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Geodiversity impacts plant 
community structure in a semi‑arid 
region
Natalie De Falco1*, Reut Tal‑Berger2, Amgad Hjazin3, Hezi Yizhaq4, Ilan Stavi5 & 
Shimon Rachmilevitch2

Geodiversity refers to the variety of geological and physical elements as well as to geomorphological 
processes of the earth surface. Heterogeneity of the physical environment has an impact on plant 
diversity. In recent years, the relations between geodiversity and biodiversity has gained attention 
in conservation biology, especially in the context of climate change. In this study, we assessed the 
spatial and temporal change in plant’s community structure in a semi-arid region, Sayeret Shaked 
Long Term Ecosystem Research (LTER) station, Israel. Vegetation surveys were conducted on 
different hillslopes, either with or without rock covers in order to study the spatial trends of hillslope 
geodiversity. The surveys were conducted for two consecutive years (2016 and 2017), of which the 
second year was drier and hotter and therefore permitted to investigate the temporal change of 
plant’s community structure. The results of the spatial trends show that (1) geodiversity increases 
vegetation biodiversity and promotes perennial plants and those of the temporal change show that (2) 
the positive effect of geodiversity on plants’ community structure and species richness is greater in the 
drier year than that in a wetter year. The main insight is that in these drylands, hillslopes with higher 
geodiversity appear to buffer the effect of drier years, and supported a more diverse plant community 
than lower geodiversity hillslopes.

Ecosystems are defined as complex communities of plant, animal and micro-organisms as well as the environ-
ments they are living and interacting with. The recognition and integration of the non-living features as part 
of the ecosystem is nowadays crucial1 even thus the abiotic world is often considered as function of the biotic 
one and not as its own2. An increase awareness on the relevance of the abiotic services led to the recognition in 
recent years of the interconnections between species, habitats and natural processes3,4. In fact, recently the term 
and concept of geodiversity was adopted in the scientific community to define the complex geomorphological 
features that contribute to ecosystem services1,2,4,5.

Geodiversity is defined as the natural assemblage of abiotic conditions within an ecosystem including its 
geological, geomorphological, and pedological features6. Geodiversity encompasses the substrates, landforms, 
and physical processes that govern habitat development and sustainability5. It can be addressed as variability 
between and among sites and it interested all Earth’s zones: litho-, hydro-, cryo- and atmo-sphere. The concept 
of geodiversity includes not only all its components but their relations and the link with the ecosystem they 
sustain7. In this framework, the vary geodiversity features play a crucial role in the conservation of habitats and 
landscape1,8–10.

An important component of geodiversity is the soil stoniness. The position of stones on the ground surface 
regulates hydrological process, as it affects infiltration and evaporation11–13. In fact, during rainfall, stones at the 
soil surface intercept raindrops11, reducing the splash formed by the impact force of raindrops on the soil14 with 
the consequences for processes of water overland flow and soil erosion15,16. On the other hand, stones increase 
water intake rates by preventing surface sealing and crusting17. Also, stones on the ground surface act as an iso-
lation by reducing the soil temperature during the day and increasing the temperature during the night18. This 
temperature regulation resulted in effects on soil–water evaporation19. These processes are dependent on the 
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stones’ size distribution and cover percentage20. Linked to the stoniness on the ground surface, the distribution 
of the stones throughout the soil profile is an important component of geodiversity21–23. The presence or absence 
of rock fragments affect the distribution of soil–water throughout the profile and the ramification of roots, and 
have an impact on soil temperature24–26. Characterization of soil profile is therefore crucial for understanding 
the complex impact of stoniness.

Heterogeneity of the physical environment, alongside with climatic variables, have a crucial effect on veg-
etation living conditions and biodiversity5,27. It was demonstrated that geodiversity affects the distribution of 
vegetation28,29, composition of soil microbes, and the resistance of plant to drought30–32. In drylands, understand-
ing the relation between geodiversity-governed water distributions21 and plants viability is highly important. 
Recent studies from the semi-arid north-western Negev proposed that heterogeneous land units, dominated with 
partially-embedded stones in their ground surface, increase the spatial redistribution of water, with the resultant 
increase in water availability for shrubs32, improving their durability to prolong drought events21. Specifically, 
mass mortality of Noaea mucronata (Forssk.) shrubs was reported for hillslopes with low geodiversity level21,32. 
Recent studies proposed evidence on the buffering effect of geodiverse locations on vegetation diversity in a 
changing environment33,34 as geodiversity can improve adaptability of species and acts as microclimate refugia35,36. 
More empirical data from different climate zones are needed to support the geodiversity–biodiversity relations 
and to be implemented in conservation projects of natural ecosystem6,37,38.

The N. mucronata is a perennial shrub that dominates the north-western Negev (Fig. 2), which shows an adap-
tive response to dryland environments at numerous levels. The adaptation to water-limited environments shaped 
the plant’s metabolism and morphology. Aboveground adaptions comprise changes in leaf morphology, where 
the small narrow winter leaves that emerge after the rain (approximately in November) shed or turn into thorns 
during the dry season, reducing water loss through transpiration39. The seasonal difference in leaf morphology 
result in a total plant size variation from summer (smaller) to winter (larger). The green stems transform into 
grayish fissured bark, which enables the growth of young branches once the wet season starts39. The physiological 
traits of adaptions include the C4 carbon fixation pathway, which correlates with high efficiency in CO2 fixation 
and low transpiration loss under high temperature conditions40. Moreover, at the root level, N. mucronata adapt 
in association with ectomycorrhizal fungi, which improves the plants’ water and nutrient uptake41,42. The N. 
mucronata is considered as a landscape engineer43–45, which improves habitat conditions and facilitates herba-
ceous community in its surroundings by modifying microclimate (reduction of temperature stress due to the 
shading effect) and soil properties (increasing infiltration and reducing evapotranspiration)43,46–48. At the same 
time, it was reported that the N. mucronata may impose some negative effects, such as the suppression of annual 
plants49 through shading and competition50.

Our study investigates the spatial and temporal effect of geodiversity on plant community structure and on 
our model species N.mucronata. The importance of our results is its link with the climatically conditions and 
the novelty of the semi-arid region case. The study objectives were to assess during two compared year, a wetter 
and a drier one, the effect of geodiversity features such as stoniness and depth of the soil profile (1) on the physi-
ological conditions of N. mucronata shrubs, and (2) on plant’s community structure and diversity. Our overall 
hypotheses are that an increase of geodiversity will (1) improve the physiological conditions of N. mucronata 
shrubs and (2) enhance plant diversity.

Materials and methods
Regional settings.  The study was conducted between February 2016 and May 2017 in the fenced area 
(no access for livestocks since 1990s) of the Sayeret Shaked Park (~ 20 ha) (Fig. 1) with the permission of the 
Israel’s LTER Network. The park is located in the semi-arid north-western Negev of Israel (31° 17′ N, 34° 37′ E; 
200 m.a.s.l.), where annual average rainfall is ~ 165 and standard deviation of 58 mm/year21. The site’s soil is aeo-
lian loess, with sandy loamy to loamy sand texture51. The park is covered with dwarf shrubs (0.1–0.6 m tall) such 
as Atractylis serratuloides Cass., Thymelaea hirsuta (L.) Endl., and the dominant N. mucronata shrubs. The site 
has a large number of annuals, geophyte (e.g., Asphodelus ramosus L.) and hemicryptophyte species, as well as a 
rich community of biological crusts50,52–55. In a previous study, a geomorphological survey followed by hillslopes 
mapping took place in Sayeret Shaked starting in July 201521. The results showed the presence of either hillslopes 
without rock fragment cover and hillslopes with substantial (~ 30%) rock fragment cover (Fig. 2). Following the 
study, three low-geodiversity hillslopes, with a thick (> 1 m) and non-stony soil layer, without rock fragment 
cover or rock fragment content in the soil profile (homogeneous: HM; Fig. 2A), and three high-geodiversity 
hillslopes, with a thin (~ 0.1 m) stony soil layer, rock fragment cover (~ 30%) and rockfragment content in the 
soil profile (~ 35%) (heterogeneous: HT; Fig. 2B) were selected for the study. The mean (± SE) slope incline of all 
the hillslope is 5° (±)22. Distance between two adjacent hillslopes was at least 100 m. On each of these hillslopes, 
a 400 m2 (20 × 20 m) plot was established for data collection.

To study the effect of the geodiversity features on plant community, we assessed the plant diversity at a 
once-a-month frequency over the growing season (Feb–May/June) of two sequential years (2016–2017). In 
each of these years, the last cycle of data collection took place when the annual plants were dried out, and at the 
point where the N. mucronata ‘s ‘winter leaves’56 have disappeared. Data of precipitation, solar radiation, soil 
temperature and soil moisture at different depths (25 and 50 cm) were obtained from the meteorological station 
located in the LTER site.

Vegetation survey.  The N. mucronata was the only perennial plant present in both HT and HM hillslope, 
making it the best-fit model species to assess the year-round differences in plant viability. In each plot (n = 6) 
we studied three individual shrubs, to a total of nine individuals per hillslopes type. In order to monitor the 
shrub’s morphological changes during the year, we measured the maximum length of green branches. Also, we 
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measured the plant’s size by measuring the maximum length from a green part to another on a north–south and 
east–west axes, as well as the shrub height. We multiplied the three axes to calculate the maximum plant size. In 
addition to these nine N. mucronata plants, we sampled leaves (winter leaves only) from other nine randomly 
selected N. mucronata plants to estimate their physiological condition, through measuring the relative water 
content (RWC), membrane stability (EC), carbon–nitrogen ratio (C:N), and chlorophyll content.

Biochemical analysis.  Relative water content (RWC).  We added 3–5 g of N. mucronata young leaves of 
each individual to a 50 ml vial with a wet tissue to maintain humidity. The leaves were weighted for fresh weight 
using Sartorius AG Göttingen CP225D, Germany. The samples were submerged in de-ionized water for 24 h and 
then weighted for turgor weight. Additionally, the samples were dried at 65 °C for 24 h in the oven for dry weight.

C:N ratio.  Few leaves from each shrub of N. mucronata were collected for total organic carbon (Corg) and total 
nitrogen content (Ntot) analysis, dried at 65 °C for 12 h and manually ground by mortar and pistil. Of these sam-
ples, 20 mg were put in a C–N analyzer (CHNS Elemental Analyzer, Thermo Scientific, USA).

Membrane stability index (MSI).  From each N. mucronata, 20–30 leaves were collected and placed in 50 ml 
vials filled with 20 ml of double distilled water (DDW). The electrolyte’s electric conductivity (EC) was measured 
with a probe (Eutech Instruments, CON 510, Singapore), as initial leakage (Ci). The samples were then placed 
on a laboratory shaker (TOS-4838PD, MRC Lab Instruments, Holon, Israel) for 12 h at 200 rpm and the EC was 
measured again as Cr. The samples were then autoclaved to blast cell membrane, and the maximum conductivity 
(Cm) was measured. Membrane stability index (MSI) was calculated according to Eq. (1):

Chlorophyll content.  10 leaves of N. mucronata were collected and add into a 2 ml Eppendorf with 1 ml of 
Dimethyl sulfoxide (DMSO), covered with aluminum foils. In the laboratory, vials were kept in a 65 °C incuba-
tor for 72 h and then centrifuged for 14,000 rpm at 20 °C for 10 min. 200 μl of the supernatant was added to a 
96 wells plate and the absorption was read with Epoch™ spectrophotometer (BioTek Instruments, Inc., Vermont, 
USA). Chlorophyll a (Chl a), contents was calculated using Eq. (2)57:

(1)MSI = 100 ∗
Cf−Ci

Cm − Ci

(2)Chla = 13.34 ∗ A666 − 4.85 ∗ A650

Figure 1.   Maps of the study area. Sayeret Shaked LTER location in Israel (A), the location area (B) and the 
plots (C) where the red squares are the homogeneous plots and the blue squares the heteregenous ones (Google 
Earth). Maps data, Google 2021, CNES/Airbus, Maxar Tecnologliges, satellite image accesed through Google 
Earth.
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Vascular plant diversity.  To measure plant diversity, we identified all the vascular plants to the species 
level along 3-m transects (one transect per plot), counted the number of individuals per species, and recorded 
the total cover per species. The monitoring of transects was conducted at a once-a-month frequency throughout 
the growing season (Feb–June 2016 and Feb–May 2017: a total of 11 sampling cycles). Due to overlapping plants, 
vegetation’s total cover could exceed 100%. We classified all plant species into three life forms: annual, perennial 
and herbaceous perennial. The use of any plants in this study was in accord with national guidelines. The formal 
identification of the plant material was performed by Prof. Rachmilevitch. We did not use voucher specimen.

In order to determine the plant diversity in the different hillslope, we calculate species richness (n) as the 
number of species present at the site, and species abundance as the total number of plants present at the site (N). 
In order to determine the diversity in the communities, we calculate the Shannon Diversity Index (Eq. 3) and 
Shannon Evenness Index (Eq. 4) and the Simpson Index (Eq. 5),58,59

Figure 2.   A view of a homogeneous (A) and a heterogeneous (B) hillslopes. In the homogeneous hillslopes, the 
white spots are piles of snails in the vicinity of dead shrubs. The piles indicate the location of dead shrubs. At the 
same time, most of the shrubs in the heterogeneous hillslope are alive, and survived the prolonged drought of 
2008–2009. N. mucronata during spring season (C). A detail of winter leaves (D). Photos courtesy of Prof. Hezi 
Yizhaq.
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where p is the proportion (n/N) of individuals of one particular species found (n) divided by the total number 
of individuals found (N), ln is the natural log, Σ is the sum of the calculations, and s is the number of species.

Data analysis.  Nonparametric Mann–Whitney U test was performed to analyze the meteorological data 
(averaged solar radiation, total rain precipitation, averaged soil temperature and soil moisture at 25 and 50 cm 
depth) of the LTER station of year 2016 and 2017. Kruskal–Wallis one-way analysis of variance was used for 
averaged data of the different hillslopes (HM vs HT) of biochemical data (RWC, MSI and chlorophyll a content) 
as well as for estimated size of shrubs. Non-parametric Dunn’s test for pairwise multiple comparisons was used 
to compared biochemical data of 2016 vs 2017 in the different hillslopes. Analysis of similarity (ANOSIM) was 
performed to explain plant diversity in the different hillslopes per hillslope and per year. Life form composition 
was analyzed with Pearson Chi-Square. All statistical were conducted using SPSS Statistics (SPSS, IBM Corp, 
Version 26.0. Armonk, NY, U.S.A.). Analysis of similarities was carried out in R60.

Results
The two years of sampling were characterized by two different rain regimes (Fig. 3B), where 2016 was substan-
tially wetter compared to 2017 (223 and 96 mm, respectively: Fig. 3B, Mann–Whitney Ranks Sum Test p < 0.001). 
Data of total solar radiation (Fig. 3A) indicates too a significant difference between 2016 and 2017 (22.6 and 
25.1 MJ/m2 year of Solar Radiation respectively, Mann–Whitney Ranks Sum Test p = 0.033). This resulted in 
increase of soil temperature in 2017 at both 25 and 50 cm soil depths (Fig. 3C), as well as the reduction of soil 
moisture at both depths (Fig. 3D).

We did not find significant differences in physiological measurements of N. mucronata plants between the 
two hillslope types throughout the two years of sampling (SI 2). For the phenological measurements, the esti-
mated mean N. mucronata size was greater in HM hillslopes than that in HT hillslopes (Kruskal–Wallis one-way 
analysis of variance, p < 0.0001).

Nevertheless, once we plotted the data for different years (2016 vs 2017), we found a significant difference 
for most of the parameters between the two years, and especially regarding the C:N ratio and RWC. In 2016, 
N. mucronata had a higher C:N ratio (HT, Dunn’s Method: p < 0.05, HM Dunn’s Method: p < 0.05, Fig. 4A) and 
higher RWC (HT Holm–Sidak method: p < 0.001, HM Dunn’s Method: p < 0.05, Fig. 4B) than these in 2017. For 
the C:N ratio, this trend was similar for HT and HM hillslopes (a decrease of 26% and 28% from 2016 to 2017 
in HT and HM, respectively). At the same time, the decrease in RWC was much smaller in HT hillslopes (5%) 
than that in HM hillslopes (11%).

Plant diversity.  We found that plant diversity can be explained by hillslope type (Analysis of similarity: 
R = 0.36, p = 0.0001) (Fig. 5A,B). In addition, we measured the effect of sampling year (SI 6 A, B, C and D), which 
was also significant, though the value explained was lower than the hillslope type (R = 0.11, p = 0.002). Moreover, 
we found a significant difference in life form composition, considering all species found, between the hillslopes 
(Pearson chi-square: Chi Square: 56.7, df = 2, p < 0.0001). HT plots had a higher mean value of perennial (39% 
in HT compared to 3% in HM) as well as higher mean value of herbaceous perennial (13% in HT compared 
to 7.5% in HM) (Fig. 5A,B). Specifically, in HM we found two shrubby species (Pituranthos tortnousus and N. 
mucronata), and a total of 3 individuals, while in the HT we found six shrubby species (N. mucronata, A. articu-
lata, Dianthus monadelphus subsp. judaicus, Salvia lanigera Poir., Helianthemum stipulatum (Forssk.) C. Chr. and 
Helianthemum lippii (L.) Dum. Courset) and a total of 47 individuals. At the same time, the mean value of annu-
als was significantly higher in HM (90% in HM compared to 48% in HT). The annual plant community in HM 
encompassed of 25 species and 110 individuals, while in the HT it encompassed 20 species and 58 individuals.

The accumulated cover of four species contributed to 52.8% of the differences between the two hillslope types. 
These species included Stipa capensis Thunb. (19.6%), N. mucronata (18.8%), Anabasis articulata (Forssk.) Moq. 
(8.6%), and Onobrychista crista-gali (L.) Lam. (5.8%) (Similarity percentage analysis, SI 5). The main differences 
were caused by two perennial plants that were absent from the HM transects: N. mucronata and A. articulata. 
Additionally, once we plotted the annuals’ diversity data per year (SI 6 A–D), we found that the annual commu-
nity structure in the HT hillslopes during the shift from 2016 to 2017 became more even, with a more uniform 
abundance of species (SI 6 A and B). An opposite trend was found for the HM hillslopes, where an increase in 
abundance of dominant species was observed (SI 6 C and D).

Species richness and abundance are reported in Table 1. Species richness was similar in HT and HM hillslopes 
(31 and 30 species, respectively). Once comparing 2016 to 2017 year—with equal species richness in both of the 
hillslope types but different structures and abundance in 2016—HT hillslopes faced an increase in 2017, while 
HM hillslopes faced a decrease.

(3)ShannonDiversity Index(H) = −

s∑

i=l

pi ln(pi)

(4)Shannon Evennes Index(SEI) = −
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i
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Figure 3.   Average solar radiation (± SE) (A), total rain (B), average soil temperature (± SE) (C), and average soil 
moisture (± SE) (D), for 2016 (n = 269) and 2017 (n = 337). For relative trend of meteorological parameters in the 
period 2000–2015 see SI 1.

Figure 4.   Mean C:N ratio (A) and Relative Water Content (RWC: B) in N. mucronata leaves at the 
heterogeneous and homogeneous hillslopes, for 2016 and 2017.
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To gain more insights about the community structure, we calculated the Shannon Diversity Index and Simp-
son Diversity Index (Table 1). Overall, HT hillslope had a higher diversity (Shannon Diversity Index in HT was 
3.5% higher than that in HM). Further, once we calculated the yearly data, we found that in 2017 the drop of 
diversity in HM hillslopes was significant, whilst a significant increase was observed for HT hillslopes. Moreover, 
in 2017, the Shannon Evenness Index showed an increase in HT hillslopes and a decrease in HM hillslopes. This 
suggests that in HM hillslopes, the functional group encompass few dominant species with high abundance and 
few sparser species with low abundance. In HT hillslopes, the community structure was more even.

Figure 5.   Life form composition in heterogeneous (A) and homogeneous (B) hillslopes. Differentiation among 
perennial (red), herbaceous perennial (blue), and annuals (green) is presented in the left circles, and species-
level differentiation of annuals is presented in the right circles (only species that represent more than 2% were 
included in the figure). For the total list of the species SI 3–4.
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Discussion
The aims of our study were to assess the spatial effect of geodiversity, express as stoniness and depth of the soil 
profile in different hillslopes, on the physiological conditions of N. mucronata shrubs and plant’s community 
structure and diversity. We showed that the geodiversity features promote a more diverse plant community 
(Fig. 5A,B). During the two years monitoring (2016–2017) the second year happened to be significant drier 
with repercussion on soil temperature and moisture at different depth (Fig. 3). This fact allowed us to have 
insights about the temporal effect of geodiversity features to mitigate drier years. In fact, annual communities on 
hillslopes with lower geodiversity tend to suffer a decrease in diversity during the drier year (SI 6 and Table 1). 
Previous studies from the semi-arid north-western Negev suggested that hillslope-scale geodiversity improves 
the source–sink relations29 and positively affect soil quality and geo-ecosystem functions. Specifically, it was 
reported that the HT hillslopes had 22% greater mean hygroscopic moisture22 then that in HM hillslopes. This 
result can indirectly indicates a similar availability of soil water for plants. The comparatively favorable conditions 
in the HT hillslopes were proposed to be the key of survival of N. mucronata plants during the mass mortality 
that occurred during different drought events started in 199932.

Geodiversity components such as geomorphology, topography, geology, and hydrology are associated with 
energy and nutrients, which regulate biodiversity61,62. Nevertheless, only recently, the impact of geodiversity on 
biodiversity has gained attention63–66. Considering global climatic change, it was proposed that high-geodiversity 
land units are potentially more capable to support biodiversity because of their intrinsic resilience65,67–69. In our 
study, the favorable soil conditions in HT hillslopes were not straightforward translated into a better physiological 
state of plants (SI 2), as we expected in our first hypothesis. Our biochemical analysis did not show a prominent 
effect of geodiversity features over the physiological conditions of N.mucronata, when we compared the plots 
(HT vs HM) (SI 2). Despite that, during 2017, the shrubs in HM hillslopes faced stronger water stress compared 
to these in HT hillslopes (Fig. 4B). The positive effect of increased geodiversity on hygroscopic moisture22, and 
the overall higher soil–water content in HT hillslopes70, might explain the reduced water stress for shrubs in 
HT hillslopes32,71.

The shrub patch is the driver of the cyclic succession of plants community48,72–74. According to the biodiver-
sity cyclic hypothesis48, once the patch is consolidated, the dissimilarity in community structure between the 
shrubby patches and interpatch spaces increases. Therefore, shrublands patchiness is critical for sustaining spatial 
heterogeneity75. In our study region, the HT hillslopes have higher patchiness, mainly due to higher geodiversity 
that supports shrub durability to droughts. Regarding our second objective on the effect of geodiversity on the 
plant community structure, we found that the perennials in HM were 2% of the community structure, whilst 
being 38% in HT (Fig. 5A,B). In HM, the annuals contributed 90% of the total community structure, while in HT 
they contributed 48% (Fig. 5A,B). The high cover of annuals in the HM hillslopes compared to the HT hillslope 
displays one possible response of the ecosystem to prolonged droughts that is a transition from shrubland to 
grassland. This transition did not occur in the HT hillslopes due to the effect of geodiversity that increase their 
resistance to drought. The ecosystem in the HM does not collapse to the bare soil as predicted by many math-
ematical models of vegetation patterns in drylands that include only wood vegetation but it is actually shifted 
to another stable state76,77.

The annual community structure faced a shift from the wetter 2016 to the dryer 2017 in both hillslopes (SI 
6 A–D). In HT hillslopes, the annuals community become more even, having fewer dominant species with 
high abundance (SI 6 A and B). At the same time, in HM hillslopes, the annuals’ community structure became 
less even (SI 6 C and D). In our diversity analysis, we showed that in the drier year, plant diversity increased 
in HT hillslopes (Table 1) and decreased in HM hillslopes. Different simulation studies, where plant commu-
nities underwent abiotic stresses related to climate changes—such as higher temperature or lower precipita-
tions—showed similar results78,79. It was shown that community response to changes is rapid (two seasons), and 
that stresses can change patterns of plant dominance and evenness78,79. Changes in dominance in community 
composition can have consequences for species coexistence and ecosystem functions80. Recent studies show 
that locations with high geodiversity have the potential role to act as hotspot for biodiversity and to maintain 
community’s structure due to their function to buffer climatic changes66,81. In our study, we show that the effect 
of geodiversity features on community structure and species richness is greater in the drier year than that in a 
wetter year. Our results suggested that hillslopes with higher geodiversity might be in situ refugia that facilitate 
the existing community and in shifting climate periods might serve as biodiversity spots82–86.

Table 1.   Mean species richness and species abundance in the Heterogeneous (HT) and homogeneous (HM) 
hillslopes in 2016 and 2017 years.

Plot Species richness (n)
Species abundance 
(N)

Shannon Diversity’s 
Index (H)

Simpson Diversity’s 
Index (D)

Shannon Evenness 
Index (E)

HT (2016–2017) 31 122 1.71 ± 0.01 2.59 ± 0.01 0.50

HM (2016–2017) 30 121 1.65 ± 0.01 2.59 ± 0.01 0.49

HT (2016) 19 141 1.43 ± 0.02 2.23 ± 0.02 0.49

HT (2017) 22 102 2.02 ± 0.02 4.01 ± 0.01 0.65

HM (2016) 19 71 1.83 ± 0.02 3.78 ± 0.01 0.62

HM (2017) 17 51 0.90 ± 0.01 1.47 ± 0.04 0.32
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Our results aligned with the findings of recent studies that suggest that integrating geodiversity in conser-
vation nature projects becomes a necessity to protect ecosystems and their services10,65,87 and offer the oppor-
tunity to broad the data availability. In fact the connection between biodiversity and geodiversity allow to use 
geodiversity measurements, more spatial consistent and therefore available at broader scale, and relating them 
to biodiversity64,88.

Conclusion
The motivation of this study was to understand how different geodiversity features, expressed by the degree of 
stoniness and soil thickness, affect the physiological state of N. mucronata and the plant life form variability. In 
conclusion, our data show that in a semi-arid regions, hillslopes with higher geodiversity better buffer the effect of 
drier years, and supported a more diverse plant community compared to lower geodiversity hillslopes. The poten-
tial role of sites with higher geodiversity to mitigate climate change effects in terms of persistence of biodiversity 
should be take into consideration when planning for conservation actions and ecosystem management84,89,90 
In this context, additional studies should be conducted in other drylands of the world in order to verify the 
mechanisms through which geodiversity regulates the structure and composition of vegetation community.
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