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Abstract

Protocols for specifying human primordial germ cell-like cells (hPGCLCs) from human

embryonic stem cells (hESCs) remain hindered by differences between hESC lines, their

derivation methods, and maintenance culture conditions. This poses significant challenges

for establishing reproducible in vitro models of human gametogenesis. Here, we investi-

gated the influence of activin A (ActA) during derivation and maintenance on the propen-

sity of hESCs to differentiate into PGCLCs. We show that continuous ActA

supplementation during hESC derivation (from blastocyst until the formation of the post-

inner cell mass intermediate [PICMI]) and supplementation (from the first passage of the

PICMI onwards) is beneficial to differentiate hESCs to PGCLCs subsequently. Moreover,

comparing isogenic primed and naïve states prior to differentiation, we showed that con-

version of hESCs to the 4i-state improves differentiation to (TNAP [tissue nonspecific alka-

line phosphatase]+/PDPN [podoplanin]+) PGCLCs. Those PGCLCs expressed several

germ cell markers, including TFAP2C (transcription factor AP-2 gamma), SOX17 (SRY-box

transcription factor 17), and NANOS3 (nanos C2HC-type zinc finger 3), and markers asso-

ciated with germ cell migration, CXCR4 (C-X-C motif chemokine receptor 4), LAMA4 (lami-

nin subunit alpha 4), ITGA6 (integrin subunit alpha 6), and CDH4 (cadherin 4), suggesting

that the large numbers of PGCLCs obtained may be suitable to differentiate further into

more mature germ cells. Finally, hESCs derived in the presence of ActA showed higher

competence to differentiate to hPGCLC, in particular if transiently converted to the 4i-

state. Our work provides insights into the differences in differentiation propensity of

hESCs and delivers an optimized protocol to support efficient human germ cell derivation.
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1 | INTRODUCTION

Pluripotency designates the ability of human embryonic stem cells

(hESCs) to differentiate into all embryonic lineages, including the

germline.1 In vivo, pluripotency exists as a transient developmental gradi-

ent, starting from the fully uncommitted naive state in the blastocyst

inner cell mass (ICM) to the more lineage predisposed primed state in

post-implantation embryos.2,3 Mouse embryonic stem cells (mESCs)

derived from the ICM reside in the naive state of pluripotency, whereas

stem cells derived from the mouse post-implantation epiblast (mEpiSCs)

adopt the primed state.4,5 Notably, ICM-derived canonical hESCs display

a primed pluripotent profile, more similar to mEpiSCs.4,5 Contrary to

mESCs, conventional hESCs transition toward primed pluripotency

through a post inner cell mass intermediate (PICMI), observed during the

establishment of stable hESC lines.6,7 However, by precisely modulating

the culture environment, it is also possible to derive naive hESCs directly

from the ICM, or to convert the existing primed hESCs toward the naive

state.8-11 For instance, primed hESCs can be reset to a naive-like pluripo-

tent state through extended culture in naïve human stem cell medium

(NHSM) supplemented with human leukemia inhibitory factor (LIF), fibro-

blast growth factor 2 (FGF2), transforming growth factor beta 1 (TGFβ1)

along with inhibitors for mitogen-activated protein kinase/extracellular

signal-regulated kinase (MEK), glycogen synthase kinase 3 beta (GSK3β),

JUN N-terminal kinase (JNK), and P38 mitogen-activated protein kinase

(p38).9 More recently, the culture of naive hESCs has been achieved

through the commercially available RSeT medium, a FGF2- and TGFβ-

free formulation of NHSM.12 The culture conditions of primed hESCs

have also been optimized to reduce cellular heterogeneity through inhi-

bition of WNT (wingless-related integration site) signaling.13,14

The germline competence of ESCs relies on the state of

pluripotency the cells reside in. Accordingly, in the mouse model,

primed mEpiSCs fail to differentiate toward mouse primordial germ

cell-like cells (PGCLCs) in response to germ cell specification stim-

uli.15,16 However, naive mESCs briefly exposed to primed signaling

factors, activin A (ActA) and FGF2, generated intermediary germline-

competent epiblast-like cells, which could be successfully differenti-

ated to PGCLCs and further matured to form functional gametes and

ultimately could contribute to the generation of fertile mice.15-18

Human PGCLCs (hPGCLCs) can also be generated in vitro from

human pluripotent stem cells (hPSCs), both from hESCs and from

human induced pluripotent stem cells (hiPSCs).19-25 Specifically, Irie

et al reported the successful differentiation of TNAP (tissue non-

specific alkaline phosphatase or ALPL)+/NANOS3 (nanos C2HC-type

zinc finger 3) + hPGCLCs starting from germline competent hPSCs

maintained in 4i-medium (supplemented with human LIF, FGF2,

TGFβ1 along with inhibitors for MEK, GSK3β, JNK, and p38), based

on culture conditions adapted from Gafni et al.9,20 When cultured in

germline-differentiation media for 4 days as embryoid bodies (EBs),

4i-hESCs were able to form hPGCLCs that resembled human primor-

dial germ cells (PGCs) at 7 weeks post-conception (WPC) (equivalent

to Carnegie stage 18-19), based on their transcriptional signature.20

Although hPSCs can be successfully differentiated toward

hPGCLCs, different lines exhibit marked differences in lineage

differentiation propensity,26-28 attesting to their inherent cellular het-

erogeneity and sensitivity to culture conditions. This may pose signifi-

cant challenges for engineering reproducible multistep in vitro models

of human gametogenesis.29-31 In the context of human germline

modelling, it would be highly beneficial to acquire hESC lines with

increased germ cell competence. Exogenous supplementation of ActA

during hESC derivation has been previously reported to increase the

efficiency of hPGCLC differentiation.32,33 However, it remains unclear

at which stage ActA supplementation plays a role during the transition

from pluripotency toward hPGCLC fate, particularly in the context of

more recent germ cell differentiation protocols.

Here, we have compared the propensity of hESCs derived in both

conventional and ActA conditions to form hPGCLCs. For this, we

converted hESCs to isogenic primed and naïve-states prior to differ-

entiation and observed that conversion to the 4i-state conferred the

highest competence to differentiate to hPGCLCs. Moreover, we

derived isogenic hESC lines from a single blastocyst by dividing the

PICMI into two halves and culturing them from the PICMI-stage with

and without ActA. We observed no difference in hPGCLC yield

between these lines, suggesting that increased germline competence

is only obtained when ActA is also added in the period from the blas-

tocyst until the formation of the PICMI. As these two cell lines are iso-

genic, an alternative explanation is that the increased competence to

form PGCLCs is due to differences in genetic background and not just

due to the use of ActA. Defining key factors involved in human

germline development will be essential for unravelling complex molec-

ular transitions between pluripotency and the germ cell fate. Taken

together, optimizing hPGCLC differentiation protocols may support

the ultimate aim of acquiring in vitro patient-derived gametes in the

future.

2 | MATERIALS AND METHODS

2.1 | Ethical permissions

Human pre-implantation embryos were donated to research by

patients who previously underwent medically assisted reproduction at

Significance statement

Robust differentiation of human primordial germ cell-like

cells (hPGCLCs) starting from human embryonic stem cells

(hESCs) is currently hampered by the inherent heteroge-

neous nature of different hESC lines. This article shows that

hESC lines derived and cultured in the presence of activin A

show high competence to differentiate to PGCLCs, in partic-

ular if transiently converted to the 4i-state prior to differen-

tiation. A robust and systematic comparison of isogenic lines

was performed and provided an optimized protocol to

obtain PGCLCs from hESCs.

552 IMPROVING THE YIELD OF PGCLCs FROM hESCs



Ghent University Hospital. Embryos were only used in the study fol-

lowing written informed consent. Human ESC derivation was

approved by the Institutional Review Board, Ghent University

(EC2015/1114) and the Belgian Federal Commission for Research on

Embryos in vitro (ADV_060_UZ Gent). The differentiation of germ

cells from hESCs was approved by the Institutional Review Board of

the Ghent University Hospital, Belgium (EC2019/1595).

The human gonadal material was acquired from elective abortions

(without medical indication) and donated for research with written

informed consent. Approval for the collection and use of human

gonadal material was obtained from the Medical Ethical Committee of

the Leiden University Medical Centre (P08.087).

2.2 | Derivation of hESCs (via PICMI formation)

Cryopreserved day 5 blastocysts were warmed using the Vitrification

Thaw Kit (Irvine Scientific, Santa Ana, CA) as described.34 Blastocysts

were cultured to day 6 in 25 μL drops of culture medium under min-

eral oil (Irvine Scientific). Good quality embryos were exposed to pre-

warmed Acidic Tyrode's Solution (Sigma-Aldrich, St. Louis, Missouri),

washed and plated whole on center-well IVF (in vitro fertilization)-Fal-

con culture dishes (Corning, Corning, New York), on a feeder layer of

mitomycin-C inactivated mouse embryonic fibroblasts (MEF) in hESC

medium (Gibco KnockOut-Dulbecco's Modified Eagle Medium [KO-

DMEM] [Thermo Fisher Scientific, Waltham, Massachusetts], 20%

Gibco KnockOut-serum replacement [KOSR] [Thermo Fisher Scien-

tific], 1% Gibco Penicillin/Streptomycin (P/S) [Thermo Fisher Scien-

tific], 1% Gibco nonessential amino acids [NEAA] [Thermo Fisher

Scientific], 0.4 mM Gibco L-Glutamine [Thermo Fisher Scientific],

0.1 mM Gibco β-mercaptoethanol [Thermo Fisher Scientific], and

4 ng/mL FGF2 [Peprotech, Rocky Hill, New Jersey]). PICMI out-

growths were mechanically excised into two halves. One half was

plated and cultured in hESC medium, resulting in line U-19-1, whereas

the other half was plated in hESC medium supplemented with 20 ng/

mL ActA (R&D Systems, Minneapolis, MI), resulting in line U-19-1-

OA2. Cells were cultured at 37�C in hypoxic conditions (5% O2, 6%

CO2). For chromosomal profiling, shallow whole-genome sequencing

was performed on bulk hESCs as described14 and WisecondorX was

used for CNV calling.35

2.3 | Culture of hESCs

This study used different hESC lines previously derived at the Ghent Uni-

versity6,32,33: two ActA-derived primed hESCs (U-11-4, U-12-3) and two

conventional primed hESCs (U-11-2, U-11-60) were cultured on

mitomycin-C-inactivated MEFs in hESC medium with and without 20 ng/

mL of ActA (R&D Systems), respectively. For chromosomal profiling, shal-

low whole-genome sequencing was performed on bulk hESCs as

described14 andWisecondorX was used for CNV calling35 (Figure S1).

Prior to differentiation, hESCs were cultured for six passages in

mitomycin-C-inactivated MEFs in different culture media: (1) DhiFI

medium (DMEM-F12/Glutamax [Thermo Fisher Scientific], 20%

KOSR, 1% P/S, 1% NEAA, 0.1 mM β-mercaptoethanol, 12 ng/mL

hFGF2, 2 μM IWP2 [Sigma-Aldrich])14; (2) RSeT medium (Stemcell

Technologies, Vancouver, Canada)12; and (3) 4i medium (KO-DMEM,

20% KOSR, 1% P/S, 1% NEAA, 20 ng/mL recombinant hLIF

[Peprotech], 8 ng/mL hFGF2, 1 ng/mL recombinant hTGFβ1

[Peprotech], 3 μM CHIR99021 [Axon Medchem, Groningen, The

Netherlands], 1 μM PD0325901 [MedChemExpress, Monmouth

Junction, New Jersey], 5 μM SB203580 [Bio-Techne, Minneapolis,

Minnesota], 5 μM SP600125 [TOCRIS, Bristol, UK], and 10 μM

ROCKi [Enzo Life Sciences, Zandhoven, Belgium]).20 Cells were cul-

tured at 37�C in hypoxic conditions, refreshed daily, and passaged

every 3 to 5 days depending on confluency.

2.4 | Differentiation of hESCs toward hPGCLCs-
Containing EBs

One day prior to confluency, hESCs were dissociated using either

CTK (1 mg/mL Collagenase IV [Life Technologies, Carlsbad, Califor-

nia], 0.25% Trypsin [Life Technologies], 20% KOSR, 1 mM CaCl2

[Sigma-Aldrich] in PBS) (primed and DhiFI) or TrypLE (Thermo Fisher

Scientific) (RSeT and 4i), using sterile 3-mm glass beads. Cells were

centrifuged at 750 rpm for 5 minutes, followed by resuspension in

respective fresh medium supplemented with 10 μM ROCKi. The

hESCs were pre-plated on gelatin-coated flasks and incubated for up

to 1 hour, allowing selective removal of fast attaching MEFs. EBs were

generated as described20 with some modifications. Briefly, viable cells

were counted using a NucleoCounter (ChemoMetec, Allerod, Den-

mark) and a solution of 65.000 cells/mL was made in differentiation

medium (DM) consisting of GK15 (Gibco Glasgow's MEM [Thermo

Fisher Scientific], 2 mM L-glutamine, 15% KOSR, 1% P/S, 1% NEAA,

0.1 mM β-mercaptoethanol, 1 mM sodium pyruvate) supplemented

with 500 ng/mL recombinant hBMP4 (bone morphogenetic protein 4)

(Thermo Fisher Scientific), 100 ng/mL recombinant hSCF (stem cell

factor) (Thermo Fisher Scientific), 50 ng/mL recombinant hEGF (epi-

dermal growth factor) (R&D Systems), 1 μg/mL recombinant hLIF, and

10 μM ROCKi. To generate EBs, 100 μL of the cell suspension was

added per well to U-bottom low attachment plates (Corning) and cen-

trifuged at 400g for 2 minutes. The plates were then incubated at

37�C in hypoxic conditions for 4 days without medium changes.

hPGCLC differentiation was performed on each cell line and for each

condition in triplicate.

2.5 | Immunostaining of hESCs and EBs

EBs and hESCs were fixed with 4% paraformaldehyde (PFA, Sigma-

Aldrich) for 1 hour (EBs) or 20 minutes (hESCs) at room temperature

(RT). Samples were washed in 0.1% bovine serum albumin (BSA) in

PBS, permeabilized with 0.5% (EBs) or 0.1% (hESCs) Triton-X100

(Sigma-Aldrich) in PBS for 1 hour (EBs) or 8 minutes (hESCs) and

blocked (10% fetal calf serum [FCS, Thermo Fisher Scientific] and

MISHRA ET AL. 553



0.5% BSA in PBS) for 2 hours (EBs) or 1 hour (hESCs). Blocked sam-

ples were incubated with primary antibodies (Table S1) overnight at

4�C. Samples were then incubated with secondary antibodies

(Table S1) for 2 hours (EBs) or 1 hour (hESCs) at RT. Subsequently,

samples were counterstained with 40,6-diamidino-2-phenylindole

(DAPI) for 10 minutes and mounted on glass slides in mounting

medium containing 2.4% DABCO (Sigma-Aldrich) in glycerol (Novolab,

Geraardsbergen, Belgium).

2.6 | Image analysis, quantification, and statistical
analysis

Samples (EBs and hESCs) were imaged with a 20× objective on a SP8

confocal microscope (Leica, Wetzlar, Germany) using SPX software

(Leica). EBs were imaged as Z-stacks (N = 3-7 per EB; each 10 μm)

and analyzed using Fiji v2.0.36 For quantification, cells showing

coexpression of POU5F1 (POU class 5 homeobox 1), SOX17 (SRY-

box transcription factor 17), PDPN (podoplanin), and DAPI were con-

sidered hPGCLCs, using the multipoint tool. Differences between

groups were evaluated using one-way ANOVA (Dunnett's multiple

comparisons test), with GraphPad Prism software v8.4.1. Moreover, in

Fiji, the area of the EBs was measured using the area selection tool to

trace the outline of the EBs at maximum projection, followed by mea-

surement calculations using the analyze tool.

2.7 | Fluorescence-activated cell sorting (FACS)
and statistical analysis

Early PGCs present in human fetal gonads (8 WPC male, 11 WPC

female, and 15 WPC female) were used as positive control for FACS.

These were isolated in 0.9% NaCl (Fresenius Kabi, Bad Homburg, Ger-

many), dissociated in accutase (Stemcell Technologies) overnight at

4�C followed by 30 minutes at 37�C and cryopreserved in Bambanker

(GC Lymphotech, Tokio, Japan). Cryovials were thawed in DMEM

with 15% FCS and 10 μM ROCKi and centrifuged at 300xg for

5 minutes. The cells were resuspended in GK15 with 10 μM ROCKi,

pre-plated on Matrigel (VWR International, Radnor, PA) coated flasks

and incubated for 30 minutes at 37�C in hypoxia. The cells remaining

in suspension were used for FACS. EBs were dissociated with TrypLE

for 20 minutes at 37�C with intermittent pipetting, neutralized

DMEM with 15% FCS and used for FACS.

For FACS, cells were centrifuged at 300g for 5 minutes, washed

in Dulbecco's PBS (Sigma-Aldrich), resuspended in 100 μL FACS

buffer (3% FCS in PBS with 10 μM ROCKi), containing fluorescent-

conjugated antibodies against TNAP and PDPN (Table S1) and incu-

bated for 15 to 20 minutes in the dark at RT. Cells were washed twice

in FACS buffer, resuspended in 100 μL of FACS buffer containing

1:100 dilution of 7AAD live/dead exclusion dye (BD Biosciences, San

Jose, California) on 35 μm cell-strainer-snap-cap 5 mL FACS-tubes

(Corning) and used (analyzed and sorted) using a 100 μm nozzle on a

FACS Fusion Cell Sorter (BD Biosciences). The gating strategy is

depicted in Figure S2A. To quantify the cells of interest, 10 000 total

events were recorded per sample, followed by the removal of doublets.

The percentage of TNAP+/PDPN+ (TP+) hPGCLCs was calculated from

the live (7AAD-negative) gate. FACS data were analyzed using FlowJo

v10. Differences between groups were evaluated using Student's t test

with GraphPad Prism Software v8.4.1. A P-value <.05 was considered

statistically significant.

2.8 | RNA-sequencing analysis and statistical
analysis

Total RNA extraction from FACS-sorted cells and hESCs was performed

using RNAEasy Plus Micro kit (Qiagen, Hilden, Germany) and Mini kit

(Qiagen), respectively, following manufacturer's instructions and RNA

concentration and quality were evaluated using the Quant-it ribogreen

RNA-assay (Life Technologies) and the RNA6000 Nanochip (Agilent

Technologies, Santa Clara, California), respectively. Library preparation

was performed using the QuantSeq 30 mRNA-Seq Library Prep Kit (Lex-

ogen, Vienna, Austria), using 2 ng of RNA. A high sensitivity DNA chip

(Agilent Technologies) was used to control the library size distribution

and quality. Sequencing was performed on a high throughput Illumina

NextSeq 500, generating 75 bp single reads. The reads were trimmed

using cutadapt v1.18,37 to remove the “QuantSEQ FWD” adaptor

sequences, and mapped against Homo sapiens GRCh38.89 reference

genome using STAR v2.6.0c.38 RSEM software v1.3.139 was used to

generate count tables. Log2 [counts per million (cpm) +1] were used for

principal component analyses (PCAs), visualized using ggplot2 v3.3.040

and heatmaps were generated using pheatmap v1.0.1241 with Pearson

correlation-based clustering. Differential gene expression analysis

between groups of samples was performed using edgeR v3.28.1.42 For

each separate analysis, the following steps were performed: (1) normali-

zation using edgeR's standard normalization method, (2) only genes with

cpm > 1 in at least four samples were retained, and (3) a general linear

model was built, and statistical analysis was preformed using the empiri-

cal Bayes quasi-likelihood F-test. Genes having a false discovery rate

<0.05 and a fold change >1 were considered significantly different. Vol-

cano plots were used visualize pairwise comparisons using ggplot2

v3.3.0.40

3 | RESULTS

3.1 | hESCs converted to 4i-hESCs prior
to differentiation produce more hPGCLCs

To investigate the role that the initial pluripotency state of hESCs has

on the efficiency to differentiate into hPGCLCs, we compared a con-

ventional primed hESC line (U-11-2) with an ActA-derived primed

hESC line (U-11-4), referred to as “primed” and “A2-primed,” respec-

tively (Figure 1A). Primed and A2-primed hESCs expressed

pluripotency-marker POU5F1 (or OCT4/Octamer-Binding Protein 4)

but were negative for both SOX17 and PDPN (Figure 1B). In contrast,
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spontaneously differentiated endodermal cells at the periphery of the

hESC colonies were positive for SOX17 and negative for POU5F1 and

PDPN (Figure 1B).

Prior to differentiation, the two cell lines (primed and A2-primed)

were adapted to three additional pluripotency culture conditions:

DhiFI-medium (supplemented with FGF2 and inhibitor of WNT),14

F IGURE 1 Defining conditions to convert primed human embryonic stem cells (hESCs) to optimize differentiation to human primordial germ
cell-like cells (hPGCLCs). A, Schematic protocol of the conversion conditions tested (primed, DhiFI, RSeT, and 4i) in primed and A2-primed hESCs,
prior to embryoid body (EB) assay using differentiation medium (DM) to hPGCLC fate. B, Expression of POU5F1 (red), SOX17 (yellow), and
podoplanin (PDPN) (cyan) in primed and A2-primed hESC colonies. White dotted lines mark regions of differentiating SOX17+ endodermal cells.
C, Single z-plane of day-4 EBs immunostained for POU5F1 (red), SOX17 (yellow), and PDPN (cyan) to identify hPGCLCs. D, Bar chart showing
the number of triple POU5F1+SOX17+PDPN+ hPGCLCs per EB in the different conditions tested. Error bars represent the SEM
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4i-medium (supplemented with LIF, FGF2, TGFβ1, and inhibitors for

MEK, GSK3β, JNK, and p38),20 and commercially available RSeT-

medium12 (Figure 1A; Figure S2B). After at least six passages of adap-

tation, the different isogenic lines were differentiated to hPGCLCs

using an EB-assay.20 After 4 days, the EBs were analyzed for the pres-

ence of hPGCLCs, identified as triple positive POU5F1/SOX17/PDPN

cells.43,44 The triple POU5F1/SOX17/PDPN immunostaining combi-

nation was chosen to allow visualization of different cellular compart-

ments (alternating the nuclear markers POU5F1 and SOX17 with the

surface marker PDPN) to ensure absence of bleeding-through from

microscopy and robustly identify PGCLCs. hPGCLCs were observed in

all tested conditions, but with varying efficiencies (Figure 1C,D). Com-

pared to all other conditions, A2-primed hESCs, adapted to 4i-medium

prior to differentiation, demonstrated the highest germline compe-

tence (one-way ANOVA test, P = .0023), showing 857 ± 275

hPGCLCs per EB (Figure 1C,D). To exclude that ActA could influence

the size of the EBs and only indirectly affect PGCLC formation, we

measured and corrected for the EB area (Figure S2C,D). After

F IGURE 2 Defining the steps that benefit from activin A (ActA) supplementation to optimize differentiation to human primordial germ cell-
like cells (hPGCLCs). A, Schematic protocol used to study the impact of adding ActA (derivation, maintenance, and differentiation) to optimize

differentiation to hPGCLCs. B, Fluorescence-activated cell sorting (FACS) plots showing expression of tissue nonspecific alkaline phosphatase
(TNAP) and podoplanin (PDPN) used to identity TNAP+/PDPN+ (TP+) human primordial germ cells (hPGCs) in dissociated gonads from 8, 11,
15 weeks post conception (WPC). C, FACS plots showing expression of TNAP and PDPN used to identity (TP+) hPGCLCs in dissociated day-4
embryoid bodies (EBs) obtained from human embryonic stem cells (hESCs) not exposed to ActA. D, FACS plots showing expression of TNAP and
PDPN used to identity (TP+) hPGCLCs in dissociated day-4 EBs obtained from different lines and culture conditions. E, Bar plots showing
quantification of TP+ cells obtained from dissociated gonads and day-4 EBs from different lines and culture conditions. Asterisks denote
statistically significant differences (*P < .05; **P < .01); error bars denote SEM
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correction for the EB area, A2-primed hESCs, adapted to 4i-medium

prior to differentiation, showed the highest proportion of PGCLC per

area of EB (Figure S2D).

An additional pre-priming step,20 following naïve resetting to 4i

and RSET, resulted in significantly reduced numbers of hPGCLCs

(Student's t test, P = .007 RSeT and P = .0004 4i) (Figure S2E). Hence,

pre-priming was not further used in this study.

3.2 | hESCs derived and maintained in ActA are
more competent to differentiate to hPGCLCs

Next, we evaluated the effect of derivation and continuous supple-

mentation with ActA (A3-primed hESCs) in the competence to differ-

entiate to hPGCLCs and compared that with A2-primed hESCs

(derived, but not continuously maintained in ActA) and conventional

primed hESCs (neither derived, nor maintained in ActA) (Figure 2A).

All hESC lines were adapted to 4i prior to differentiation and differen-

tiated to hPGCLCs using the EB-assay for 4 days. Thereafter, the EBs

were dissociated and hPGCLCs were quantified by FACS using TNAP

and PDPN, both known surface markers for hPGCs (Figure 2B-E;

Figure S2A). Human fetal gonads containing TNAP+/PDPN+ PGCs

were used to setup the FACS-gates (Figure 2B). Using two indepen-

dent ActA lines (U-11-4 and U-12-3), we demonstrated that hESCs

derived in the presence of ActA and continuously maintained in

medium supplemented with ActA (A3-primed) showed significantly

higher propensity to differentiate to hPGCLCs when compared to iso-

genic A2-primed and to primed hESCs (Figure 2C-E).

A synergistic cooperation between BMP4 and ActA has been

suggested for germline induction in both ex vivo and in vitro

models.33,43 Hence, we also tested the impact of ActA supplementa-

tion during the hPGCLC differentiation-step using A3-primed hESCs

(Figure 2A). Surprisingly, we observed that the addition of ActA to the

DM to form A4-4i EBs resulted in a reduction in the number of

hPGCLCs when compared to isogenic A3-4i EBs (Figure 2C-E).

3.3 | ActA supplementation during maintenance
alone did not increase hPGCLC competence

To determine the optimal time point for ActA supplementation

during the hESC derivation process, blastocyst plating was

F IGURE 3 Activin A (ActA) supplementation during maintenance of human embryonic stem cells (hESCs) does not increase competence to
human primordial germ cell-like cells (hPGCLCs). A, Schematic protocol used to generate two hESC lines from a single blastocyst by splitting the
post-inner cell mass intermediate (PICMI) and maintenance in the presence and absence of ActA. B, Morphology of the blastocyst and primary
colonies derived from the split PICMI (encircled by black dotted lines). C, Genomic sequencing of isogenic hESC lines U-19-1 and U-19-1-OA. D,
Fluorescence-activated cell sorting (FACS) plots showing expression of tissue nonspecific alkaline phosphatase (TNAP) and podoplanin (PDPN)
used to identity (TP+) hPGCLCs in dissociated day-4 EBs obtained from U-19-1 and U-19-1-OA. E, Bar plot showing quantification of TP+ cells
obtained from day-4 EBs from U-19-1 and U-19-1-OA. Error bars denote SEM
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performed in hESC medium and ActA was added only after PICMI

formation (Figure 3A). Once the PICMI was established, it was

mechanically split across two conditions. One half was cultured in

standard-hESC medium, whereas the other was plated in hESC-

medium supplemented with ActA (Figure 3A,B). This resulted in

the derivation of two chromosomally normal (Figure 3C), isogenic

hESC lines, U-19-1 (derived in standard primed hESC-conditions)

and U-19-1-OA (designating the absence of ActA in the

blastocyst-plating step, but supplementation with ActA thereafter).

Both lines were assessed for their propensity to differentiate to

hPGCLCs, after conversion to 4i medium (Figure 3D,E). Interest-

ingly, no significant difference (Student's t test; P = .12) was

observed in the TNAP+PDPN+ hPGCLC yield between the primed

lines maintained with or without ActA, suggesting that supplemen-

tation with ActA during the derivation period (during blastocyst

plating) is critical for obtaining hESCs with enhanced germline pro-

pensity. Alternatively, this could be due to the specific genetic

background associated with these specific isogenic hESC lines.

3.4 | hESCs derived and maintained in ActA
showed increased expression of primitive streak-like
markers

Next, we obtained next-generation sequencing data from primed hESCs

(U-19-1), OA2-primed hESCs (U-19-1-OA), A2-primed hESCs (U-12-3),

A3-primed hESCs (U-12-3), and A3-4i hESCs (U-12-3) as well as from

FACS-sorted TNAP+PDPN+ hPGCLCs and the TNAP−PDPN−

“somatic” fraction (U-12-3). In the PCA, three main clusters emerged:

the hESCs regardless of their culture conditions, the TNAP+PDPN+

hPGCLCs and the TNAP−PDPN− soma (Figure 4A). To further under-

stand the impact of ActA supplementation at different time points during

the derivation and maintenance process, we analyzed the different hESC

lines separately. Isogenic lines (A2-primed, A3-primed, and A3-4i) from

U-12-3 clustered more closely, whereas U-19-1 and U-19-1-OA were

quite distinct (Figure 4B). In hierarchical clustering using the expression

of selected pluripotency and early differentiation genes to the three

germ layers, extracellular matrix (ECM) marker FN1 (fibronectin 1)

F IGURE 4 Molecular profile of human embryonic stem cells (hESCs) subjected to supplementation with activin A (ActA) during derivation
and/or maintenance. A, Principle component analysis (PCA) showing the distribution of all samples. B, PCA showing the distribution of the
different hESCs. C, Heatmap showing hierarchical clustering of the different hESCs using a panel of selected genes. Triplicate samples were I4, I6,
I5 for A3-4i hESCs; H1, H2, H3 for A2-primed hESCs; H4, H5, H6 for A3-primed hESCs; H10, H11, H12 for primed hESCs; and H13, H14, H15
for OA2-primed hESCs. D, Volcano plot showing differentially expressed genes (green dots) between A3-primed hESCs and A2-primed hESCs. E,
Volcano plot showing differentially expressed genes (green dots) between A3-primed hESCs and primed hESCs
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showed elevated expression in U-19-1 and U-19-1-OA hESCs, com-

pared to the isogenic U-12-3 lines (Figure 4C), perhaps reflecting an ear-

lier passage when compared with U-12-3. As expected, all lines showed

high or moderate levels of pluripotency genes such as POU5F1,45,46

LIN28 (Lin-28 homolog A)47 and NANOG (nanog homeobox),48 as well as

low/absent levels of differentiation markers, such as FOXA2 (forkhead

box A2)49 and GATA4 (GATA binding protein 4)50 (Figure 4C).

To identify differences that could explain the higher competence

of A3-primed hESCs (derived and maintained in ActA) to differentiate

into hPGCLCs compared to primed hESCs (neither derived nor

maintained in ActA) and A2-primed hESCs (derived, but not

maintained in ActA), we performed a pairwise-differential gene

expression analysis of the different undifferentiated hESCs

(Figure 4D,E). A3-primed and A2-primed hESCs were rather similar

(Figure 4D; Table S2). When compared to primed hESCs, A3-primed

hESCs showed increased expression of ActA-pathway components

LEFTY1 (left-right determination factor 1) and LEFTY2 (left-right

determination factor 2)51 as well as upregulation of MIXL1 (mix

paired-like homeobox) and SP5 (Sp5 transcription factor), both associ-

ated with primitive streak formation and lineage priming21,23,52

(Figure 4E; Table S3). The A3-primed hESCs showed downregulation

of SFRP1 (secreted frizzled related protein 1), an antagonist of the

WNT pathway53 and a decrease in expression of AP-1 transcription

factors such as FOS (FBJ murine osteosarcoma viral oncogene homo-

log), FOSB (FBJ murine osteosarcoma viral oncogene homolog B), and

JUN

(V-Jun avian sarcoma virus 17 oncogene homolog) and Kruppel-like

factor KLF6, associated with regulation of cell growth, proliferation,

and cell cycle control.54 The AP-1 transcription factors are SMAD

(Sma- and Mad-related proteins) responsive and play an important

role in transcriptional regulation activities of the ActA/TGFβ path-

way.55,56 The A3-primed hESCs thus expressed relatively higher levels

of mesendodermal-like and enhanced WNT-signaling transcripts com-

pared to conventional primed hESCs.

F IGURE 5 Molecular transition from A3-primed to A3-4i to human primordial germ cell-like cells (hPGCLCs). A, Principle component analysis

(PCA) showing the distribution of A3-primed human embryonic stem cells (hESCs), A3-4i hESCs along with the TNAP (tissue nonspecific alkaline
phosphatase)+/PDPN (podoplanin)+ (TP+) hPGCLCs and TNAP−/PDPN− soma isolated from A3-4i-EBs (A3) and A4-4i-EBs (A4). B, Volcano plot
showing differentially expressed genes (green dots) between A3-primed hESCs and A3-4i hESCs. C, Volcano plot showing differentially expressed
genes (green dots) between A3-4i hESCs and TP+ hPGCLCs (A3+A4). D, Volcano plot showing differentially expressed genes (green dots)
between TP+ hPGCLCs (A3+A4) and TP− soma (A3+A4). E, Heatmap showing hierarchical clustering of TP+ hPGCLCs (A3+A4) and TP− soma
(A3+A4) using a panel of selected genes. Triplicate samples were P1, P2, P3 for TP+ hPGCLCs (A3); P7, P8, P9 for TP+ hPGCLCs (A4); S4, S5, S6
for soma A3; and S10, S101, S11, S12 for soma A4
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3.5 | Molecular transition from A3-primed hESCs
to 4i-hESCs to hPGCLCs

We characterized the transition from the primed to the 4i-state, which

we and others20,22 showed to be important to induce competence to

differentiate to (TNAP+PDPN+) hPGCLCs (Figure 5A). Differential

analysis between the A3-primed hESCs and the A3-4i hESCs showed

upregulation of markers involved in the retinoic acid signaling path-

way during this transition. These included CRABP2 (cellular retinoic

acid binding protein 2), ZNF503 (zinc finger protein 503), IRX2 (iro-

quois homeobox 2), known coactivators of the ActA/TGFβ pathway57

as well as of BMP-targets ID1 (inhibitor of DNA binding 1) and ID2

(inhibitor of DNA binding 2) (Figure 5B; Table S4). ID proteins have

been shown to guide early cell fate decisions and proliferation in

response to SMAD4-dependent TGFβ and BMP signaling.58

The differential expression between A3-4i hESCs and differenti-

ated hPGCLCs (A3+A4) (692 genes) revealed, as expected, expression

of SOX2 (SRY-box transcription factor 2) and EOMES (eomesodermin)

in the 4i-state, as well as several tubulins (TUBB2B/tubulin beta 2B,

TUBB2A/tubulin beta 2A, TUBA4A/tubulin alpha 4A), WNT signaling

(WNT10B and FZD10/frizzled class receptor 10) and DNMT3B/DNA

methyltransferase 3 beta (Figure 5C; Table S5). In contrast, specific

markers of early germ cells emerged in the hPGCLCs, such as CD38

(cluster of differentiation 38), SOX17, SOX15, PDPN, TFAP2A, TFAP2C,

and GABRA3 (gamma-aminobutyric acid type A receptor subunit alpha

3) (Figure 5C; Table S5). In addition, hPGCLCs (A3+A4) showed a dis-

tinct gene expression profile from the somatic cells, present in the

same EBs (Figure 5A,D,E). A total of 1052 differentially expressed

genes (DEGs) were observed between hPGCLCs and somatic cells

(Figure 5D; Table S6). In agreement with previous studies profiling

human early PGCs59 and hPGCLCs,20 hPGCLCs showed upregulation

of pluripotency genes (POU5F1, NANOG), several naive genes (KLF4,

TCL1B/T cell leukemia-lymphoma 1B, and TFCP2L1/transcription fac-

tor CP2 like 1), but show the characteristic absence of SOX2

(Figure 5C-E). Moreover, hPGCLCs expressed multiple early germ cell

genes, such as CD38, NANOS3, PRDM1/positive regulatory domain I-

binding factor 1, TFAP2C, SOX17, TET1/ten-eleven translocation

1 gene protein, suggesting the acquisition of a bona fide early germ cell

fate. Although markers associated with a later germ cell fate, such as

DDX4 (DEAD [Asp-Glu-Ala-Asp] box polypeptide 4) or DAZL (deleted

in azoospermia like), were absent in our dataset, markers associated

with germ cell migration, such as ITGA6 (integrin subunit alpha 6),

CXCR4 (C-X-C motif chemokine receptor 4), CDH4 (cadherin 4), and

LAMA4 (laminin subunit alpha 4)21,22,60 were upregulated in hPGCLCs.

Having optimized the protocol to differentiate large numbers of

hPGCLCs efficiently will facilitate the optimization of the next steps of

human gametogenesis in vitro, into more mature germ cells.

4 | DISCUSSION

Derivation of hPGCLCs from hESCs provides a useful premise to

understand human germline specification which can be widely studied

if reproduced as a scalable laboratory model.61-63 In our study, we

demonstrated that hESCs derived and maintained in medium with

ActA and converted to the 4i-state prior to differentiation showed a

propensity to generate a high numbers of hPGCLCs. The propensity

to differentiate efficiently to hPGCLCs was the highest in hESCs that

were exposed to ActA during the derivation period (during blastocyst

plating). ActA signaling is prevalent in preimplantation embryos and

along with insulin like growth factor 1 (IGF1) aids derivation and cul-

ture of hESC lines, which can remain pluripotent in culture without

MEFs and FGF2,64,65 suggesting a strong and long-lasting priming

effect. Previous studies detailing transcriptional changes during con-

ventional hESC derivation have shown that although hESCs were in

the primed state of pluripotency, the ICM upregulates markers for

naïve pluripotency, but the intermediate PICMI showed both naïve

and primed markers along with markers of the early germline.6,66 Our

data suggest that the propensity to generate hPGCLCs may be

acquired via ActA-priming, during a “formative” interval following the

exit from naive pluripotency, but preceding the establishment of the

primed state.3

ActA/Nodal signaling occurs through the transcriptional regula-

tory effect of the phosphorylated SMAD2/3-SMAD4 complex, which

translocates to the cell nucleus to maintain pluripotency in

undifferentiated hESCs.67,68 However, this complex also regulates the

expression of mesendodermal genes.4 Interestingly, these early differ-

entiation genes seem to have bivalent histone marks (both activating

and silencing marks), which ensure rapid cell fate choices during dif-

ferentiation.67,69 In addition, although some degree of mes-

endodermal transcriptional expression may be detected, their proteins

seemed absent in undifferentiated hESCs,67 indicating multiple levels

of regulation. Therefore, derivation and continued culture in ActA

may allow a rapid switch of states resulting in an increase in the num-

ber of cells primed for the hPGCLC fate.

The upregulation of germline-competency in human pluripotent

stem cells is associated with the expression of primitive streak-like

markers such as MIXL1, SP5, RUNX1 (runt-related transcription factor

1), EOMES, and T (or TBXT/ T-box transcription factor T), either

through transient differentiation toward intermediate incipient

mesoderm-like cells (iMeLC)21,23 or, surprisingly, through conversion

to the 4i-state20,26 prior to directed differentiation. We have observed

that A3-primed hESCs carried over the expression of primitive streak-

like markers when converted to the 4i-state, suggesting a translated

advantage of germline competence added to the 4i pluripotency.

Using isogenic hESCs lines allowed us to systematically compare the

degree of germline-competency and provide optimized conditions to

potentiate the derivation of hPGCLCs.

The aim of this study was to provide a robust and efficient

method to differentiate hPGCLCs, with a transcriptome similar to that

of human early PGCs.20,59,61,70 The obtained hPGCLCs not only

expressed high levels of early PGC markers, but also expressed

markers of migratory PGCs, such as ITGA6, CXCR4, CDH4, and

LAMA4.21,22,60 This may have been supported by the upregulation in

the EB-somatic cells of ECM (COL3A1/collagen type III alpha 1 chain)

and ECM-related (SPARC/secreted protein acidic and cysteine rich)
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genes that are also expressed in gonadal supporting cells.71 In this

regard, it will be interesting to further investigate the maturation

potential of the obtained hPGCLCs through long-term coculture with

mouse gonadal somatic cells25 to facilitate meiotic entry and eventu-

ally generate functional gametes.

5 | CONCLUSIONS/SUMMARY

We report that hESC lines both derived and continuously cultured in

ActA and transiently converted to the 4i-state (naïve resetting) show

high competence to differentiate to hPGCLCs, when compared to iso-

genic hESCs that were derived but not further cultured in ActA or

hESCs not previously exposed to ActA. In their primed state, these

ActA-hESC lines showed elevated expression of pluripotency genes,

and of primitive streak/mesendodermal-like genes and enhanced

WNT signaling. Interestingly, the expression of these particular genes

remained unchanged during conversion to the 4i-state. The molecular

signature of the differentiated (TNAP+PDPN+) hPGCLCs resembled

those of early human PGCs and included genes associated with germ

cell migration, suggesting they may be suitable for further differentia-

tion. Our work contributes to understanding the difference in differ-

entiation propensity of (isogenic) hESCs and provides an optimized

protocol to support efficient human early germ cell differentiation.
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