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Finding multiple reaction pathways via global
optimization of action
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Global searching for reaction pathways is a long-standing challenge in computational

chemistry and biology. Most existing approaches perform only local searches due to

computational complexity. Here we present a computational approach, Action-CSA, to find

multiple diverse reaction pathways connecting fixed initial and final states through global

optimization of the Onsager–Machlup action using the conformational space annealing (CSA)

method. Action-CSA successfully overcomes large energy barriers via crossovers and

mutations of pathways and finds all possible pathways of small systems without initial

guesses on pathways. The rank order and the transition time distribution of multiple

pathways are in good agreement with those of long Langevin dynamics simulations. The

lowest action folding pathway of FSD-1 is consistent with recent experiments. The results

show that Action-CSA is an efficient and robust computational approach to study the mul-

tiple pathways of complex reactions and large-scale conformational changes.
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F
inding multiple plausible reaction pathways between two
end states is a long-standing challenge in computational
sciences1. One of the common approaches is to perform

long-time molecular dynamics (MD) simulations. Despite recent
advances in the MD methodologies and computational
technologies, this approach suffers from a timescale problem.
Many biological reactions such as protein folding and protein
conformational transitions occur in the microsecond or
millisecond ranges, which are still hard to be performed even
with the fastest computers available today. Also, MD simulations
starting from one end state are not guaranteed to reach the other
end state of interest especially considering the inaccuracies of
current force fields. Thus, developing an efficient computational
method to find multiple possible reaction pathways connecting
two end states can serve as the ultimate and practical solution
of the challenge. Although several such methods have
been suggested1–8, exploring and producing multiple reaction
pathways of a complex system remains a challenge. The objective
of this work is to present a method that can efficiently explore
and produce multiple reaction pathways connecting two end
states. Other approaches using a conformational driving force do
not sample alternatives9,10. Methods that are robust, such as
transition path sampling2,3, are very expensive to use for complex
systems in the presence of multiple steps and barriers.

Various chain-of-states methods have been suggested based on
the assumption that a dominant transition pathway between two
states follows the minimum energy pathway11–13. The limitations
of these methods are that they do not consider the dynamics of a
system and find only the nearest local minimum solution from a
given initial pathway1,9. Alternative methods based on the
principle of least action have been suggested5,14–20. Passerone
and Parrinello suggested the action-derived molecular dynamics
(ADMD) method based on the combination of classical
action and a penalty term that conserves the total energy of a
system18,19. To enhance the convergence of ADMD calculations,
Lee et al.20–23 introduced a kinetic energy penalty term based
on the equipartition theorem. Although the ADMD approaches
yield physically relevant pathways, they have two practical
limitations20,24: (a) they strongly depend on the initial guesses
of a pathway; and (b) they cannot identify the relative dominance
of multiple pathways because the classical principle of least action
is an extremum principle25.

For diffusive processes, the second problem can be avoided by
using the Onsager-Machlup (OM) action SOM

15,26–31. Onsager
and Machlup showed that the relative probability to observe a
pathway with an OM action of S is proportional to e� S=kBT ; where
kB is the Boltzmann constant and T is a temperature. Thus the
most dominant pathway corresponds to the one that minimizes
SOM and the same result can be obtained by solving the
Fokker–Planck equation7,8,32. This property recasts the problem
of finding multiple pathways into a global search and
optimization problem. However, finding multiple low action
pathways is a challenging task because the minimization of SOM

requires the second derivatives of a potential function, which are
computationally expensive, at best, and wholly unavailable for
many quantum mechanical energy surfaces.

In this work, we propose an efficient computational method,
Action-CSA, that finds multiple low OM action pathways without
second derivative calculations. For global search and optimization
of a pathway space, we used an efficient global optimization
method called conformational space annealing (CSA), which is
based on a combination of genetic algorithm, simulated
annealing, and Monte Carlo with minimization33,34. CSA has
been demonstrated to be extremely efficient in solving various
global optimization problems including finding low energy
conformations of Lennard–Jones clusters35, protein structure

prediction34–40, community detection in networks41–43, and
designing the first-ever direct bandgap silicon and carbon
allotropes44–47. CSA is the most robust method available in
CHARMM48,49 for generating low energy conformations of
peptides. We extend the CSA approach to examine pathways,
preserving all features that make it robust and efficient,
by applying it to sets of entire pathways represented as a
chain-of-states.

Action-CSA efficiently explores the pathway space regardless of
the heights of energy barriers via crossovers and mutations of
pathways. Without calculating the second derivatives of a
potential energy, multiple diverse pathways with low OM action
were obtained by combining local optimization of pathways using
classical action and selection of pathways using the OM action.
From benchmark simulations using alanine dipeptide, our
method finds multiple transition pathways, which are consistent
with long-time Langevin dynamics (LD) simulations. The rank
order statistics and transition time distributions of the multiple
pathways are in good agreement with those of the LD results. For
the conformational change of hexane from the all-gauche(� ) to
all-gauche(þ ) states, Action-CSA finds all possible transition
pathways. Also, the lowest action folding pathway of FSD-1 is
consistent with recent experiments reported after the submission
of this work. These results demonstrate that Action-CSA searches
multiple reaction pathways including the most dominant one in
an efficient and robust way.

Results
Conformational change of alanine dipeptide. A comparison of
Action-CSA and LD simulations demonstrate that Action-CSA
finds multiple possible pathways and correctly identifies the most
probable one. Eight different pathways were identified for the
C7eq-C7ax transition by clustering all pathways sampled from
the Action-CSA simulations (Fig. 1a). From the SOM values
obtained with different transition times (Fig. 1b), it is clear that
the pathway that crosses barrier B has the lowest SOM value along
all transition times tested indicating that it is the most probable
pathway regardless of the transition time. This is consistent with
the 500 ms LD simulation results (Table 1). From the LD simu-
lations, 1,350 transitions starting from C7eq to C7ax were
observed. They were clustered by finding the nearest neighbor
from the eight pathways obtained by Action-CSA. From the
clustering, the pathway crossing barrier B was identified as the
most probable one with all transition times considered. This
demonstrates that Action-CSA correctly identified the minimum
OM action pathway and that it matched the most dominant
pathway observed in the LD simulations.

In addition, it is also identified that Action-CSA simulations
provide information on the transition times of various pathways.
Until to0.8 ps, the pathway that crosses barrier C (Path2) has the
second lowest SOM and the lowest SOM value was observed at
0.4 ps. These are consistent with the LD results in which all 118
transitions that crossed barrier C occurred within 1.1 ps and their
most probable transition time was 0.7 ps (the inset of Fig. 1b).
However, when t40.8 ps, Path3, which passes the fully extended
conformation region (F, C)¼ (� 180�, 180�) and barrier A and
B becomes the pathway with the second lowest SOM. From the LD
simulations, when t40.9 ps, 25 pathways similar to Path3 were
identified, which makes them the second dominant pathway.
These results demonstrate that the profile of SOM values is
consistent with the distributions of transition times obtained
from the LD simulations. Note that the most probable transition
times observed from the LD simulations are longer than the
minimum action transition times obtained from the CSA
simulations. This is because high-frequency motions due to
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thermal fluctuations are filtered out in the minimum action
pathways1,15,16. This means that the dwell time is well filtered out
in the simulation, where a physically sufficient sampling time is
assumed.

Conformational transition of hexane. The second example is
finding multiple low-lying pathways for the conformational
change of hexane from the all-gauche(� ) state (g� g� g� ) to
the all-gauche(þ ) state (gþ gþ gþ ). We assessed the sampling
ability of Action-CSA by investigating the diversity of sampled
pathways. If it is assumed that dihedral angles do not cross the

highest energy barrier around the cis state, all possible transition
pathways can be enumerated (Supplementary Table 2). For the
transition under this assumption, there exist 44 possible pathways
in total, excluding cases where a torsional barrier is crossed
multiple times. If the symmetries of dihedral angles and the
atomic order are considered, these 44 pathways can be reduced to
14 pathway types.

We repeated the Action-CSA calculation of the transition 40
times by using 200 initial pathways consisting of 100 replicas and
a transition time of 3 ps. In all 40 simulations, the 6 lowest action
pathways, CCþ , CC� , TCþ , TC� , CMþ and CM� , were
found in a robust fashion. The highest-action pathway, MXM,
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Figure 1 | Conformational transition pathways of alanine dipeptide. (a) Eight different pathways for the C7eq-C7ax transition selected by OM action

values and the potential energy surface for the F and C angles with the PARAM19 force field (in units of kcal mol� 1) are shown. Potential energy

barriers are labelled in order of their heights (from A to F). (b) The SOM values of six pathways for the C7eq-C7ax transitions of alanine dipeptide along

different transition times are shown.
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was found in nine simulations, and the other seven higher-action
pathways were found in at least 29 simulations. On average, a
single CSA simulation sampled 12 out of 14 unique path types
and 26 out of 44 possible pathways. These results show that
Action-CSA can sample a number of lowest action pathways
including the most dominant one. The majority of the remaining
pathways with higher actions can also be found with a tendency
that lower action-value pathways are more frequently found. We
note that the sampling ability of Action-CSA can be further
improved by increasing the bank size. The potential energy
landscape of the CCþ pathway corresponding to the least SOM

shows that hexane crosses six energy barriers (Fig. 2). It should be
noted that the fraction of possible pathways found in a given
Action-CSA simulation depends on the number of replicas and
the transition time. This example represents typical use, and not a
best case scenario.

Folding pathway of mini protein FSD-1. The third example is
finding the folding pathway of FSD-1, a 28-residue mini-protein
that has been widely investigated as a model system for studying
the protein folding problem22,50–54. Folding pathways of FSD-1
from the fully extended conformation to the native structure were
represented by using 100 replicas, a total folding time of 10 ps,
and a temperature of 300 K. The protein was represented by the
PARAM19 force field55 and solvation effects were considered by
the FACTS implicit solvent model56. This calculation required

approximately 160 h with 72 Haswell cores and a diverse set of
about twenty low action pathways were generated.

The lowest OM action folding pathway is consistent with a
recent experiment57 published after the submission of this work,
where the early formation of C-terminal a-helix is observed to be
followed by the concurrent formation of the b-hairpin and
hydrophobic contacts. A comparison of the root mean square
deviation values indicates that the a-helix approaches to the
native structure earlier than the b-hairpin. Afterward, the folding
of b-hairpin and the formation of hydrophobic core occur
concurrently (Fig. 3a). The potential energy landscape of the
FSD-1 folding shows that the potential energy decreases quickly
after the 80 step suggesting that this step may be the transition
state of folding (Fig. 3b). The conformation at the 80 step shows
that the a-helix is almost fully formed while the C-terminal
region is not folded yet and the hydrophobic core is partially
exposed.

After our manuscript was submitted, it came to our attention
that Meuzelaar and co-workers reported that the folding of FSD-1
occurs via an intermediate state where only the a-helix is
formed57. After this intermediate state, the b-hairpin and
hydrophobic contacts form. The pathway was determined
by combining temperature-dependent UV circular dichroism,
Fourier transform infrared spectroscopy, two-dimensional
infrared spectroscopy, and temperature-jump transient-IR
spectroscopy. This folding mechanism shows good agreement
with the dominant folding pathway identified in this study. This
agreement strongly indicates that our method can serve as a
powerful tool to study the folding mechanism of a protein withTable 1 | The frequencies of transition pathways of alanine

dipeptide from C7eq to C7ax observed from 500 ls Langevin
dynamics simulations.

Path ID Frequency

Path1 1,183
Path2 116
Path3 25
Path4 7
Path5 4
Path6 4
Path7 10
Path8 1
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atomic details. We note that additional sub-optimal folding
pathways were also obtained, where the second lowest OM action
pathway suggested a different pathway: the b-hairpin folds first,
followed by the concurrent formation of a-helix and hydrophobic
contacts (Supplementary Fig. 1).

Discussion
The goal of Action-CSA is to search multiple diverse pathways of
low OM action values in a fast and efficient fashion, rather than
sampling a specific physical ensemble. Throughout an Action-
CSA calculation, the OM action is used to identify the relative
probabilities of multiple trial pathways obtained by performing
crossover and mutation operations followed by local minimiza-
tion using the classical action. Ideally, we should have performed
the local minimization using the OM action, which was not
feasible due to the high cost of calculating second derivatives.
Instead, we performed one-point evaluation of the OM action
after the minimization. Here we assumed that the CSA selection
procedure using the OM action drives the CSA population to low
OM action basins. A similar approach was used in designing the
first-ever direct bandgap silicon and carbon allotropes44–47,
where the local optimization was performed in terms of
enthalpy but the selection was done by the band gap property.
Thus, an Action-CSA calculation yields a set of low OM action
pathways, but they do not correspond to any physical ensembles.
Action-CSA results can be used as the starting point for existing
pathway sampling methods, such as transition pathway sampling3

or the replica-exchange pathway sampling30,31, which aim to
generate canonical ensembles. In addition, our method can be
used to find low potential energy pathways or multiple
Newtonian pathways via selection using the height of potential
energy barrier or the Gauss action58,59 instead of the OM action.

We note that the OM action depends on the friction parameter.
As friction approaches to zero, the Langevin dynamics, described
by the OM action, converges to the Newtonian dynamics,
described by the classical action. Thus, when friction is small, we
expect that pathways sampled with the classical action will be
close to those sampled with the OM action. However, when
friction is large, this assumption may not hold. In such cases, one
should minimize the OM action directly, which will be
computationally much more expensive than the current scheme
because the analytic gradients of the OM action require Hessian
calculations (equation (4)).

Action-CSA has three unique characteristics compared with
existing path sampling methods2–4,29,60–62: (a) the use of the bank
of diverse pathways, (b) the generation of new trial pathways by
swapping and mutating of pathway segments followed by local
optimization using classical action with total energy restraint,
and (c) the selection of pathways with higher probabilities by
using the OM action. By maintaining a diverse bank population,
one can perform more extensive search of the pathway space,
and is less reliant on the initial pathway chosen. The crossover
and mutations of pathways followed by local optimization
also facilitate extensive search of pathway space because those
operations generate new pathways by overcoming large energy
barriers, which is the major limitation of MD-based approaches.
Last, the combined use of the classical action for local
minimization and the OM action for selection is
computationally relatively efficient, and allowed us to find
multiple low OM action pathways without performing the
computationally expensive Hessian calculation. Combined, this
computational efficiency thus allows investigation of larger/more
complicated systems.

Elber et al.16 optimized the Gauss action using simulated
annealing (SA) to find the folding pathway of C-peptide, which is
a 16-residue long peptide forming a helical conformation. The

sampling efficiency of SA depends on its annealing schedule, the
maximum temperature set during the annealing, and the heights
of energy barriers. Since SA is based on molecular dynamics,
which is history-dependent, the probability to find the global
minimum of a system depends on the initial state. Therefore, it
may take enormously long time to sample the entire pathway
space when the degrees of freedom are large, and/or the energy
landscape is highly rugged. In addition to these limitations,
SA using the Gauss action requires computationally expensive
Hessian calculation of the potential energy. In the work by
Fujisaki et al.30,31, the ensemble of pathways was sampled using
the replica exchange molecular dynamics (REMD) and the OM
action. Although REMD is known to be superior to SA in terms
of its sampling efficiency, it also suffers from similar limitations
of SA. Due to these limitations, only relatively simple
model systems, Bolhuis’ two-dimensional potential63 and a
coarse-grained self-avoiding polymer with one bead type and
three interaction terms64, were studied.

In conclusion, we demonstrated that efficient global
optimization of Onsager-Machlup action reveals multiple transi-
tion pathways including the most dominant one successfully. In
this work, we introduced a computational method that samples
multiple possible pathways and provides information on the
relative dominance of them via efficient global optimization of
Onsager-Machlup action using the CSA method. The advantages
of our method over existing pathway sampling methods are in the
fact that its sampling efficiency is independent of the quality of
initial guesses on pathways; only the calculation of first
derivatives is required; and its sampling ability is not limited by
the existence of high energy barriers separating pathways, which
is a major limiting factor of previous MD-based pathway
sampling methods in exploring the pathway space7,8,16,28,30–32.
Also, it is identified that the profile of minimum Onsager-
Machlup actions found with different transition time parameters
provides kinetic information on multiple pathways. In terms of
implementation, Action-CSA calculation is massively parallel
because the local optimization of each trial pathway is
independent of each other. Thus, pathway samplings for larger
systems are possible with the help of a large computer cluster
system. We anticipate that the Action-CSA method will be used
as a first-step exploration for complex reactions and large-scale
conformational changes due to its low cost and robust nature.
Results from Action-CSA can be used as the starting point for
many other methods.

Methods
Classical and Onsager-Machlup actions. Here, we briefly review the theoretical
background behind Action-CSA. If a system with N atoms with a potential energy
V follows the overdamped Langevin dynamics,

g _x¼� @V
@x
þR; ð1Þ

where x is a 3N dimensional mass-weighted coordinate vector, g is collision
frequency, and R is a Gaussian random force, the relative probability of finding a
final state xf at a time t from an initial state xi via diffusive trajectories x(t0) is
determined by using the path integral approach and OM action SOM[x(t0)]26,27:

P xf jxi; tð Þ¼
Z xðtÞ¼xf

xð0Þ¼xi

Dxðt0Þ exp � SOM½xðt0Þ�
kBT

� �
; ð2Þ

where Dxðt0Þ indicates that the integration runs over all possible pathways x(t0).
This relationship suggests that if the SOM values of all physically accessible
pathways are obtained, one can determine the relative populations of multiple
pathways. Thus, SOM is a proper target objective function of global optimization.
The generalized OM action of a pathway x(t) is defined26,27,65,66:

SOM½xðtÞ�¼
DV

2
þ 1

4g

Z t

0
dt g _xðtÞ½ �2 þ jrV ½xðtÞ�j2 � 2kBTr2V ½xðtÞ�
� �

; ð3Þ

where DV¼V(xf)�V(xi). In the original formula of action derived by Onsager
and Machlup, the last term of equation (3) was absent26,27. It was shown that, for
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the purposes of reweighting and sampling diffusive pathways, two OM actions with
and without the Hessian term are equivalent. However, for the purpose of finding
the most probable trajectory motif, the term should be considered because it
represents the entropic corrections connected with fluctuations and the
neighborhood of a given trajectory motif, which is also represented as a tube
around the motif66,67. Note that the minimization of SOM using analytic local
minimization algorithms requires analytic third derivatives. This makes the direct
global optimization of SOM hard to be applied to detect transition pathways of
biomolecules with all-atom force fields due to the complexity of implementation
and high computational cost. For numerical calculations based on a chain-of-states
representation, the OM action should be discretized. The method uses the
second-order discretization of the symmetric OM formula, which uses only
gradients for SOM calculations68:

SOM½xðtÞ�¼
DV

2
þ
XP� 1

i¼0

Dt
4g

g xiþ 1 � xið Þ
Dt

� �2

þ jrV xið Þj2 þ jrV xiþ 1ð Þj2

2

(

� g xiþ 1 � xið Þ
Dt

� rV xiþ 1ð Þ�rV xið Þ½ �
�
;

ð4Þ

where Pþ 1 is the number of replicas, Dt is a time step between successive replicas,
and t¼ PDt is the total transition time. This formula is more efficient than the
direct implementation of equation (3) since it requires only the first derivatives of
V to evaluate SOM.

Global action optimization. Here, we describe the application of CSA to optimize
SOM. In general, a pathway is represented as a chain of P� 1 replicas with N atoms
for each replica leading to 3N(P� 1) total degrees of freedom. Each replica is
represented by a sequence of 3N� 6 internal dihedral angles and 6 net transla-
tional/rotational degrees of freedom. An Action-CSA calculation starts with a set of
random pathways on a pathway space. Subsequently, the actions of the random
pathways are locally optimized.

As stated previously, direct minimization of SOM using analytic gradients is
computationally challenging. For a computationally feasible local action
optimization, we optimized a pathway using a modified action from ADMD
instead of using SOM. The discretized classical action is defined:

Sclassical½xðtÞ�¼
XP� 1

i¼0

Li xið ÞDt¼
XP� 1

i¼0

xi � xiþ 1ð Þ2

2Dt2
�V xið Þ

� �
Dt: ð5Þ

Physically accessible pathways correspond to the stationary points of Sclassical.
Finding such pathways is a computationally difficult task because Sclassical is not
bounded; Sclassical can be minimized or maximized, and the stationary points of
Sclassical can be minima, maxima or saddle points. Another practical problem is that
the total energies of pathways satisfying the stationary condition dSclassical¼ 0 may
not be conserved18. To find pathways that satisfy the principle of least action and
conserve total energies, a modified action with a penalty term restraining total
energy was suggested18:

Y xi; Eð Þ ¼mASclassical þ mE

XP� 1

i¼0

Ei �Eð Þ2

¼mA

XP� 1

i¼0

xi � xiþ 1ð Þ2

2Dt2
�V xið Þ

� �
Dtþ mE

XP� 1

i¼0

xi � xiþ 1ð Þ2

2Dt2
þV xið Þ

� �
�E

	 �2

;

ð6Þ
where E is a targeted total energy of a system, mA and mE are the weighting
parameters of the classical action, and the restraint term for energy conservation.
The minimization of Y[x(t); E] requires only the first derivatives of V.

The set of locally optimized initial random pathways using Y[x(t);E] is called
the first bank. The first bank remains the same throughout the optimization and is
used as the reservoir of partially optimized pathways to enhance the diversity of
pathway search. A copy of the first bank is generated and called a bank. The
pathways in the bank are updated during a calculation while the size of the bank is
kept constant. By using the pathways included in the first bank and the bank, new
trial pathways are generated by crossover and mutation (random perturbation)
operations. For a crossover operation, two pathways, a seed pathway from the bank
and a random pathway either from the bank or the first bank, are selected and
random parts of two selected pathways are swapped. For a random perturbation, a
certain number of degrees of freedom of a seed pathway, up to 5% of total degrees
of freedom, are randomly changed. The generated trial pathways are locally
optimized by minimizing Y[x(t);E] to remove any possible artifacts generated by
the crossover and the mutation operations. After local optimizations, the bank is
updated by comparing the SOM values of the existing pathways and the new ones
instead of Y[x(t);E].

A key feature of CSA is a sophisticated bank-update procedure that prevents a
search being trapped in local minima during the optimization and keeps the
diversity of the bank. For a newly obtained configuration, a pathway in this work,
a, the pathway separation distances D between a and the existing ones in the bank
are calculated. If the distance between a and its closest neighbor is less than a cutoff
distance Dcut, only the better configuration in terms of the objective function, SOM

in this work, is selected. If D4Dcut, a is considered a new configuration and it

replaces the worst configuration in the bank if it is better. At initial stages of a
calculation, Dcut is kept large for wider sampling. As the calculation proceeds,
it gradually decreases for a refined search near the global minimum. The bank
keeps updating until no better configuration is found. In this work, a distance
between two pathways was measured by the Fréchet distance69. More details on a
general CSA procedure are described elsewhere33–35,37,39,40.

Action-CSA simulation. To verify that Action-CSA successfully finds multiple
pathways and allows one to determine the rank order of the pathways based
on their optimized SOM values, we applied our method to investigate the
conformational transition of alanine dipeptide from C7eq to C7ax in the vacuum.
Here, we used the polar hydrogen representation in the PARAM19 force field55

and the dielectric constant was set to 1.0 (ref. 70). We performed Action-CSA
simulations with various transition times, t in equations (4) and (6), ranging from
0.2 to 2.0 ps with an interval of 0.1 ps. The numbers of replicas were adjusted with
t to keep the time step between successive replicas Dt¼ 5 fs. All simulations were
performed at temperature T¼ 350 K with a collision frequency g¼ 1.0 ps� 1.
The reference total energy E in equation (5) was obtained by adding the
initial potential energy V(xi)¼ � 43.3 kcal mol� 1 and a kinetic energy of
12.5 kcal mol� 1 estimated by 3NkBT/2 with the number of atoms N¼ 12.
The weighting parameters mA and mE in equation (5) were set to � 1.0 and 1.0,
respectively. For comparison purposes, we performed 5,000 independent 100 ns
LD simulations of alanine dipeptide under the same condition amounting to 500 ms
LD simulations and counted the number of the C7eq-C7ax transitions. An
Action-CSA calculation requires 10 adjustable parameters, and they are listed in
Supplementary Table 1. The parameters for the calculations presented in this study
were not extensively optimized. Rigorous optimization of the parameters is out of
the scope of this study, and requires a series of subsequent benchmark studies.

Data availability. The Action-CSA code is freely available for academic,
government and nonprofit use as a part of the CHARMM molecular dynamics
package (http://charmm.chemistry.harvard.edu/). All relevant data are available
from the authors upon request.

References
1. Elber, R. Perspective: computer simulations of long time dynamics. J. Chem.

Phys. 144, 060901 (2016).
2. Dellago, C., Bolhuis, P. G., Csajka, F. S. & Chandler, D. Transition path

sampling and the calculation of rate constants. J. Chem. Phys. 108, 1964–1977
(1998).

3. Bolhuis, P. G., Chandler, D., Dellago, C. & Geissler, P. L. Transition path
sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev.
Phys. Chem. 53, 291–318 (2002).

4. Wales, D. J. Discrete path sampling. Mol. Phys. 100, 3285–3305 (2002).
5. Bai, D. & Elber, R. Calculation of point-to-point short-time and rare

trajectories with boundary value formulation. J. Chem. Theory Comput. 2,
484–494 (2006).

6. Carr, J. M. & Wales, D. J. Folding pathways and rates for the three-stranded
b2-sheet peptide beta3s using discrete path sampling. J. Phys. Chem. B 112,
8760–8769 (2008).

7. Faccioli, P., Sega, M., Pederiva, F. & Orland, H. Dominant pathways in protein
folding. Phys. Rev. Lett. 97, 108101 (2006).

8. Beccara, S. a., Skrbic, T., Covino, R. & Faccioli, P. Dominant folding pathways
of a WW domain. Proc. Natl Acad. Sci. USA 109, 2330–2335 (2012).

9. Elber, R. Simulations of allosteric transitions. Curr. Opin. Struct. Biol. 21,
167–172 (2011).
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