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Abstract

Research Article

Background: Prediction of clinical outcomes for individual cancer patients is an important step in the disease diagnosis and subsequently 
guides the treatment and patient counseling. In this work, we develop and evaluate a joint outcome and biomarker supervised (estrogen receptor 
expression and ERBB2 expression and gene amplification) multitask deep learning model for prediction of outcome in breast cancer patients in 
two nation‑wide multicenter studies in Finland (the FinProg and FinHer studies). Our approach combines deep learning with expert knowledge 
to provide more accurate, robust, and integrated prediction of breast cancer outcomes. Materials and Methods: Using deep learning, we 
trained convolutional neural networks (CNNs) with digitized tissue microarray (TMA) samples of primary hematoxylin‑eosin‑stained breast 
cancer specimens from 693 patients in the FinProg series as input and breast cancer‑specific survival as the endpoint. The trained algorithms 
were tested on 354 TMA patient samples in the same series. An independent set of whole‑slide (WS) tumor samples from 674 patients in 
another multicenter study (FinHer) was used to validate and verify the generalization of the outcome prediction based on CNN models by 
Cox survival regression and concordance index (c‑index). Visual cancer tissue characterization, i.e., number of mitoses, tubules, nuclear 
pleomorphism, tumor‑infiltrating lymphocytes, and necrosis was performed on TMA samples in the FinProg test set by a pathologist and 
combined with deep learning‑based outcome prediction in a multitask algorithm. Results: The multitask algorithm achieved a hazard ratio (HR) 
of 2.0 (95% confidence interval [CI] 1.30–3.00), P < 0.001, c‑index of 0.59 on the 354 test set of FinProg patients, and an HR of 1.7 (95% CI 
1.2–2.6), P = 0.003, c‑index 0.57 on the WS tumor samples from 674 patients in the independent FinHer series. The multitask CNN remained 
a statistically independent predictor of survival in both test sets when adjusted for histological grade, tumor size, and axillary lymph node 
status in a multivariate Cox analyses. An improved accuracy (c‑index 0.66) was achieved when deep learning was combined with the tissue 
characteristics assessed visually by a pathologist. Conclusions: A multitask deep learning algorithm supervised by both patient outcome and 
biomarker status learned features in basic tissue morphology predictive of survival in a nationwide, multicenter series of patients with breast 
cancer. The algorithms generalized to another independent multicenter patient series and whole‑slide breast cancer samples and provide 
prognostic information complementary to that of a comprehensive series of established prognostic factors.
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IntroductIon

In this study, we suggest a novel approach for extraction of 
cancer outcome‑related information[1‑4] from tissue morphology 
by joint outcome and biomarker supervised deep learning with 
convolutional neural networks (CNNs). This technique is known 
as multitask learning[5] and has not been previously applied 
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to outcome prediction in breast cancer using conventional 
hematoxylin‑eosin (H and E) stained digitized tissue specimens. 
It has been demonstrated that a multitask approach can improve 
the accuracy of classification of breast tissue samples according 
to histologic type and grade of differentiation[6] as well as 
diagnosis of breast cancer in mammograms.[7]

In breast cancer, the expression of estrogen receptors (ER), as 
well as the expression and gene amplification of ERBB2 (erb‑b2 
receptor tyrosine kinase 2, also known as HER2) guide the 
selection of treatment. Previous studies demonstrate that the 
ER and ERBB2 status can be predicted directly from HE 
stained breast cancer tissue samples[8‑10] and that the tissue 
morphological features predictive of the ERBB2 status also 
predict patient outcome.[11] In addition, it has been shown that 
CNNs can be trained to predict survival in breast cancer directly 
from the tissue morphology, supervised by patient outcome.[3] 
Therefore, we hypothesized that a combination of biomarker and 
outcome‑supervised training with a multitask approach could 
improve the accuracy of outcome prediction in breast cancer.

To assess if outcome and biomarker supervised multitask CNNs 
can learn tissue‑based features that are independent of established 
prognostic factors, a series of tissue characteristics including 
histological grade (with subfactors mitotic figures, nuclear 
pleomorphism, tubule formation),[12] tumor necrosis, axillary 
lymph node status and tumor size[13] were included in multivariate 
prognostic models. We evaluated how these characteristics, which 
were determined visually by a human expert, and the prognostic 
information extracted by CNN‑based multitask learning could 
complement each other in breast cancer outcome prediction. In the 
current study, we trained the algorithms with images from tissue 
microarray (TMA) samples from a nationwide patient series and 
then validated the results on whole slide tissue specimens from 
another multicenter trial. Our aim was to validate the generalization 
of the deep learning algorithms for outcome prediction when 
applied to breast cancer from an independent patient series.

MaterIals and Methods

Patient series
The study was based on cancer tissue samples, clinicopathological 
data, and follow‑up data from two independent breast cancer 
series: The FinProg series (which consists of the original 
FinProg series[14] and the FinProg validation series[15]) and 
the FinHer clinical trial series (ISRCTN76560285).[16] The 
original FinProg patient series with data from 2,936 patients, 
is a nationwide series that includes approximately 50% 
of all women diagnosed with breast cancer in Finland in 
1991 or 1992[17] and covers most (93%) of the patients with 
breast cancer diagnosed within five selected geographical 
regions [Supplementary Figure 1]. The FinProg validation 
series consists of 565 patients diagnosed mainly in the Helsinki 
metropolitan region who were treated at the Departments of 
Surgery and Oncology, Helsinki University Hospital, from 
1987 to 1990.[3] The outcome and cause of death data (breast 

cancer‑specific survival [BCSS]) were retrieved from the 
Finnish Cancer Registry and Statistics Finland. Corresponding 
clinical information and pathologic tumor characteristics, 
including cancer histological grade, tumor size in centimeters, 
and axillary lymph node status were available from the hospital 
records. Tumour TMAs were prepared from each patient’s 
representative formalin‑fixed paraffin‑embedded breast cancer 
samples. Amplification of the ERBB2 gene was quantified 
by chromogenic in situ hybridization (CISH) on TMA core 
sections as described previously,[14] and ER expression was 
determined by immunohistochemistry.[14] A total of 1047 
FinProg patients with one TMA image per patient were split 
into a training and tuning set (n = 693) and an internal test 
set (n = 354) [Table 1 and Supplementary Figure 1]. The 
median follow‑up time of patients included in the training and 
tuning set was 15.5 years.

The FinHer trial (ISRCTN76560285) was an open‑label 
multicenter randomized trial that included 1010 patients in 
Finland in 2000–2003.[18] Eligible women were ≤65 years 
of age, had undergone breast surgery with axillary nodal 
dissection, and had either axillary lymph node‑positive or 
high‑risk node‑negative cancer [Supplementary Figure 2]. 
Breast cancer ER and ERBB2 expression were determined 
by immunohistochemistry according to institutional 
guidelines.[16] For patient samples considered positive for 
EBBR2 expression by immunohistochemistry (either 2+ or 
3+ on a scale from 0 to 3+), ERBB2 gene amplification 
status was determined by CISH.[16] Breast cancers with ≥6 
gene copies were considered ERBB2‑positive. Patients were 
randomly assigned to receive three cycles of docetaxel 
or vinorelbine, followed in both groups by three cycles 
of fluorouracil, epirubicin, and cyclophosphamide. The 
232 (23.0%) patients with ERBB2‑positive cancer underwent 
a second randomization either to receive concomitant 
intravenous trastuzumab for 9 weeks or to not receive 
trastuzumab.[16] One patient with overt distant metastases 
at the time of random assignment was excluded from 
survival analyses. The primary endpoint for the FinHer trial 
participants was distant disease‑free survival (DDFS), defined 
as the time from randomization to the detection of distant 
metastasis.[16] The median follow‑up time was 5.2 years after 
random assignment.[16] A total of 712 HE‑stained whole‑slide 
images (WSIs), one slide per FinHer patient were used 
as an external test set, not used for training or tuning the 
algorithms [Table 1 and Supplementary Figure 2].

Ethics approval
The use of the FinProg patient series and the clinical data was 
approved by the operative Ethics Committee of the Hospital 
District of Helsinki and Uusimaa (94/13/03/02/2012), and the 
National Supervisory Authority for Welfare and Health (Valvira) 
approved the use of human tissues (7717/06.01.03.01/2015). 
Profiling of tumors from the FinHer patient series was 
approved by the institutional review board of the Helsinki 
University Hospital (HUS 177/13/03/02/2011).
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Annotation of tissue images
Mitotic figures, nuclear pleomorphism, and tubule formation 
were assessed by a pathologist (S.N.) on 354 TMA spot images 
from the FinProg test set. These expert‑derived features 
were further combined into a TMA‑based histological grade 
according to a modification of the established breast cancer 
grading system[12,19] [Supplementary Table 1]. Scores 3–5, 6–7, 
and 8–9 formed grades I, II, and III, respectively. Tissue necrosis 
and tumor‑infiltrating lymphocytes (TILs) were also assessed 
on the same set of FinProg TMA images. Further, a visual risk 
score (VRS) was determined by a pathologist (S.N.), such that 
the patients were assigned into a low‑risk or a high‑risk group, 
based on the morphology of the corresponding TMA samples.

Image preprocessing and augmentation
Images of TMA samples from the FinProg series (average 
size 3500 × 3500 pixels) were available in a Portable 
Network Graphics format extracted from WSIs scanned 
with a whole slide scanner (Pannoramic 250 FLASH, 
3DHISTECH Ltd, Budapest, Hungary) and the FinHer 
samples as original whole‑slide image files (MRXS) digitized 
with the same scanner [Supplementary Material]. Tiles of 
950 × 950 pixels [209 × 209 μm with 0.22 μm pixel size, 
Supplementary Material] were extracted from the FinHer 
WSIs and saved in a JPEG format. Both the FinProg TMA 
images and FinHer image tiles were color‑normalized[20] to 
adjust for HE staining variation across the tissue samples.

During training on FinProg images, we extracted square crops 
from a random location in the TMA spot images. One crop 
of size 950 × 950 pixels per TMA spot was extracted at each 
epoch. Thus, at every epoch, the networks were supplied with 
a different set of crops that originated from various locations 

of the TMA spots included in the training set. On the fly, data 
augmentation was applied to the FinProg TMA images during 
training. Image up/down‑scale (0%–30%), rotation (±90°), 
shear (0%–20%), and gamma correction (0%–30%) were 
randomly applied to the TMA crops [Supplementary Material].

Network architecture and training
We built the deep learning model around a ResNet[21] CNN 
backbone. The backbone constitutes a stack of convolutional 
layers and outputs three‑dimensional arrays, i.e., feature maps. 
These feature maps are globally average pooled to produce a 
feature vector of a fixed size. Thereby, global average pooling 
allows to input images of arbitrary size into the outcome prediction 
pipeline. Finally, the feature vector is passed through a fully 
connected layer to predict a corresponding continuous‑value 
risk score, associated with the input image. The GuanRank,[22] a 
nonparametric ranking‑based technique was used to transform 
time‑to‑event data into a linear space of hazard ranks representing 
BCSS for each patient. Thereby, the outcome prediction was 
turned into a regression task with the mean squared error loss. This 
transformation was applied only at the training phase. Regarding 
the application of the algorithm to the samples in the test and 
validation sets the algorithm output was a continuous‑value risk 
score. Breast cancer outcome in the form of follow‑up time and 
censor status were used as the ground truth.

In addition to predicting the main endpoint, i.e., BCSS, 
the ER and ERBB2 status of the tumor samples was used 
as auxiliary endpoints in the training. Predicting multiple 
endpoints at the same time is referred to as multitask 
learning[7] and it has been shown[6] to improve learning 
efficacy and prediction accuracy by introducing additional 
regularization to the network.

Table 1: Biological characteristics of breast cancers and patient survival in the FinHer and FinProg series

FinProg Patient Series (original and validation) FinHer Patient Series

Training and 
tuning (n=693)

Internal test 
set (n=354)

Included 
patients (n=1047)

Total (n=1299) External test 
set (n=712)

Total (n=1009)

Variables: n % n % n % n % n % n %
Histological grade

1
98 14.1 68 19.2 166 15.9 226 17 95 13.3 150 14.9

2 244 35.2 127 35.9 371 35.4 450 35 276 38.8 397 39.3
3 168 24.2 68 19.2 236 22.5 273 21 303 42.6 414 41.0
NA 183 26.4 91 25.7 274 26.2 350 27 38 5.3 48 4.8

ERBB2 (CISH)
Negative 557 80.4 288 81.4 845 80.7 944 73 548 77.0 776 76.9
Positive 136 19.6 66 18.6 202 19.3 216 17 164 23.0 233 23.1
NA 139 10

ER
Positive 472 68.1 243 68.6 715 68.3 812 63 501 70.4 729 72.2
Negative 221 31.9 111 31.4 332 31.7 364 28 211 29.6 280 27.8
NA 123 9

Survival*
Censored 483 69.7 254 71.8 737 70.4 979 75 593 83.3 846 83.8
Uncensored 210 30.3 100 28.2 310 29.6 205 16 119 16.7 163 16.2

* FinProg – Breast cancer‑specific survival; FinHer – Distant disease‑free survival (DDFS); CISH – chromogenic in situ hybridization; NA – not available.
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Deep learning architectures were implemented using an 
opensource machine learning library (PyTorch, Facebook’s 
AI Research lab‑FAIR).[23] The networks were trained on the 
FinProg TMA images using a five‑fold cross‑validation and 
then evaluated on the FinHer WSIs. We used Adam[24] – an 
adaptive learning rate optimization algorithm to train the 
models. During the first three epochs, only the weights of fully 
connected layers were updated. Starting from the fourth epoch, 
the last three convolutional layers on the CNN backbone were 
released and trained for 100 more epochs together with the 
fully connected layers. Mean squared error loss was used to 
penalize risk score prediction and focal loss (alpha = 0.25, 
gamma = 2)[25] to penalize binary auxiliary endpoints, i.e., ER 
and ERBB2 status in the multi‑task setups. We used an initial 
learning rate of 1e–4 and dropped it by a factor of 10 at epoch 
10 and 50. The L2 regularization term was added to the loss 
function with a weight decay parameter set to 1e–3. A dropout 
layer (P = 0.3) was introduced before the fully connected 
blocks. Finally, the convolutional backbones were fine‑tuned 
starting from the ImageNet pretrained weights[26] whereas the 
fully connected blocks were initialized with random weights.

Inference procedure
To evaluate the generalization of the models trained on the 
FinProg TMA sample images we employed two independent 
test sets: The FinProg test‑set patients that we refer to as the 
internal test set and the FinHer patient series that we did not use 
for training at all. In both sets, we averaged outputs from the 
five models trained in cross‑validation to reduce the variance 
of the CNNs and boost the prediction accuracy.

Statistical analysis
The concordance between the predicted risk score (CNN output) 
and the actual time‑to‑event data (follow‑up time and censor 
status) was estimated with the concordance index (c‑index) 
in the patients included in the test sets. We applied Cox 
Proportional Hazards (PH) univariate survival regression to 
derive hazard ratios (HR) (effect size) associated with the risk 
score predicted by the CNNs and other clinicopathological 
variables. In addition, Cox PH multivariate regression was 
performed to check the independence of the variables in 
prediction of the risk score. The log‑rank test was used to 
compare survival distributions between two patient subgroups.

results

Multitask learning and outcome prediction accuracy in 
the FinProg series
We trained CNNs to extract prognostic information from the 
breast cancer TMA samples in the FinProg series [Figure 1]. 
We used TMA images from 693 FinProg patients to train the 
algorithm in a five‑fold cross‑validation and then applied the 
trained models to a test set of 354 FinProg patients. The “Solo” 
models that were supervised with outcome data only (i.e., the 
GuanRank value) achieved an HR of 1.7 (95% confidence 
interval [CI] 1.10–2.60) in a univariate Cox PH regression, 
P = 0.009 and concordance index (c‑index) of 0.57 [Table 2]. 

Models trained in a multitask fashion, i.e., predicting ER 
and ERBB2 status together with outcome achieved an HR 
of 2.0 (95% CI 1.30–3.00), P < 0.001, and an accuracy as 
measured by the c‑index of 0.59 [Table 2]. Examples of 
high‑risk and low‑risk FinProg patient TMA samples are 
presented in Supplementary Figure 3.

Morphological characteristics of tumors assessed on 
tissue microarray samples predict patient survival
We examined whether the subcomponents of histological 
grade, i.e., mitotic figures, nuclear pleomorphism, and tubule 
formation predict survival of patients in the FinProg series 
when assessed by a pathologist viewing the TMA images. 
Univariate Cox PH regression showed that all three features 
were predictive of BCSS. Marked nuclear pleomorphism 
had an HR of 3.00 (95% CI 1.34–6.70), P = 0.008, c‑index 
of 0.59; low tubulus formation had an HR of 2.20 (95% CI 
1.10–4.60); high mitotic count reached an HR of 2.00 (95% 
CI 1.10–3.60) [Table 2]. The TMA‑based grading had an HR 
of 3.00 (95% CI 1.50–6.10), P = 0.002, and a c‑index of 0.60 
on the FinProg test set [Table 2]. The original histological 
grading assessed on whole‑slides (WS grade) by pathologists 
at the time of diagnosis demonstrated an HR of 4.00 (95% CI 
2.00–8.30), P < 0.001, and a c‑index of 0.64. The presence of 
necrotic tissue was associated with an HR of 5.00 (95% CI 
2.40–10.00), P < 0.001, whereas a higher number of TILs was 
not a statistically significant predictor of survival in a univariate 

Figure 1: Deep convolutional neural networks were trained on images 
of hematoxylin and eosin‑stained tumor tissue microarray spots from a 
nationwide breast cancer series (FinProg) to predict risk scores of breast 
cancer‑specific survival. The training was performed using a transfer 
learning approach with ImageNet pretrained weights. The multitask 
approach combined outcome‑supervised and biomarker‑supervised 
feature learning. At the test phase, the networks generate a risk score 
for each patient in the test sets which consisted of FinProg test set 
patients and patients from the FinHer series. Additionally, conventional 
tissue entities in the tissue microarray spot images in the FinProg test 
set were assessed by a pathologist, i.e., mitoses, nuclear pleomorphism, 
tubules, tissue necrosis and tumor‑infiltrating lymphocytes. Finally, a 
survival analysis on expert‑derived and deep learning‑based features 
was performed using Cox Proportional Hazards method.
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Cox PH regression [Table 2]. The VRS reached an HR of 
1.80 (95% CI 1.20–2.70), P = 0.004, and a c‑index of 0.58.

Deep learning combined with expert visual assessment 
of tissue samples
To evaluate how the deep learning‑based outcome prediction 
can complement visual tissue assessment, we first combined 
“solo” and multitask CNN models with visual TMA‑based 
histological grading. The multivariate (TMA grade + CNN) 
Cox PH regression showed that the multitask CNN was an 
independent predictor of BCSS when adjusted for the visual 
TMA‑based histological grade with an HR of 1.7 (95% CI 

1.10–2.70), a P = 0.017, and a c‑index of 0.63. A similar 
c‑index (0.63) was observed when the multitask CNN was 
combined with the VRS. Importantly, the “solo” CNN was not 
a statistically significant predictor of BCSS when adjusted for 
the TMA‑based histological grade and for the VRS.

We then expanded the analysis by including TMA histological 
grade, necrosis, and TILs in the multivariate Cox PH regression 
together with the CNN predictor. Again, we observed that 
the multitask CNN remained an independent and statistically 
significant predictor of BCSS with an HR of 1.70 (95% CI 
1.06–2.70), P = 0.029, and a c‑index of 0.66.

Table 2: Univariate Cox proportional hazards analysis of tissue characteristics assessed on tissue microarrays within the 
FinProg test set

n HR 95% CI P c‑index
Mitotic count (TMA)

Low 256 Reference 0.57
Moderate 43 1.50 0.88‑2.70 0.132
High 31 2.00 1.10‑3.60 ≤ 0.05*

Pleomorphism (TMA)
Minimal 45 Reference 0.59
Moderate 193 1.90 0.86‑4.20 0.11
Marked 92 3.00 1.34‑6.70 ≤ 0.01**

Tubulus formation (TMA)
High 49 Reference 0.54
Low 281 2.20 1.10‑4.60 ≤ 0.05*

Histological grade (TMA)*
I 74 Reference 0.60
II 194 2.1 1.10‑3.80 ≤ 0.05*
III 62 3.0 1.50‑6.10 ≤ 0.01**

Histological grade (WS)
I 64 Reference 0.64
II 119 2.70 1.30‑5.30 ≤ 0.01**
III 61 4.00 2.00‑8.30 ≤ 0.001***

Tumor necrosis (TMA)
Absent 320 Reference 0.54
Present 11 5.00 2.40‑10.00 <0.001***

Tumor‑infiltrating lymphocytes (TMA)
Low 289 Reference 0.54
High 50 1.60 0.94‑2.60 0.083

Visual risk (TMA)
Low risk 213 Reference 0.58
High risk 114 1.80 1.20‑2.70 ≤ 0.01**

Axillary lymph node status
Negative 200 Reference 0.62
Positive 128 2.40 1.60‑3.60 ≤ 0.001***

Tumor size (cm) 336 1.50 1.30‑1.70 ≤ 0.001*** 0.71
“Solo” CNN (TMA)

Low risk 177 Reference 0.57
High risk 177 1.70 1.10‑2.60 ≤ 0.01**

Multitask CNN (TMA)
Low risk 177 Reference 0.59
High risk 177 2.00 1.30‑3.00 ≤ 0.001***

*Supplementary Table 1. Association of the variables with breast cancer‑specific survival is reported as effect size (HR) and a c‑index. Prognostic performance 
of the “solo” and multitask models is compared to tissue characteristics assessed by a pathologist, as well as to the tumor size and lymph node status. HR: 
Hazard ratio, c‑index: Concordance index, CI: Confidence interval, TMA: Tissue microarrays, WS: Whole‑slides, CNN: Convolutional neural networks
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Conventional histological grading of the WS tissue samples 
was available for the FinProg patient’s tumors and we 
evaluated the prognostic value of the outcome supervised CNN 
when combined with WS histological grade. The multitask 
CNN remained independent of WS histological grade, whereas 
the “solo” model was not a significant predictor of BCSS. The 
compound model (multitask CNN + WS histological grade) 
had a c‑index of 0.66, the same that was achieved with the 
TMA level features (histological grade, necrosis, and TILs) 
only. Tumor size and axillary lymph node status were also 
included in the multivariate Cox PH regression together with 
the multitask CNN model, which reached an HR of 1.70 (95% 
CI 1.10–2.50), P = 0.022, and a c‑index of 0.73 after adjustment 
for size and lymph node status [Figure 2].

Generalization to independent series whole slide samples
To evaluate generalization of the proposed approach, the 
CNNs trained on the TMA samples from the FinProg patient 
series were applied to WSIs from the independent FinHer 
patient series. Univariate Cox PH regression showed that 
both multitask, and “solo” CNN models were statistically 
significant predictors of DDFS in patients from the FinHer 
series (n = 674). The “solo” model reached an HR of 1.8 (95% 
CI 1.3–2.7), a P = 0.002 and a c‑index of 0.57. The multitask 
model achieved an HR of 1.7 (95% CI 1.2–2.6), P = 0.003 
and a c‑index 0.57. We then evaluated both of the models 
in a multivariate Cox PH regression adjusted for the WS 
histological grade and observed that both of the models were 
statistically significant predictors of survival, independent of 
histological grade on WSs [Table 3]. The “solo” model reached 
an HR of 1.7 (95% CI 1.1–2.5), a P = 0.009 and a c‑index of 
0.60 in a multivariate Cox PH analysis, whereas the multitask 
CNN reached an HR of 1.5 (95% CI 1.0–2.3), a P = 0.033 and 
a c‑index of 0.59 [Table 3].

conclusIons

Our study demonstrates the feasibility of breast cancer outcome 
prediction using a multitask deep learning approach across two 
multicenter patient series. We show that the algorithms trained 
on one patient series (FinProg) can generalize to an independent 
patient series (FinHer). Although several studies have shown 
that outcome supervised deep learning can extract significant 

prognostic information from tumor morphology in breast cancer, 
they are constrained to the analysis of single‑center series.[3,4] To 
our knowledge, this work is the first to explore generalization 
of the method when applied to whole‑slide breast cancer tissue 
images from an independent multicenter patient series.

With images of H and E‑stained tumor tissue samples as the 
input, we applied both outcome and biomarker supervised 
learning to extract predictive information encoded in the tumor 
morphology. Our best multitask algorithm achieved an HR of 
2.0 and a c‑index of 0.59 in predicting BCSS in the FinProg 
test set patients. Moreover, we demonstrated that the multitask 
approach allows extraction of image features that remain 
independent of the pathologist‑derived features such as mitoses, 
nuclear pleomorphism, tubules, and necrosis. In contrast to the 
“solo” training, the multitask deep learning‑based risk score was 

Table 3: Multivariate Cox proportional hazards regression of deep learning‑based outcome predictions adjusted for tumor 
histological grade on the independent FinHer (n=674) patient series

“Solo” CNN Multitask CNN

n HR 95% CI P HR 95% CI P
CNN risk score

Low risk 337 Reference Reference
High risk 337 1.70 1.10‑2.50 0.009 1.50 1.00‑2.30 0.033

Histological grade (WS)
Low (I and II) 371 Reference Reference
High (III) 303 1.60 1.10‑2.30 0.022 1.50 1.00‑2.20 0.037

c‑index, Log‑rank P 0.60, <0.001 0.59, 0.001
WS: Whole‑slides, CNN: Convolutional neural networks, HR: Hazard ratio, c‑index: Concordance index, CI: Confidence interval

Figure 2: Multivariate Cox Proportional Hazards analysis of deep learning 
models together with prognostic factors related to the extent of disease 
in breast cancer, i.e., spread of the cancer to axillary lymph nodes and 
size of the primary tumor in the FinProg test set. The results indicate 
that multitask training (b) was an independent predictor of survival as 
compared to outcome supervised training only (a)

b

a
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a significant predictor of breast cancer‑specific survival after 
adjustment for tumor size and axillary lymph nodes status in the 
FinProg series. Interestingly, we observed that the information 
extracted through visual assessment of TMA images by a 
pathologist and by the CNNs together could ultimately increase 
prognostic accuracy to a c‑index of 0.66. We recognize that the 
multitask approach did not demonstrate an increased accuracy 
in the external FinHer WS samples, as compared to the “solo” 
model. Potential reasons could be different endpoints used in the 
FinProg and the FinHer, a relatively short follow‑up time, and 
significant heterogeneity introduced through analysis of whole 
slide tissue samples within the FinHer series. In the current study, 
we did not explore the tile size sampling effect on the performance 
of the models, since the training set comprised images of TMAs. 
Training with tiles smaller than 950 × 950 pixels (209 × 209 μm) 
would limit the contextual information further and likely lead 
to a reduced performance. On the other hand, larger tiles would 
lead to increased morphological heterogeneity and inclusion of 
non‑tumor tissue areas if extended to WSIs, and likely require 
even larger datasets than the sample series available in the current 
study if training is done with sample‑level labels i.e., weakly 
supervised learning. Systematic evaluation of sampling strategies 
has to be studied separately. Taken together, a deep learning model 
trained on TMA samples stained for basic morphology (HE) and 
supervised by outcome and biomarker status based complemented 
visual tissue assessment of established tissue entities by a 
pathologist in the prediction of patient outcome.

In one of the first studies[27] to address breast cancer outcome 
prediction with machine learning applied to basic tissue 
morphology, the authors used regularized logistic regression 
and image features from breast cancer epithelium and stroma. 
This approach reached HRs of 1.54–1.78 in two patient 
populations as estimated by a multivariate Cox PH regression 
in prediction of overall survival. These effect sizes are roughly 
at the same level as the HRs of 1.5–2.0 that were measured in 
prediction of BCSS and DDFS in the current patient series. 
Another study[3] used a deep learning approach to predict BCSS 
in one of the series also used in the current study (the FinProg 
series). The machine learning‑based predictor reached an 
HR of 2.04 in a test set of 431 patients, but the approach was 
not validated on independent data. In a study that addressed 
morphology‑based cancer survival prediction in multiple 
cancer types,[4] the authors trained a deep learning model 
on 488 WS breast cancer samples from the Cancer Genome 
Atlas[28] (TCGA) project. An HR of 2.86 was achieved in a 
multivariate Cox PH analysis on 250 heldout patients from 
the same TCGA patient cohort without cross‑validation. 
Results so far suggest that significant prognostic information 
can be extracted from basic tissue morphology by the use of 
machine learning, but that effect sizes do not yet exceed those 
for some of the established prognostic tissue features currently 
assessed visually by experts. It remains to be established if the 
prognostic accuracy can be further improved by training and 
validating algorithms based on WSIs that better represent tissue 
heterogeneity as compared to TMAs.

Limitations related to our study include that BCSS was used in 
training of the algorithm on the FinProg data whereas DDFS was 
used as an endpoint for evaluation on the FinHer series. Although 
a strong correlation has been shown between disease‑free and 
overall survival in studies on early breast cancer,[29] the strength of 
correlation between BCSS and DDFS remains to be established. 
Additionally, the tissue samples used in our study were centrally 
scanned using the same instrument. Thus, possible image 
variations due to the scanning hardware were eliminated but the 
generalizability of the method to samples digitized with other 
similar whole slide scanners have to be addressed in future studies.

In future research, the prognostic accuracy and generalization of 
the deep learning models can be further improved by exposing 
deep learning algorithms to datasets that cover an even larger 
spectrum of variations of tissue morphologies, including 
training on WSIs. Quantification of conventional prognostic 
features using machine learning algorithms instead of visual 
assessment as in the current study could further improve 
accuracy, consistency, and reproducibility of outcome prediction. 
Previous studies have demonstrated a good performance of 
machine learning algorithms in counting mitosis,[30] quantifying 
tumor‑infiltrating immune cell,[31‑33] assessing the grade of tumor 
differentiation,[34] and tissue necrosis.[35,36] A combination of 
computationally quantified conventional prognostic features 
with features learned through end‑to‑end oucome supervised 
learning should be addressed in future studies.

Our findings indicate that outcome and biomarker supervised 
deep learning models for breast cancer outcome prediction 
generalize to patient samples from an independent multicenter 
series. Integrative techniques such as multitask deep learning 
can extract image features that remain statistically independent 
of established prognostic factors in breast cancer. Hence, 
established prognostic features and features learned through 
machine learning approaches can complement each other and 
lead to more accurate and interpretable tumor tissue analysis 
for patient cancer outcome prediction.

Acknowledgments
We would like to thank the Digital Microscopy and Molecular 
Pathology unit at Institute for Molecular Medicine Finland 
FIMM, University of Helsinki, supported by the Helsinki 
Institute of Life Science and Biocenter Finland for providing 
slide scanning services.

Financial support and sponsorship
The study was supported by the Sigrid Jusélius Foundation, 
the Biomedicum Helsinki Foundation, the Orion‑Pharmos 
Research Foundation, Finska Läkaresällskapet, Medicinska 
Understödsföreningen Liv och Hälsa, Stiftelsen Dorothea 
Olivia, Karl Walter och Jarl Walter Perkléns minne, K. Albin 
Johanssons Stiftelse, iCAN Digital Precision Cancer Medicine 
Flagship, and HiLIFE Helsinki Institute of Life Sciences.

Conflicts of interest
Johan Lundin and Mikael Lundin are the founders and 
co‑owners of Aiforia Technologies Oy, Helsinki, Finland. 



J Pathol Inform 2022, 1:9 http://www.jpathinformatics.org/content/13/1/9

Journal of Pathology Informatics8

Heikki Joensuu is employed by Orion Pharma, serves as the 
Chairman of the Advisory Board of Neutron Therapeutics, has 
received funds from Neutron Therapeutics and owns stocks 
of Orion Pharma and Sartar Therapeutics. Aleksei Tiulpin is a 
co‑founder, shareholder, and CTO of Ailean Technologies Oy. 
The other authors have no conflicts of interest.

Availability of data and materials
The data that support the findings of this study were used under 
a license for the current study, and some restrictions apply to 
their availability. The data are available from the authors upon 
reasonable request and with permission from the University 
of Helsinki.

references
1. Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz‑Sloan JS, 

Velázquez Vega JE, et al. Predicting cancer outcomes from histology 
and genomics using convolutional networks. Proc Natl Acad Sci U S A 
2018;115:E2970‑9.

2. Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, 
et al. Deep learning based tissue analysis predicts outcome in colorectal 
cancer. Sci Rep 2018;8:3395.

3. Turkki R, Byckhov D, Lundin M, Isola J, Nordling S, Kovanen PE, 
et al. Breast cancer outcome prediction with tumour tissue images and 
machine learning. Breast Cancer Res Treat 2019;177:41‑52.

4. Wulczyn E, Steiner DF, Xu Z, Sadhwani A, Wang H, Flament‑Auvigne I, 
et al. Deep learning‑based survival prediction for multiple cancer types 
using histopathology images. PLoS One 2020;15:e0233678.

5. Argyriou A, Evgeniou T, Pontil M. Multi‑task feature learning. Adv 
Neural Inf Process Syst 2007;19:41‑8.

6. Xipeng P, Li L, Yang H, Liu Z, He Y, Li Z, et al. Multi‑task deep 
learning for fine‑grained classification and grading in breast cancer 
histopathological images. Multimed Tools Appl 2020;79:14509‑8.

7. Samala RK, Chan HP, Hadjiiski LM, Helvie MA, Cha KH, 
Richter CD. Multi‑task transfer learning deep convolutional neural 
network: Application to computer‑aided diagnosis of breast cancer on 
mammograms. Phys Med Biol 2017;62:8894‑908.

8. Shamai G, Binenbaum Y, Slossberg R, Duek I, Gil Z, Kimmel R. Artificial 
intelligence algorithms to assess hormonal status from tissue microarrays 
in patients with breast cancer. JAMA Netw Open 2019;2:e197700.

9. Rawat RR, Ortega I, Roy P, Sha F, Shibata D, Ruderman D,  et al. Deep 
learned tissue ‘fingerprints’ classify breast cancers by ER/PR/Her2 
status from H and E images. Springer Science and Business Media 
(LLC). Sci Rep 2020;10. [doi = 10.1038/s41598‑020‑64156‑4].

10. Naik N, Madani A, Esteva A, Keskar NS, Press MF, Ruderman D, 
et al. Deep learning‑enabled breast cancer hormonal receptor status 
determination from base‑level H and E stains. Nat Commun 2020;11:5727.

11. Bychkov D, Linder N, Tiulpin A, Kücükel H, Lundin M, Nordling S, 
et al. Deep learning identifies morphological features in breast cancer 
predictive of cancer ERBB2 status and trastuzumab treatment efficacy. 
Sci Rep 2021;11:4037.

12. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. 
The value of histological grade in breast cancer: Experience from a large 
study with long‑term follow‑up. Histopathology 1991;19:403‑10.

13. WHO Classificationof Tumours Editorial Board. WHO Classification of 
Breast Tumours: WHO Classification of Tumours. 2nd ed., Vol. 2.: World 
Health Organization; 2019.

14. Joensuu H, Isola J, Lundin M, Salminen T, Holli K, Kataja V, et al. 
Amplification of erbB2 and erbB2 expression are superior to estrogen receptor 
status as risk factors for distant recurrence in pT1N0M0 breast cancer: 
A nationwide population‑based study. Clin Cancer Res 2003;9:923‑30.

15. Lundin J, Lundin M, Isola J, Joensuu H. A web‑based system for 
individualised survival estimation in breast cancer. BMJ 2003;326:29.

16. Joensuu H, Kellokumpu‑Lehtinen PL, Bono P, Alanko T, Kataja V, Asola 
R, et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab 
for breast cancer. N Engl J Med 2006;354:809‑20.

17. Joensuu H, Tiina L, Kaija H,  Liisa E, Taina TH, Vesa K, et al. Risk for 

distant recurrence of breast cancer detected by mammography screening 
or other methods. JAMA 2004;292:1064‑73.

18. Joensuu H, Petri B, Vesa K, Tuomo A, Riitta K, Raija A, et al. Fluorouracil, 
epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, 
with or without trastuzumab, as adjuvant treatments of breast cancer: 
Final results of the FinHer trial. J Clin Oncol 2009;27:5685‑92.

19. Bloom HJ, Richardson WW. Histological grading and prognosis in 
breast cancer; a study of 1409 cases of which 359 have been followed 
for 15 years. Br J Cancer 1957;11:359‑77.

20. Macenko M, Niethammer M, Marron J, Borland D, Woosley J, Guan X, et 
al. “A Method for Normalizing Histology Slides for Quantitative Analysis,” 
In Proceedings of the Sixth IEEE International Conference on Symposium 
on Biomedical Imaging: From Nano to Macro; 2009. p. 1107‑10.

21. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image 
Recognition. arXiv e‑prints, p. arXiv: 1512.03385; 2015. Available 
from: http://arxiv.org/abs/1512.03385. [Last access date 2021 Jun 01].

22. Huang Z, Zhang H, Boss J, Goutman SA, Mukherjee B, Dinov ID, 
et al. Complete hazard ranking to analyze right‑censored data: An ALS 
survival study. PLoS Comput Biol 2017;13:e1005887.

23. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. 
PyTorch: An imperative style, high‑performance deep learning library. 
In: Wallach H, Larochelle H, Beygelzimer A, Alché‑Buc F, Fox E, 
Garnett R, editors. Advances in Neural Information Processing Systems 
32. Curran Associates, Inc.; 2019. p. 8024‑35.

24. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv 
e‑prints, p. arXiv: 1412.6980; 2017.

25. Lin TY, Goyal P, Girshick RB, He K, Dollár P. Focal loss for dense object 
detection. 2017 IEEE Int Conf Comput Vis 2017 ;abs/1708.02002:2999‑3007.

26. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. 
ImageNet large scale visual recognition challenge. Int J Comput Vis 
2015;115:211‑52.

27. Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, van de Vijver MJ, 
et al. Systematic analysis of breast cancer morphology uncovers stromal 
features associated with survival. Sci Transl Med 2011;3:108ra113.

28. Chang K,  Collisson EA, Mills GB, Mills Shaw KR, Ozenberger BA, 
Ellrott K, et al. The cancer genome atlas pan‑cancer analysis project. 
Nat Genet 2013;45:1113‑20.

29. Saad ED, Squifflet P, Burzykowski T, Quinaux E, Delaloge S, 
Mavroudis D, et al. Disease‑free survival as a surrogate for overall 
survival in patients with HER2‑positive, early breast cancer in trials 
of adjuvant trastuzumab for up to 1 year: A systematic review and 
meta‑analysis. Lancet Oncol 2019;20:361‑70.

30. Dif N, Elberrichi Z. Deep learning methods for mitosis detection 
in breast cancer histopathological images: A comprehensive review 
BT. In: Holzinger A, Goebel R, Mengel M, Müller H, editors. 
Artificial Intelligence and Machine Learning for Digital Pathology: 
State‑of‑the‑Art and Future Challenges. Cham: Springer International 
Publishing; 2020. p. 279‑306.

31. Stenman S, Bychkov D, Kucukel H, Linder N, Haglund C, Arola J, et al. 
Antibody supervised training of a deep learning based algorithm for 
leukocyte segmentation in papillary thyroid carcinoma. IEEE J Biomed 
Health Inform 2021;25:422‑8.

32. Turkki R, Linder N, Kovanen P, Pellinen T, Lundin J. Antibody‑supervised 
deep learning for quantification of tumor‑infiltrating immune cells in 
hematoxylin and eosin stained breast cancer samples. J Pathol Inform 
2016;7:38.

33. Linder N, Taylor JC, Colling R, Pell R, Alveyn E, Joseph J, et al. Deep 
learning for detecting tumour‑infiltrating lymphocytes in testicular germ 
cell tumours. J Clin Pathol 2019;72:157‑64.

34. Couture HD, Williams LA, Geradts J, Nyante SJ, Butler EN, Marron JS, 
et al. Image analysis with deep learning to predict breast cancer grade, 
ER status, histologic subtype, and intrinsic subtype. NPJ Breast Cancer 
2018;4:30.

35. Arunachalam HB, Mishra R, Daescu O, Cederberg K, Rakheja D, 
Sengupta A, et al. Viable and necrotic tumor assessment from whole 
slide images of osteosarcoma using machine‑learning and deep‑learning 
models. PLoS One 2019;14:e0210706.

36. Turkki R, Linder N, Holopainen T, Wang Y, Grote A, Lundin M, et al. 
Assessment of tumour viability in human lung cancer xenografts with 
texture‑based image analysis. J Clin Pathol 2015;68:614‑21.



Supplementary Material

IMage data PreParatIon and PreProcessIng

A batch of 16 random crops constituted one training iteration, which corresponded to input tensors of size (950, 950, 3, 16) (height, 
width, color channels, batch size). Original size of each TMA spot was 3500 × 3500 pixels on average. All input tensors were 
normalized with mean and standard deviation, as estimated on the training data: mean – (0.8198558, 0.78990823, 0.91205645), 
std – (0.1421396, 0.15343277, 0.07634846) for RGB channels accordingly. After image normalization, we performed on‑the‑fly 
training image augmentations using SOLT data augmentation library (https://github.com/MIPT‑Oulu/solt) with the following 
parameters:
• Random scaling with 0.5 probability and 0.3 scale range

• Random rotation with 0.5 probability and ± 90‑degree range

• Random shear with 0.5 probability and 0.2 shear range

• Random gamma correction with 0.5 probability and 0.3 gamma range.

For internal testing on 354 FinProg TMA spots we used a center crop of size 2100 × 2100 pixels and applied no image augmentation.

For evaluations on the external test set – the FinHer series, we extracted non‑overlapping (step size 950 pixels) tiles of 950 × 950 
pixels from each of the whole slide tissue images. We then applied HistoQC quality control tool4 to eliminated tiles that contain 
artefacts such as out of focus regions, tissue folding etc. Each tile that passed the quality check was processed by five models 
trained in cross‑validation on the FinProg training set. The predictions were averaged to obtain a single tile‑level Risk Scores. 
No test‑time image augmentation was performed on the FinHer tiles.

IMage acquIsItIon

Five‑micrometer thick sections were cut from the TMA blocks, stained with hematoxylin and eosin, and digitized with a whole‑slide 
scanner (Pannoramic 250 FLASH, 3DHISTECH Ltd., Budapest, Hungary) equipped with a 20 × objective (numerical aperture 
0.80) and a 1  × adapter, and a progressive scan color camera with three separate charge‑coupled devices with 1 618  ×  1 236 
pixels sized 4.40 μm × 4.40 μm (CIS_VCC_F52U25CL, CIS Corporation, Tokyo, Japan). This resulted in an image where one 
pixel represents an area of 0.22 μm × 0.22 μm. The images were stored in a whole‑slide image format (MRX, 3DHISTECH Ltd., 
Budapest, Hungary), and were further compressed to a wavelet file format (Enhanced Compressed Wavelet, ECW, ER Mapper, 
Intergraph, Atlanta, GA) with a compression ratio of 1:10. The compressed virtual slides were uploaded to a whole‑slide image 
management server (WebMicroscope, Aiforia Technologies Oy, Helsinki, Finland), where the individual images of the TMA 
spots were segmented from the whole‑slide TMA image.

Supplementary Table 1: Tissue microarray histological 
scoring

Feature Category Score
Mitoses 0 per HPF 1

1 per HPF 2
>1 per HPF 3

Nuclear pleomorphism Minimal 1
Moderate 2
Marked 3

Tubules >75% 1
10%‑75% 2
<10% 3

*HPF: High‑power field



FinProg series
(n = 2,936)

FinProg Validation series
(n = 565)

1,050 excluded*

138 excluded*

FinProg Validation series patients
available after exclusions (n = 427)

FinProg series patients available
after exclusions (n = 1,886)

Combined FinProg
and FinProg Validation set

(n = 2,313)

1,014 did not have tumor
samples available, sample
was not representative, or

tissue spot detached

Combined FinProg
and FinProg Validation set 
with tumor tissue available

(n = 1,299)

231 had missing
gene/receptor status data

21 had poor quality tissue
microarray spot images

Available for algorithm development
(n = 1,047)

Random split

Training / tuning set
(n = 693)

Test Set
(n = 354)

*Exclusions: patients with missing data on
follow-up, lobular or ductal carcinoma in
situ, synchronous or metachronous
bilateral breast cancer or other malignancy
(except for basal cell carcinoma or cervical
carcinoma in situ), distant metastasis, or
who did not undergo surgery of the primary
tumor were excluded.

Supplementary Figure 1: FinProg CONSORT Diagram



Supplementary Figure 3: Examples of high‑risk and low‑risk patient 
tissue microarray spots as predicted by the multitask model

Initial cohort
(n = 1,009)

289 digital slides were not available

8 slide images were blurred  or corrupted

Available for analysis
(n = 712)

Supplementary Figure 2: FinHer CONSORT Diagram


