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A core collection of pan-
schizophrenia genes allows building 
cohort-specific signatures of 
affected brain
Qinglian Xie1, WenWu Shen1, Zhixiong Li2, Ancha Baranova3,4, Hongbao Cao3,5,6 & Zhe Li7

To investigate whether pan-schizophrenia genes could be leveraged for building cohort-specific 
signatures reflecting the functioning of the affected brain, we first collected 1,518 schizophrenia-
related genes upon analysis of 12,316 independent peer-reviewed literature sources. More than half 
of these genes have been reported in at least 3 independent studies, and a majority (81.4%) were 
enriched within 156 functional pathways (p-values < 1e-15). Gene expression profiles of brain tissues 
were extracted from 14 publicly available independent datasets, and classified into “schizophrenia” and 
“normal” bins using dataset-specific subsets of core schizophrenia collection genes built with either a 
sparse representation-based variable selection (SRVS) approach or with analysis of variance (ANOVA)-
based gene selection approach. Results showed that cohort-specific classifiers by both SRVS and 
ANOVA methods are capable of providing significantly higher accuracy in the diagnosis of schizophrenia 
than using the whole core genes (p < 3.38e-6), with relatively low sensitivity to the ethnic backgrounds 
or areas of brain biopsies. Our results suggest that the formation of consensus collection of pan-
schizophrenia genes and its dissection into the functional components could be a feasible alternative to 
the expansion of sample size, which is needed for further in-depth studies of the pathophysiology of the 
human brain.

Schizophrenia is a highly heritable severe mental disorder characterized by abnormal behavior and a decreased 
ability to understand reality1. In the United States, the costs associated with schizophrenia impose a heavy finan-
cial burden on families and society2. Genetic factors, environmental factors, and life history play critical roles in 
the development of this mental condition3–5.

In recent years, many genetic markers/genes associated with schizophrenia have been uncovered; for many of 
these genes, their relation to schizophrenia was confirmed in at least two independent publications. Information 
concerning the genes somehow associated with schizophrenia may be used for modeling of this disease in silico, 
which, in turn, may facilitate the discovery of a minimally invasive biomarker for this disease, improve the diag-
nosis and contribute to the prevention of schizophrenia6. However, due to the heterogeneity of schizophrenia7 
as well as varying penetrance of the genetic polymorphisms predisposing to schizophrenia in different popula-
tions8,9, the genes reported from one study usually lack replication in other studies, leading to a sizable pool of 
schizophrenia-associated genes after curation. Because of that, using an entire pool of schizophrenia-associated 
genes may not produce an adequate model to cover this disease in terms which are general enough to be appli-
cable to all populations or to all variations in its symptoms. This conundrum may be solved either by produc-
ing multiple models of schizophrenia, each one fitting a particular need, or by building a “core” model of this 
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condition, which may be later augmented with additional functional blocks, which may be either population- or 
symptom-specific.

To explore whether a “core” model of schizophrenia could be built, we conducted a comprehensive litera-
ture review to identify a curated pool of 1,518 schizophrenia-related genes. This work was undertaken under 
the assumption that only a small percentage of genes from an entire pool of schizophrenia-related genes are 
capable of differentiating any subset of schizophrenia patients as selected by particular symptom or other char-
acteristics from a group of matched healthy controls. Then we employed a sparse representation-based variable 
selection (SRVS) algorithm for the further selection of the model components. In previous works, the SRVS 
algorithm has been demonstrated as an effective tool for the selection of genetic and imaging features under a 
condition when a considerable number of variables is studied in a relatively small number of samples10. Therefore, 
here, we employed the SRVS method to select cohort-specific genes from the pan-schizophrenia gene pool with 
the expectation to reach the best resultant differentiation of the schizophrenia patients from healthy controls 
within the cohort. To note, the purpose of this study is to test if the collected 1,518 pan-schizophrenia genes 
could be used as a gene pool to build core models for schizophrenia patients selected corresponding to differ-
ent symptoms or other characteristics. Therefore, well-known or well-established validation methods should be 
employed rather than explore novel methods. Microarray gene expression data have been demonstrated effective 
for gene network-based classification11. Therefore, in this study, we used gene expression data unbiasedly-selected 
from a publicly available database (GEO: Gene Expression Omnibus) for the gene selection and validation 
approaches. However, instead of analyzing the whole genome, the expression data-analysis will be based on 
the 1,518 pan-schizophrenia gene pool, which will reduce noise and increase diagnosis efficiency and accuracy. 
The hypothesis is that, although the use of all genes described in the literature will not give good classifiers, the 
pan-schizophrenia pool curated from previous large-scale studies contains majority schizophrenia-related genes.

This approach may lead to highlighting cohort-specific gene markers identification targeting accurate diag-
nosis that is necessary for precision treatment. The formation of consensus collection of pan-schizophrenia 
genes and its dissection into the functional components provide a feasible alternative to expansion of sample 
size. We summarize the novelty of this study as follows. (1) As far as we know, this is the first study curating a 
1,518-pan-schizophrenia gene pool upon large-scale literature-based analysis of 12,316 schizophrenia references. 
(2) We proposed an effective and efficient approach (pan-schizophrenia gene pool-based gene expression data 
analysis) to identify cohort-specific gene markers targeting accurate diagnosis that is necessary for precision 
treatment. (3) We proposed a potentially feasible alternative to expansion of sample size in the identification of 
effective gene markers needed for precision treatment.

Results
Analysis of knowledge-based connections between each of schizophrenia-associated genes 
and schizophrenia.  In the course of comprehensive literature data mining effort, we collated a total of 12,316 
scientific articles reporting 1,518 genes associated with schizophrenia. The full list of these genes, and the sup-
porting references for each gene-disease relationship, including title, publication year, authors, their affiliations, 
and relevant sentences from the full-text manuscript may be found in the in the table SCZ_2018→SCZ_Genes, 
which is online available at http://gousinfo.com/database/Data_Genetic/SCZ_2018.xlsx.

Figure 1(a) presents the percentages of genes supported by various amounts of publications. Over half of 
the 1,518 genes have been reported in at least 3 independent studies, making them less likely to turn false pos-
itives. Figure 1(b) presents the Top 15 affiliations of the research teams endorsing the data. These 15 affiliations 
account for only 0.4% (15/4172) of a total amount of research institutions contributed to the identification of 

Figure 1.  Knowledge-based connections between each of schizophrenia-associated genes and schizophrenia. 
(a) Bar graph which reflects relative shares of schizophrenia-associated genes supported by varying amount of 
references. (b) Top 15 research institutions which contributed to uncovering the relationships between each 
gene and schizophrenia.
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schizophrenia-associated genes while covering near half (46.8%) of the entire gene set. For the detailed analysis 
of these references, please refer to SCZ_2018→Ref4SCZGenes.

GSEA Results
A complete list of significantly enriched pathways/gene sets (N = 156, p-value < 6.4e-16) could be found in 
SCZ_2018→GSEA. A total of 1,236 out of the 1,518 schizophrenia-related genes (81.4%) were found to partic-
ipate in one or another of significantly enriched pathways. In Table 1, we present the Top 10 pathways/groups, 
each with a p-value of less than 1.3e-103. Of note, the top 10 pathways encompassed a total of 635 out of 1,518 
schizophrenia-associated genes (41.83%). A majority of significantly enriched pathways have been implicated in 
the pathogenesis of schizophrenia in previous studies, thus supporting that the relationships between the genes 
and the disorder were mined correctly. The pathway analysis was conducted using Pathway Studio against the 
Gene Ontology (GO).

Classification Results
The information of the 14 selected datasets was provided in Table 2, as bellow.

Table 3 summarizes the results of leave-one-out (LOO) cross-validation of the two applied techniques of 
gene ranking, SRVS and ANOVA, in each of 14 datasets, including the maximum CR, amounts of genes in the 
top classifier, and permutation p-values. For each given dataset, the constituents of optimal classifiers selected by 
SRVS and ANOVA differed substantially. The classifiers selected by the same algorithm being applied to different 
dataset also differ, reflecting both underlying differences in gene expression profiles between various brain tissues 
and between populations of patients. Table 3 shows that both SRVS and ANOVA based classifier led to signifi-
cant classification ratio (CR) compared to non-core based classifier (the averaged permutation p-value < 6.30e-3 
and < 5.00e-4 for SRVS and ANOVA, respectively). Across all 14 datasets, using the entire core collection of 
schizophrenia genes over a randomly selected set of genes with a similar size presented negligible advantage 
(p-value = 0.41 ± 0.37). For each of the 14 expression datasets, the constituents of optimal classifiers (a list of gene 
symbols) are presented in SCZ_2018→Classifiers_SRVS and SCZ_2018→Classifiers_PValue, corresponding to 
SRVS and ANOVA selected classifiers (gene markers), respectively.

Name of the process or pathway GO ID # of Entities Overlap p-value

behavior 0007610 713 277 7.2e-140

synapse part 0044456 715 268 3.2e-135

single-organism behavior 0044708 513 218 6.0e-118

cell communication 0007154 932 290 7.8e-118

neurotransmitter receptor 0030594 230 93 1.1e-116

modulation of synaptic transmission 0050804 364 184 1.7e-115

cell body 0044297 630 226 2.9e-108

synaptic signaling 0099536 356 172 1.3e-103

chemical synaptic transmission 0007268 356 172 1.3e-103

anterograde trans-synaptic signaling 0098916 356 172 1.3e-103

Table 1.  Top 10 pathways/functional groups with an overrepresentation of genes previously described as 
associated with schizophrenia. These Top 10 pathways/functional groups cover a total of 636 genes with 
enrichment p-values < 1.3e-103.

N of Cases/Controls
N of genes in common with the curated 
dataset of schizophrenia-related genes Specimen studied Population

GSE12649 35/34 1276 prefrontal cortex Japan

GSE12654 13/15 1112 prefrontal cortex Japan

GSE12679 16/11 1440 dorsolateral prefrontal cortex United Kingdom

GSE17612 28/23 1440 BA10 United Kingdom

GSE21138 30/29 802 prefrontal cortex USA

GSE21935 23/19 1440 BA22 United Kingdom

GSE26927 10/55 1392 Multiple Brodmann areas United Kingdom

GSE35974 44/50 1469 parietal cortex China

GSE35977 51/50 1469 parietal cortex China

GSE35978 95/100 1469 parietal cortex China

GSE53987 48/55 1440 prefrontal cortex (BA46) USA

GSE62191 29/30 693 frontal cortex Brazil

GSE87610 65/72 1406 prefrontal cortex USA

GSE93987 67/106 1429 prefrontal cortex USA

Table 2.  Key descriptors of 14 schizophrenia-related datasets selected for this study.
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Figure 2 presents a bar graph which reflects dataset-specific CRs and p-values for classifiers obtained by 
SRVS-based and ANOVA-based selection, as well as by utilizing all available schizophrenia-associated genes 
detected within each dataset. Both SRVS and ANOVA classifiers significantly outperform classifier built upon 
entire schizophrenia signature (p < 3.38e-6; CR = 83.16 ± 12.78, 82.36 ± 8.61 and 63.19 ± 8.09 for SRVS 
classifier, ANOVA classifier, and entire signature, respectively (Fig. 3). Moreover, classifiers built upon entire 
schizophrenia-related signature (N = 1,518 genes) have not presented an advantage over the pan-signature clas-
sifiers built upon an equivalent amount of randomly selected genes (CR = 0.41 ± 0.37). No significant differences 
between SRVS and ANOVA based CRs were detected (p-value = 0.85) (Table 3).

CR1 CR2 CR3 G1 G2 G3 P1 P2 P3

GSE12649 89.86 75.36 59.42 141 1 1276 <2.00e-4 <2.00e-4 0.12

GSE12654 92.86 89.29 60.71 163 10 1112 <2.00e-4 <2.00e-4 0.45

GSE12679 85.19 100 66.67 30 52 1440 <2.00e-4 <2.00e-4 0.07

GSE17612 90.20 88.24 52.94 30 60 1440 <2.00e-4 <2.00e-4 0.17

GSE21138 86.44 74.58 66.10 31 19 802 <2.00e-4 2.80e-3 0.64

GSE21935 88.10 85.71 64.29 675 27 1440 <2.00e-4 <2.00e-4 2.52e-2

GSE26927 93.85 89.23 69.23 64 40 1392 <2.00e-4 1.60e-3 0.93

GSE35974 89.36 84.04 64.89 28 14 1469 <2.00e-4 <2.00e-4 0.92

GSE35977 82.18 77.23 71.29 290 107 1469 <2.00e-4 2.00e-4 5.00e-3

GSE35978 53.38 71.28 52.31 27 17 1469 8.06e-2 <2.00e-4 0.24

GSE53987 55.34 68.93 52.43 58 2 1440 <4.80e-3 4.00e-4 1.00

GSE62191 79.66 76.27 54.24 44 11 693 <2.00e-4 <2.00e-4 0.48

GSE87610 90.51 86.13 74.45 517 238 1406 <2.00e-4 <2.00e-4 0.02

GSE93987 87.28 86.71 75.72 108 9 1429 <2.00e-4 <2.00e-4 0.65

Table 3.  SRVS and ANOVA analysis of optimal gene expression classifiers in 14 schizophrenia-related datasets. 
Note: CR: classification accuracy. CR1: CR by SRVS Score; CR2: CR by PValueSCore (ANOVA); CR3: CR built 
upon all the 1518 schizophrenia-related genes that were also included in a dataset; G1: Amount of genes selected 
by SRVS Score; G2: Amount of genes selected by PValueSCore (ANOVA); G3: Amount of all schizophrenia-
related genes in each dataset; P1: Permutation p-value by SRVS Score classifier; P2: Permutation p-value by 
PValueSCore (ANOVA) classifier; P3: Permutation p-value after using all schizophrenia-related genes present in 
a given dataset as a classifier.

Figure 2.  Bar graphs presenting the performance of SRVS, ANOVA and pan-signature classifiers in 14 
expression datasets. (a) Classification ratio; (b) Permutation p-value (−10 * log (p-value)).

https://doi.org/10.1038/s41598-019-48605-3
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Comparison of the gene sets selected as best classifiers by SRVS and ANOVA procedures.  The 
gene sets selected as classifiers in 14 different studies with SRVS and ANOVA were compared using Jacquard 
Similarity score (JSScore)12, as shown in Fig. 4. The genes included (the classifiers) in each gene set and respective 
JSScores are provided in SCZ_2018 (Classifiers_SRVS, Classifiers_PValue, and JaccardSimilarity, respectively).

As shown in Fig. 3, dataset-specific classifier gene sets hardly overlap (JSScore < 0.35). This unexpected find-
ing may be explained by the factors playing a role only in a specific study, for example, the type of the brain tissue 
profiled for its mRNA profile. To test if small sizes of detected gene set overlaps were caused by any of the factors 
intrinsic to each of the studied cohorts, a 3-way ANOVA analysis was conducted. Table 4 shows that none of these 
three evaluated parameters exerted a significant influence on the JSScore (p-value > 0.40).

Discussion
Schizophrenia affects approximately 1 in 100 people worldwide1. During the past decade, many studies have 
aimed to extract genetic contributors to schizophrenia phenotypes. A typical output of any such research pre-
sented a differentially expressed gene set substantially differing from that obtained by analyzing any other inde-
pendent cohort, a feature commonly explained by cohort-to-cohort differences in terms of its size, ethnicity, the 
characteristics of the disease itself, and the technical differences in the data processing. We hypothesize that these 
minimally-overlapping gene sets, however, maintain a strong functional association with schizophrenia as well as 
with each other, and provide the pathophysiological underpinning of the disease en masse.

In this work, all schizophrenia signature genes collected across more than 12,000 automatically parsed 
research manuscripts were combined into one database. Initial gene set enrichment analysis (GSEA) of the entire 
collection of schizophrenia-related genes sorted them into 156 molecular pathways/functional groups. Among 
them, 18 pathways/gene sets encompassing a total of 644 unique genes were related to the nervous system, 3 

Figure 3.  Box-plot of the performance of classifiers built by SRVS and ANOVA ranking procedures as well as 
by pan-signature classifiers across 14 datasets.

Figure 4.  Jaccard Similarity of the dataset-specific classifier gene sets selected by SRVS and ANOVA techniques. 
SRVS outputs are labeled as ‘SRVS with respective GSE ID’; ANOVA outputs are labeled as ‘PVal with respective 
GSE ID’. Diagonal entries represent the Jaccard Similarity of a study with itself, which is always equal to one. The 
ones on the diagonal line were set to zeros.
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pathways/gene sets with 163 unique genes were related to brain function development, and 2 pathways/gene sets 
with 277 unique genes were related to behavior. These connections were expected. For instance, out of 713 genes 
comprising GO: behavior (GO ID: 0007610), a total of 277 genes were related to schizophrenia; many of these 
genes also harbor variant sequence positions independently associated both with the behavioral response to stress 
and to psychotic symptoms13. There was also a 256-gene intersection between pan-schizophrenia signature and 
715 genes comprising GO: synaptic part (GO ID: 0044456); respectively, deregulation of synaptic activity is one 
of most recognized contributors to schizophrenia etiology14,15.

It is, however, expected that only a subset of pan-schizophrenia gene collection will be associated with particu-
lar features of the disease, or be expressed in the particular region of the brain, or be involved in the development 
of this disease in individuals with particular ethnic background. To test this hypothesis, further evaluation of 
pan-schizophrenia gene collection was performed through independent rounds of case/control classifications 
conducted with two different algorithms for gene selection, namely, SRVS and ANOVA, in fourteen publicly 
available gene expression datasets. These algorithms aid in ranking potential classifiers by arranging them in a 
list according to SRVSScore or PValueScore, respectively. Both algorithms also provide for an optimal amount of 
classifiers which ensures the best accuracy of resultant classification.

Notable, amounts of genes selected by either SRVS or ANOVA methods showed significant variation across 
datasets (Table 3), pointing at other factors that affect the composition of an optimal set of features at play. As 
shown in Table 2, the fourteen datasets were collected by profiling patient populations with different ethnic back-
grounds, moreover, the areas of brain biopsies were different as well. Nevertheless, these very obvious variables 
were found to have a negligent effect on the variation in the composition of best-classifying signatures across 
datasets (Table 3).

It seems that low robustness of classifier signature in schizophrenia is inherent to the nature of analyzed data, 
as it relates to the small number of samples comprising each discovery dataset. This problem has been extensively 
studied in relation to predictive signatures of cancer progression16,17. In particular, several published datasets on 
breast carcinoma were re-analyzed to show that achieving the desired overlap of 50% between two predictive gene 
signatures, and at least several thousand patients should be enrolled in each discovery cohort18. Understanding of 
sample set limitations gained in course of these studies was later translated into a number of national and inter-
national biobanking initiatives resulting in accrual of a substantially larger cohort of patients for a majority of 
common cancers19. It is, however, not expected that the collection of post-mortem needle biopsy or whole-brain 
specimens well achieve requisite numbers in either short-term or mid-term perspective. Therefore, an analysis 
of available or yet-be-available schizophrenia-related datasets is expected to produce non-robust signatures with 
characteristics similar to that described for early discovery datasets mined for outcome-associated signatures. 
In particular, according to analysis published in17, each of these datasets would be expected to include (1) many 
hundreds of genes correlated with the presence of schizophrenia; (2) many hundreds of genes with approximately 
same degree of correlation to presence of schizophrenia or any of its isolated features; (3) these correlations would 
be expected to vary dramatically when measured over different subsets of patients within the same dataset.

In light of this prediction, the formation of consensus collection of pan-schizophrenia genes and its dissection 
into the functional components provide a feasible alternative to expansion of sample size. Our study suggested 
that cohort-specific classifiers selected from the pan-schizophrenia gene collection are capable of providing high 
accuracy in the diagnosis of schizophrenia according to expression signature in the brain, with relatively low 
sensitivity to a region of sampling. With that, our study provides for an interesting avenue for further in-depth 
studies of the pathophysiology of the human brain.

Our results guaranteed several further studies. First, we employed 14 datasets from GEO. Observations from 
this study need to be validated using more datasets of different data type (e.g., GWAS data) from other database 
repositories (e.g, ArrayExpress: https://www.ebi.ac.uk/arrayexpress). In addition, we used two methods for gene 
selection (SRVS and ANOVA). Other feature selection methods can be employed when replicating the workflow.

Materials and Methods
To identify all possible schizophrenia-related genes, a large-scale systematic gene-disease relation data analysis 
was conducted in Pathway Studio environment (www.pathwaystudio.com)20. For each of these genes, its expres-
sion levels were investigated in 14 independent schizophrenia-related datasets that are publically available from 
gene expression omnibus (GEO; www.ncbi.nlm.nih.gov/geo/), following the workflow as follows: (1) quantitative 
evaluations were obtained using two statistical methods: sparse representation based variable section (SRVS)10 
and one-way analysis of variant (ANOVA); (2) to select the best dataset-specific subset of genetic contributors, 
a case/control classifications, followed by a leave-one-out (LOO) cross-validations, have been performed. The 
diagram of the workflow of this study is presented in Fig. 5.

Source Sum Sq. d.f. Mean Sq. F P > F

Brain Region 0.0098 5 0.0020 0.060 1.00

Ethnicity 0.082 13 0.0063 0.18 1.00

SRVS or ANOVA 0.024 1 0.024 0.70 0.40

Error 26.70 764 0.035

Total 26.82 783

Table 4.  The output of 3-way ANOVA test for the influence of cohort-specific factors on Jacquard similarity of 
dataset-specific classifier gene sets.

https://doi.org/10.1038/s41598-019-48605-3
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Relationships between each gene and the schizophrenia.  The literature-based search for 
schizophrenia-related genes was performed in Pathway Studio environment (www.pathwaystudio.com). Each of the 
uncovered relationships was supported by one or more supporting references. Genes were ranked by the total num-
ber of references linking them to schizophrenia. The list of these genes and the relationships between these genes and 
schizophrenia has been listed in the Table SCZ_2018 (http://gousinfo.com/database/Data_Genetic/SCZ_2018.xlsx).

GSEA analysis of schizophrenia-related genes.  To explore the functionality of the literature-mined 
schizophrenia genes and identify their related pathways, a Gene Set Enrichment Analysis (GSEA) has been con-
ducted using Pathway Studio, with an input of the complete list of identified genes (N = 1,518), and the outputs of 
the enriched pathways/gene sets and the related statistics. The GSEA has been conducted against several pathway 
databases, including Gene Ontology (GO), Pathway Studio Ontology and Pathway Studio Pathways.

Selection of expression datasets.  In this study, we used 14 schizophrenia-related expression datasets 
presented in Table 2. The datasets were selected by using the Illumina Correlation Engine (http://www.illumina.
com) with keyword ‘schizophrenia’. All datasets are publicly available at GEO. The data selection criteria were as 
follows: (1) The organism is Homo sapiens; (2) The data type is RNA expression by array; (3) The sample size is 
no less than 30 specimens; (4) The study has case-control design; (5) The dataset and its format files are publically 
available; (6) Specimens represent various regions of the brain. From each dataset, expression data for the nor-
mal controls and for schizophrenia patients were extracted and then used for case/control classification. Before 
classification, the expressed gene sets were trimmed to include only the genes presented in the curated dataset 
of schizophrenia-related genes SCZ_2018→SCZ_Genes. To note, the gene identification process was based on 
12,316 scientific articles, which is independent of the 14 datasets selected.

Gene marker selection.  A sparse representation-based variable selection (SRVS) algorithm has been 
described in details previously10. In each gene expression dataset, all detected mRNAs also present in manually 
curated schizophrenia gene database were ranked by SRVS algorithm. For each gene, a sparse weight, named 
“SRVS Score”, was assigned by SRVS. The gene vector, composed of the top n genes selected by SRVS, has been 
utilized as the dataset-specific classifier for cases and controls, where n is the number of genes corresponding to 
the maximum classification ratio (CR) as defined in Eq. (1).

=classification Ratio CR correctly classification subjects
total subjects

( ) #
# (1)

The classification approach is described as follows. For a given data set, the schizophrenia-associated genes 
were ranked in descending order, based on their SRVS Scores. Subsequently, a Euclidean distance-based multi-
variate classification10 was performed for each dataset, followed by a leave-one-out (LOO) cross-validation pro-
cedure21. For each run of LOO, the gene expression level of one sample within a dataset was used for testing, while 
the expression data of the rest samples were used as a training set. The inputs of the classifier were the expression 
values of the top n (n = 1, 2 …) genes; in this way, the CRs of the top n genes were determined. A permutation of 
5,000 runs was then conducted to test the hypothesis that randomly selected gene sets of the same size can reach 
equal or higher CR, and the permutation P-values (number of runs with equal or better CRs over the number of 
total runs) were calculated. The gene vector that generated the highest CR was considered the best dataset-specific 
classifier, and, therefore, selected.

Following the same process, the best gene vector selected by the traditional ANOVA approach was identified 
for each dataset. For comparison purposes, CR baselines were generated using randomly selected gene sets of n 
(n = 1, 2 …) genes. For each point of the CR baseline, the value was the mean of 300 CRs, which were produced 
by randomly selected dataset-specific sets of any genes detected as expressed within this dataset.

Figure 5.  Diagram of the workflow for building a “core” model of schizophrenia.
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Data Availability
The processed data required to reproduce these findings are available upon request of the corresponding author.
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