the end to end network. The suggested
topology entails gigabit optical connectivity as the fronthaul technology instead of the Common
Public Radio Interface (CPRI) connection between radio and baseband units. This brings out more
deployment opportunities for the virtual machines by having more active nodes closer to the user.
Authors documented a gain of about 19% with the proposed architecture. According to the authors
in [52], existing RAN architecture needs modification for meeting the upcoming traffic demands.
Baseband unit has been decomposed into two main parts, namely distributed unit and a central unit.
Both units find their optimal placements either close to the users for serving the low latency demands
or in remote areas for providing a pool of computational power. Mobile edge computing uses the
same concept and NFV proves to be an enabling technology to use it to its full potential. The network
layout comprises upon active antenna units and the central office for edge and access computation.
Mobile edge computing units were housed along with the distributed and the central units and was
the aggregator for the traffic. Both latter functions were virtualized on general purpose processors
and finally the electronic switch was responsible for the traffic routing. Simulations conducted on
this topology have revealed about 20% power saving as compared to the case of fixed deployment
of hardware units. Moreover, Reference [53] also supports the idea of flexible centralization of RAN
functions of small cells. Prominent outcomes would comprise upon interference mitigation in a dense
deployment and reduced radio access processing. Authors in [54] devised an analytical model for
calculating the optimal number of active operator’s resources. Dynamic Auto Scaling Algorithm, or
DASA, was envisioned to provide a way for operators to better understand their cost vs performance
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trade off and authors have thus used real life data from Facebook’s data center for a realistic estimation.
On top of the already established legacy infrastructure comprising mainly upon mobile management
entity, serving gateway, packet gateway and the policy & charging function, 3GPP has now proposed
specifications for a virtualized packet core providing on demand computational resources for catering
to the massive incoming user requests. A comparison was drawn between the consumed power and
the response time of the servers for the jobs in a queue by varying different factors including total
number of virtual network function (VNF) instances, total number of servers available as well as the
rate of the incoming jobs, total system capacity and the virtual machine (VM) setup times. Trends
recorded from the plots have signified the saturation point of the system and have paved a way for
operators to optimize their infrastructure to be robust without taking in more power than needed.
Similarly [55] extends the above mentioned approach by taking into account the rejection of incoming
requests in case the saturation point has been reached. A more realistic framework was presented that
incorporates either dropping the jobs from the queue or even blocking them out from being registered
until some resources could be freed up.

Figure 6. A ’virtualized’ 5G architecture.

5. Review of SDN Technology for Enhancing EE

5.1. Energy Monitoring and Management in 5G with Integrated Fronthaul and Backhaul

The impact of software defined networking (SDN) on energy-efficiency was explored in [56].
The tremendous increase in the user density in a given area not only demands an energy efficient
hardware but also demands for certain modifications in the control plane. Energy Management and
Monitoring Applications (EMMA) were designed for observing the energy consumption in fronthaul
as well as the backhaul network constituents. A monitoring layer was implemented over an SDN
controller which observes the underlying operational domains including mmWave links and analogue



Sensors 2019, 19, 3126 17 of 23

Radio over Fiber technology (RoF). This topology is shown in Figure 7. The energy management
framework was extended to provide analysis on virtual network slices as well by gathering the real
time power consumption data of a server by a power meter installed with it and then incorporating it
with the respective flows. EMMA is based upon a SDN/NFV integrated transport network using a
Beryllium framework and supports features including energy monitoring of the access network and
the optimization of power states for the nodes. Furthermore, an analytics module provide statistics
on the traffic consumption by the currently ongoing services, Provisioning manager would help in
setting up new network connections and dynamic routing of connections for the ongoing sessions
based upon the energy aware routing algorithms. Authors have envisioned EMMA as a fronthaul
technology for providing coverage for high speed trains. It comprises upon a context information
module for collection of data for mobility, a statistics module for storing the contextual data and
updating it regularly, and lastly the management module for consuming this data and making real
time moves in the network by switching on the nodes as the train approaches and switching them off
when it leaves. Significant energy savings ranging between 10 to 60% were demonstrated using the
real life data by switching on the nodes exactly when needed and keeping them asleep otherwise [56].

Figure 7. Energy Monitoring and Management via software defined networking (SDN).

5.2. Utility of Sleep Mode Energy Savings

In [57], authors discussed about getting benefited from the separated control and data planes in
a heterogeneous network. Since this concept was not used in the previous generation of networks,
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further exploitation of this feature is expected to yield significant energy reductions. It was proposed
that control plane communication would be done via low frequency macro cells and data plane
information exchange would take place through high frequency femto cells. Detailed statistics about
the daily traffic load and information about the kind of base stations deployed were tabulated. The
application of the regular cell switch off technique especially in the off peak hours would yield reduced
energy consumption of up to 48%. On the other hand, incorporation of power modulation at the
femto cells would keep them operational and would yield energy savings of up to 27%. If the extreme
isolation of control and data plane could be relieved then the macro cell would be able to serve the
users with not just the control signaling but also with data transfer at low frequencies, resulting in
a higher percentage of energy savings in the network. In addition to this concept, Reference [64]
discusses the possibility of achieving 50–80% energy savings by incorporation of the energy aware
heuristic algorithms.

6. Machine Learning Techniques for Energy-Efficiency in 5G

Recently, machine learning techniques have been employed to various areas of wireless networks
including approaches to enhance energy efficiency of the wireless network [58]. A typical example
would include a smart transmission point, such as the one shown in Figure 8 that would evolve itself
overtime by its observations.

Figure 8. Dissection of a smart antenna.

In [59], the authors proposed switch-on/off policies for energy harvesting small cells through
distributed Q-learning. A two tier network architecture was presented for discussion on on-off
switching schemes based upon reinforcement learning. It is assumed that small cells are equipped
to get their associated macrocell to transfer its load over to them and they themselves would rely
upon the harvested energy, for example, solar energy. Application of Q-learning enables them to
learn about the incoming traffic requests over time so they could tweak their operation to an optimal
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level. The proposed scenario includes a macro cell running on electricity and small cells running on
solar energy with a distributed Q learning technique being used to gain knowledge about the current
radio resource policies. Reward function for the online Q-learning proposes to turn off the small cells
if users experience higher drop rates or use the ones that would already be on to take the burden
from the macro cell. On the other hand, authors in [60] devised a novel EE and E2E delay duty cycle
control scheme for controllers at the gateway of cellular and capillary networks. Formulation of a duty
cycle control problem with joint-optimization of energy consumption and E2E delay was addressed
followed by the distributed duty cycle control scheme.

In [61], the authors highlighted a distributed power control for two tier femtocell networks
with QoS provisioning based on q-learning. Power control in the downlink of the two tier femtocell
network was discussed and an effective network capacity measure was introduced for incorporating
the statistical delay. Self-organization of small cells was also discussed with the perspective of
Q-learning and utilization of a non cooperative game theory [61]. The proposed system model involves
a macro base station covering several femtocells in its vicinity, each of them serving their own set
of users. Expressions for SINR for both macro and femto cell users were also documented [61]. For
the consumer’s energy efficiency, Pareto optimization was opted for as compared to the traditional
multi-user scenarios, focusing on a system level energy efficiency instead.

Meanwhile in [62], the deployment of macro and pico base stations were made similar to the above
scenario. However, the random deployment of femto BS by consumers cause interference problems
and cognitive radio technology was put together with these femto BS for an improved spectrum
access. Spectrum sensing techniques provide benefits for UL transmission since the femto cells are
power limited as compared to the macro cells. Detailed mathematical analysis for spectrum sensing
techniques using both hard and soft decisions were demonstrated in [62]. Authors formulated objective
functions in such a way that although they are computing optimal power allocation for the users, the
whole scheme incorporates constraints for energy efficiency maximization. In [63], the authors also
use machine learning techniques for energy-efficient resource allocation in 5G heterogeneous cloud
radio access network. Cloud radio access networks are considered as a key enabler in upcoming 5G
era by providing higher data rates and lower inter cell interference. It consists of both small cells
and macro base stations for accommodating more users, providing them with superior quality of
service and for enhancing coverage area respectively where resources are scheduled through a cloud
RAN. A resource allocation scheme was put together with the aim of maximizing energy efficiency of
UEs served by the radio heads while minimizing inter tier interference [63]. Available spectrum was
divided into two resource blocks and assigned to different UE groups depending upon their location
and QoS demands. A central controller interfaced with the baseband unit pool gets to learn about the
network state through the interfaced macro base station and then take certain actions needed for energy
efficiency optimization. Furthermore, compact state representation was utilized for approximating
algorithm’s convergence. The resource block as well as the power allocation with respect to energy
saving in the downlink channel of remote radio heads in accordance with the QoS constraints has
also been documented. Since the given model depends upon the prior UE knowledge for it to make
transitions for optimization, Q-learning was proposed to practically model the objectives and system
specifications. The resource allocation is mainly carried out at the controller in the BBU pool and the
control signalling is carried out via the X1 and S1 links. The hierarchy of UEs and RRHs operate under
macro base station and convey their states to the controller.

7. Challenges and Open Issues

In accordance with the increase in the computational demand from the base stations, in the
upcoming 5G networks, energy efficiency needs to be scaled up by 100–1000 times in contrast with
the traditional 4G network [1]. Since the transmission ranges would have been scaled down due
the dense small cell deployment, the energy efficiency evaluation will potentially revolve around
the computational side as compared to the transmission side previously. Storage functions for local
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data caching should also be considered in this evaluation, since it would potentially be common
in the forthcoming networks. Scheduling schemes should be enhanced to involve an optimal
number of antennas and bandwidth for resource allocation. The trade-off between transmission
and computational power should be optimized considering the effects of the kind of transmission
technology involved. Software Defined Networking might be a potential fix for this issue, yet
it needs further exploration. Moreover, authors in [65] proposed the intermediate delays from
source to destination to be incorporated in the energy efficiency formulation for an even more
realistic estimation.

Most of the ongoing research has been discussing energy efficiency from a lot of different
perspectives but so far a unifying approach has not been reached. Green Touch project has taken such
an initiative but more exploration is needed for a stronger understanding [2].

With the explosive small cell deployment, 5G network would be interference limited so orthogonal
transmission techniques might not be practical. The framework of sequential fractional programming
might be extended for energy efficiency optimization with affordable complexity as suggested in [9].
Random Matrix theory and stochastic geometry appear as suitable statistical models for evaluating the
randomness within the wireless networks, but a thorough research on energy efficiency needs to be
conducted employing these tools.

Finally, the avenue of self-learning mechanisms is still less explored. Since local caching has
been considered a potential answer for reducing the load on backhaul networks, novel approaches
including this consideration need to be developed.

8. Conclusions

In this paper, we provide a survey of the state-of-the-art in energy-efficiency efforts in 5G.
These new studies touch on several novel paradigms such as new radio, NOMA, ML-driven techniques
and cache-enabled networks. Although there are several studies surveying the literature, our paper
provides a clear classification of the proposed techniques with in-depth comparison. The paper is
expected to be a road map for researchers in this field.
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14. Demestichas, K.; Adamopoulou, E.; Choraś, M. 5G Communications: Energy Efficiency. Mob. Inf. Syst. 2017,
2017, 5121302. [CrossRef]

15. Cavalcante, R.L.G.; Stanczak, S.; Schubert, M.; Eisenblaetter, A.; Tuerke, U. Toward Energy-Efficient 5G
Wireless Communications Technologies: Tools for decoupling the scaling of networks from the growth of
operating power. IEEE Signal Process. Mag. 2014, 31, 24–34. [CrossRef]

16. Isabona, J.; Srivastava, V.M. Downlink Massive MIMO Systems: Achievable Sum Rates and Energy Efficiency
Perspective for Future 5G Systems. Wirel. Pers. Commun. 2017, 96, 2779–2796. [CrossRef]

17. Prasad K.S.V.; Hossain, E.; Bhargava, V.K. Energy Efficiency in Massive MIMO-Based 5G Networks:
Opportunities and Challenges. IEEE Wirel. Commun. 2017, 24, 86–94. [CrossRef]

18. Nawawy, N.A.; Mohamed, N.; Dziyauddin, R.; Sam, S.M. Functional Split Architecture for Energy Efficiency
in 5G Backhaul. In Proceedings of the 2018 2nd International Conference on Telematics and Future Generation
Networks (TAFGEN), Kuching, Malaysia, 24–26 July 2018; pp. 98–102.

19. Rizvi, S.; Aziz, A.; Jilani, M.T.; Armi, N.; Muhammad, G.; Butt, S.H. An investigation of energy efficiency
in 5G wireless networks. In Proceedings of the 2017 International Conference on Circuits, System and
Simulation (ICCSS), London, UK, 14–17 July 2017; pp. 142–145.

20. Aligrudic, A.; Pejanovic-Djurisic, M. Energy efficiency metrics for heterogenous wireless cellular networks.
In Proceedings of the 2014 Wireless Telecommunications Symposium, Washington, DC, USA, 9–11 April
2014; pp. 1–4.

21. Bouras, C.; Diles, G. Energy efficiency in sleep mode for 5G femtocells. In Proceedings of the 2017 Wireless
Days, Porto, Portugal, 29–31 March 2017; pp. 143–145.

22. Beitelmal, T.; Szyszkowicz, S.S.; G, D.G.; Yanikomeroglu, H. Sector and Site Switch-Off Regular Patterns for
Energy Saving in Cellular Networks. IEEE Trans. Wirel. Commun. 2018, 17, 2932–2945. [CrossRef]

23. Lorincz, J.; Matijevic, T.; Petrovic, G. On interdependence among transmit and consumed power of macro
base station technologies. Comput. Commun. 2014, 50, 10–28. [CrossRef]

24. Yang, C.; Li, J.; Ni, Q.; Anpalagan, A.; Guizani, M. Interference-Aware Energy Efficiency Maximization in 5G
Ultra-Dense Networks. IEEE Trans. Commun. 2017, 65, 728–739. [CrossRef]

25. Zappone, A.; Jorswieck, E.A. Energy Efficiency in Wireless Networks via Fractional Programming Theory.
Found. Trends Commun. Inf. Theory 2015, 11, 3–4. [CrossRef]

26. Li, W.; Wang, J.; Yang, G.; Zuo, Y.; Shao, Q.; Li, S. Energy efficiency maximization oriented resource allocation
in 5G ultra-dense network: Centralized and distributed algorithms. Comput. Commun. 2018, 130, 10–19.
[CrossRef]

27. Boumard, S.; Harjula, I.; Kanstrén, T.; Rantala, S.J. Comparison of Spectral and Energy Efficiency Metrics
Using Measurements in a LTE-A Network. In Proceedings of the 2018 Network Traffic Measurement and
Analysis Conference (TMA), Vienna, Austria, 26–29 June 2018; pp. 1–8.

28. Kanwal, K.; Safdar, G.A.; Ur-Rehman, M.; Yang, X. Energy Management in LTE Networks. IEEE Access 2017,
5, 4264–4284. [CrossRef]

29. Yusoff, R.; Baba, M.D.; Ali, D. Energy-efficient resource allocation scheduler with QoS aware supports for
green LTE network. In Proceedings of the 2015 IEEE 6th Control and System Graduate Research Colloquium
(ICSGRC), Shah Alam, Malaysia, 10–11 August 2015; pp. 109–111.

http://dx.doi.org/10.1109/TWC.2017.2716948
http://dx.doi.org/10.1049/iet-com.2018.5448
http://dx.doi.org/10.1587/transcom.2016FGP0004
http://dx.doi.org/10.1155/2017/5121302
http://dx.doi.org/10.1109/MSP.2014.2335093
http://dx.doi.org/10.1007/s11277-017-4324-y
http://dx.doi.org/10.1109/MWC.2016.1500374WC
http://dx.doi.org/10.1109/TWC.2018.2804397
http://dx.doi.org/10.1016/j.comcom.2014.02.010
http://dx.doi.org/10.1109/TCOMM.2016.2638906
http://dx.doi.org/10.1561/0100000088
http://dx.doi.org/10.1016/j.comcom.2018.08.005
http://dx.doi.org/10.1109/ACCESS.2017.2688584


Sensors 2019, 19, 3126 22 of 23

30. Feng, Y.; Shen, X.; Zhang, R.; Zhou, P. Interference-area-based resource allocation for full-duplex
communications. In Proceedings of the 2016 IEEE International Conference on Communication Systems
(ICCS), Shenzhen, China, 14–16 December 2016; pp. 1–5.

31. Wen, K.; Chen, Y.; Hu, Y. A resource allocation method for D2D and small cellular users in HetNet.
In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications (ICCC),
Chengdu, China, 13–16 December 2017; pp. 628–632.

32. Qi, Z.; Fan, J.; Ji, P.; Xia, F.; Huang, X.; Zhao, S. Highly Energy-Efficient Resource Allocation in Power
Telecommunication Network. In Proceedings of the 2017 International Conference on Computer Systems,
Electronics and Control (ICCSEC), Dalian, China, 25–27 December 2017; pp. 488–492.

33. Yen, C.; Chien, F.; Chang, M. Cooperative Online Caching in Small Cell Networks with Limited Cache Size
and Unknown Content Popularity. In Proceedings of the 2018 3rd International Conference on Computer
and Communication Systems (ICCCS), Nagoya, Japan, 27–30 April 2018; pp. 173–177.

34. Yan, Z.; Peng, M.; Wang, C. Economical Energy Efficiency: An Advanced Performance Metric for 5G Systems.
IEEE Wirel. Commun. 2017, 24, 32–37. [CrossRef]

35. Vu, T.X.; Chatzinotas, S.; Ottersten, B. Energy-efficient design for edge-caching wireless networks: When is
coded-caching beneficial? In Proceedings of the 2017 IEEE 18th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), Sapporo, Japan, 3–6 July 2017; pp. 1–5.

36. Erol-Kantarci, M. Content caching in small cells with optimized uplink and caching power. In Proceedings
of the 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA,
9–12 March 2015; pp. 2173–2178.

37. Zhou, X.; Lu, Z.; Gao, Y.; Yu, Z. An Effective Cooperative Caching Scheme for Mobile P2P Networks.
In Proceedings of the 2014 International Conference on Computational Intelligence and Communication
Networks, Bhopal, India, 14–16 November 2014; pp. 408–411.

38. Georgakopoulos, A.; Margaris, A.; Tsagkaris, K.; Demestichas, P. Resource Sharing in 5G Contexts: Achieving
Sustainability with Energy and Resource Efficiency. IEEE Veh. Technol. Mag. 2016, 11, 40–49. [CrossRef]

39. Arbi, A.; O’Farrell, T. Energy efficiency in 5G access networks: Small cell densification and high order
sectorisation. In Proceedings of the 2015 IEEE International Conference on Communication Workshop
(ICCW), London, UK, 8–12 June 2015; pp. 2806–2811.

40. Dinh, T.H.L.; Kaneko, M.; Boukhatem, L. Energy-Efficient User Association and Beamforming for 5G Fog
Radio Access Networks. In Proceedings of the 2019 16th IEEE Annual Consumer Communications &
Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019; pp. 1–6.

41. Xu, B.; Chen, Y.; Carrión, J.R.; Zhang, T. Resource Allocation in Energy-Cooperation Enabled Two-Tier
NOMA HetNets Toward Green 5G. IEEE J. Sel. Areas Commun. 2017, 35, 2758–2770. [CrossRef]

42. Benjebbour, A.; Saito, Y.; Kishiyama, Y.; Li, A.; Harada, A.; Nakamura, T. Concept and practical considerations
of non-orthogonal multiple access (NOMA) for future radio access. In Proceedings of the 2013 International
Symposium on Intelligent Signal Processing and Communication Systems, Naha, Japan, 12–15 November
2013; pp. 770–774.

43. Rabee, F.A.; Davaslioglu, K.; Gitlin, R. The optimum received power levels of uplink non-orthogonal
multiple access (NOMA) signals. In Proceedings of the 2017 IEEE 18th Wireless and Microwave Technology
Conference (WAMICON), Cocoa Beach, FL, USA, 24–25 April 2017; pp. 1–4.

44. Choi, J. On the spectral efficient nonorthogonal multiple access schemes. In Proceedings of the 2016 European
Conference on Networks and Communications (EuCNC), Athens, Greece, 27–30 June 2016; pp. 277–281.

45. Yang, K.; Yang, N.; Ye, N.; Jia, M.; Gao, Z.; Fan, R. Non-Orthogonal Multiple Access: Achieving Sustainable
Future Radio Access. IEEE Commun. Mag. 2019, 57, 116–121. [CrossRef]

46. Fu, Y.; Liu, Y.; Wang, H.; Shi, Z.; Liu, Y. Mode Selection Between Index Coding and Superposition Coding in
Cache-Based NOMA Networks. IEEE Commun. Lett. 2019, 23, 478—481 [CrossRef]

47. Ng, D.W.K.; Breiling, M.; Rohde, C.; Burkhardt, F.; Schober, R. Energy-Efficient 5G Outdoor-to-Indoor
Communication: SUDAS over Licensed and Unlicensed Spectrum. IEEE Trans. Wirel. Commun. 2016, 15,
3170–3186. [CrossRef]

48. Al-Quzweeni, A.N.; Lawey, A.Q.; Elgorashi, T.E.H.; Elmirghani, J.M.H. Optimized Energy Aware 5G
Network Function Virtualization. IEEE Access 2019, 7, 44939–44958. [CrossRef]

http://dx.doi.org/10.1109/MWC.2017.1600121WC
http://dx.doi.org/10.1109/MVT.2015.2508319
http://dx.doi.org/10.1109/JSAC.2017.2726398
http://dx.doi.org/10.1109/MCOM.2018.1800179
http://dx.doi.org/10.1109/LCOMM.2019.2892468
http://dx.doi.org/10.1109/TWC.2016.2517626
http://dx.doi.org/10.1109/ACCESS.2019.2907798


Sensors 2019, 19, 3126 23 of 23

49. Al-Quzweeni, A.; El-Gorashi, T.E.; Nonde, L.; Elmirghani, J.M. Energy efficient network function
virtualization in 5G networks. In Proceedings of the 2015 17th International Conference on Transparent
Optical Networks (ICTON), Budapest, Hungary, 5–9 July 2015; pp. 1–4.

50. Abdelwahab, S.; Hamdaoui, B.; Guizani, M.; Znati, T. Network function virtualization in 5G. IEEE Commun.
Mag. 2016, 54, 84–91. [CrossRef]

51. Al-Quzweeni, A.; Lawey, A.; El-Gorashi, T.; Elmirghani, J.M.H. A framework for energy efficient NFV in
5G networks. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks
(ICTON), Trento, Italy, 10–14 July 2016; pp. 1–4.

52. Xiao, Y.; Zhang, J.; Ji, Y. Energy Efficient Placement of Baseband Functions and Mobile Edge Computing in
5G Networks. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou,
China, 26–29 October 2018; pp. 1–3.

53. Sabella, D.; De Domenico, A.; Katranaras, E.; Imran, M.A.; Di Girolamo, M.; Salim, U.; Lalam, M.; Samdanis,
K.; Maeder, A. Energy Efficiency Benefits of RAN-as-a-Service Concept for a Cloud-Based 5G Mobile
Network Infrastructure. IEEE Access 2014, 2, 1586–1597. [CrossRef]

54. Ren, Y.; Phung-Duc, T.; Chen, J.; Yu, Z. Dynamic Auto Scaling Algorithm (DASA) for 5G Mobile Networks.
In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA,
4–8 December 2016; pp. 1–6.

55. Phung-Duc, T.; Ren, Y.; Chen, J.; Yu, Z. Design and Analysis of Deadline and Budget Constrained Autoscaling
(DBCA) Algorithm for 5G Mobile Networks. In Proceedings of the 2016 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), Luxembourg City, Luxembourg, 12–15 December
2016; pp. 94–101.

56. Abdullaziz, O.I.; Capitani, M.; Casetti, C.E.; Chiasserini, C.F.; Chundrigar, S.B.; Landi, G.; Talat, S.T. Energy
monitoring and management in 5G integrated fronthaul and backhaul. In Proceedings of the 2017 European
Conference on Networks and Communications (EuCNC), Oulu, Finland, 12–15 June 2017; pp. 1–6.

57. Klapez, M.; Grazia, C.A.; Casoni, M. Energy Savings of Sleep Modes Enabled by 5G Software-Defined
Heterogeneous Networks. In Proceedings of the 2018 IEEE 4th International Forum on Research and
Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–6.

58. Jiang, C.; Zhang, H.; Ren, Y.; Han, Z.; Chen, K.; Hanzo, L. Machine Learning Paradigms for Next-Generation
Wireless Networks. IEEE Wirel. Commun. 2017, 24, 98–105. [CrossRef]

59. Miozzo, M.; Giupponi, L.; Rossi, M.; Dini, P. Switch-On/Off Policies for Energy Harvesting Small Cells
through Distributed Q-Learning. In Proceedings of the 2017 IEEE Wireless Communication and Networking
Conference Workshops (WCNCW), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6.

60. Li, Y.; Chai, K.K.; Chen, Y.; Loo, J. Duty cycle control with joint optimisation of delay and energy efficiency
for capillary machine-to-machine networks in 5G communication system. Trans. Emerg. Telecommun. Technol.
2015, 26, 56–69. [CrossRef]

61. Li, Z.; Lu, Z.; Wen, X.; Jing, W.; Zhang, Z.; Fu, F. Distributed Power Control for Two-Tier Femtocell Networks
with QoS Provisioning Based on Q-Learning. In Proceedings of the 2015 IEEE 82nd Vehicular Technology
Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015; pp. 1–6.

62. Park, H.; Hwang, T. Energy-Efficient Power Control of Cognitive Femto Users for 5G Communications.
IEEE J. Sel. Areas Commun. 2016, 34, 772–785. [CrossRef]

63. AlQerm, I.; Shihada, B. Enhanced machine learning scheme for energy efficient resource allocation in 5G
heterogeneous cloud radio access networks. In Proceedings of the 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada,
8–13 October 2017; pp. 1–7.

64. Fernández-Fernández, A.; Cervelló-Pastor, C.; Ochoa-Aday, L. Energy Efficiency and Network Performance:
A Reality Check in SDN-Based 5G Systems. Energies 2017, 10, 2132. [CrossRef]

65. Wu, G.; Yang, C.; Li, S.; Li, G.Y. Recent advances in energy-efficient networks and their application in 5G
systems. IEEE Wirel. Commun. 2015, 22, 145–151. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MCOM.2016.7452271
http://dx.doi.org/10.1109/ACCESS.2014.2381215
http://dx.doi.org/10.1109/MWC.2016.1500356WC
http://dx.doi.org/10.1002/ett.2891
http://dx.doi.org/10.1109/JSAC.2016.2544601
http://dx.doi.org/10.3390/en10122132
http://dx.doi.org/10.1109/MWC.2015.7096297
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background on Energy Efficiency
	Review of EE Techniques at the Base Station Level
	Base Station Energy Consumption and Cell Switch Off Techniques
	Interference-Aware Energy Efficiency Techniques in 5G Ultra Dense Networks
	Energy Efficiency Enhancement with RRC Connection Control for 5G New Radio (NR)
	Energy Efficient and Cache-Enabled 5G

	Review of EE Techniques at the Network Level 
	Resource Sharing in 5G with Energy-Efficiency Goal
	Energy Efficient Resource Allocation in NOMA
	Energy Efficient 5G Outdoor-Indoor Communication
	Energy Efficient Virtualization in 5G

	Review of SDN Technology for Enhancing EE 
	Energy Monitoring and Management in 5G with Integrated Fronthaul and Backhaul
	Utility of Sleep Mode Energy Savings

	Machine Learning Techniques for Energy-Efficiency in 5G
	Challenges and Open Issues
	Conclusions
	References

