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Abstract: We report on results from the comparison of two algorithms designed to estimate the
attenuation coefficient from ultrasonic B-mode scans obtained from a numerical phantom simulating
an ultrasound breast scan. It is well documented that this parameter significantly diverges between
normal tissue and malignant lesions. To improve the diagnostic accuracy it is of great importance to
devise and test algorithms that facilitate the accurate, low variance and spatially resolved estimation
of the tissue’s attenuation properties. A numerical phantom is realized using k-Wave, which is an
open source Matlab toolbox for the time-domain simulation of acoustic wave fields that facilitates
both linear and nonlinear wave propagation in homogeneous and heterogeneous tissue, as compared
to strictly linear ultrasound simulation tools like Field II. k-Wave allows to simulate arbitrary dis-
tributions, resolved down to single voxel sizes, of parameters including the speed of sound, mass
density, scattering strength and to include power law acoustic absorption necessary for simulation
tasks in medical diagnostic ultrasound. We analyze the properties and the attainable accuracy of
both the spectral-log-difference technique, and a statistical moments based approach and compare
the results to known reference values from the sound field simulation.

Keywords: ultrasound imaging; attenuation imaging; k-Wave; ultrasound simulation; spectral log
difference technique; method of moments; tissue mimicking materials

1. Introduction

Quantitative ultrasound (QUS) seeks to gather more information derived from B-mode
images than is attainable by displaying just the amplitudes of the complex envelope of the
time gain compensated and log-compressed echo signals, which is the information typically
conveyed by B-mode images. For quantitative ultrasound total attenuation as well as
backscatter coefficient have been shown to provide additional diagnostic information [1–3].
A good overview on the benefits of QUS in the diagnosis of malignant processes as well
as a discussion of the applied methods is given, e.g., in [4,5]. Attenuation maps can show
contrast between regions that do not appear differently in a standard B-mode image. Most
of the methods in QUS are based on the estimation of frequency domain parameters, like
the spectral-log-difference method that uses the difference in the spectral magnitude at
different depths to estimate the locally averaged attenuation from ultrasonic backscatter
data, or the method-of-moments, which also takes into account the downshift of the
spectrum caused by the frequency dependent attenuation of the propagating wave. Those
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methods all rely on the assumption, which in most cases is not valid, that the backscattering
coefficient does not change with the considered region of interest (ROI). This fact requires to
apply a rather large spectral analysis window which limits the attainable spatial resolution.
Superficial tumors like those typical for the breast or prostate are particularly well suited to
be characterized via QUS, thus we decided to work and report on results of malignancies
of the human breast.

Table 1 lists the acousto-mechanical properties of various benign and malignant breast
tissue types and one can observe that benign tissue types like glandular tissue, fat, or sup-
portive tissue exhibit attenuation coefficients α0 close to and around α0 = 1.0 dB/(MHz cm),
whereas benign cysts are closer to α0 = 0.2 dB/(MHz cm) and malignant masses show
values of around α0 = 2.0 dB/(MHz cm) [4,6,7]. From those numerical values one might
conclude that being able to devise an unbiased estimator for the attenuation coefficient
that has a standard deviation for α0 ≤ 0.3 would give a diagnostic benefit. Although there
still does not exist a robust estimation method to determine spatially resolved attenua-
tion coefficient, several authors have addressed that problem and developed a variety of
methods both in the time as well as in the frequency domain [1–3]. We employ a sound
field simulation software (k-Wave [8]) to generate B-mode scans of a numerically very well
characterized volume and are thus able to compare the estimation results obtained for two
techniques, the spectral-log-difference technique [9] and the method of moments [10,11].

Table 1. Physical properties of different biological tissues, where ρ, is the mass density, c, the speed of sound and Z,
the acoustic impedance, α0, the power law prefactor, y, the power law exponent, and B/A, the nonlinearity parameter [4]
(except for lesion and cyst).

ρ c Z α0 y B/A
Tissue in kg m−3 in m s−1 in kg m−2 s−1 in dB/(MHzy cm) – –

Blood 1060 1584 1.679 · 106 0.14 1.21 6
Bone 1990 3198 6.364 · 106 3.54 0.9 –
Breast 1020 1510 1.540 · 106 0.75 1.5 9.63

Fat 928 1430 1.327 · 106 0.6 1.0 10.3
Muscle 1041 1580 1.645 · 106 0.57 1.0 7.43

Lesion [12] – 1549 – 1.28 – –
Cyst [12] – 1569 – 0.152 – –

Water @ 20 ◦C 1000 1482.3 1.482 · 106 0.002 2.0 4.96

The paper is organized as follows. Section 2.1 gives an introduction to the production
and characterization of tissue mimicking phantoms that can be isonified and analyzed
by an ultrasound scanner to provide real B-mode ultrasonic scans the algorithms can
be trained on and characterized. Section 2.2 discusses the attenuation ultrasonic waves
experience while propagating into the tissue, being scattered, diffracted, and refracted by
some inhomogeneities and propagating back to the receiving aperture of the ultrasonic
probe. Section 2.3 discusses properties of the ultrasound simulation software considered in
this work and Section 2.4 discusses the two algorithms for estimating tissue attenuation
from B-mode scan data that were analyzed for their statistical properties. Finally Section 3
presents and discusses numerical results and B-mode images augmented by color-coded
attenuation data. Section 4 gives a discussion and an outlook on further research to be done.

2. Methods

In this section’s first part we detail the production and characterization of tissue
mimicking phantoms, that still provide a gold standard for evaluation and comparison of
digital signal processing methods to estimate various tissue properties. These phantoms
allow for small systematic errors, a good reproducibility and small variances of mimicked
tissue parameters.

We continue on with a discussion of the physics on ultrasonic attenuation governed
by absorption and scattering properties of the isonified medium, be it a phantom or
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human tissue. We then continue with a discussion and the well-founded selection of a
highly sophisticated ultrasound simulation environment (k-Wave, ref. [13]), which allows
to simulate the full-blown, non-linear wave equation for an absorbing and structured
medium, and report on results obtained and their numerical validity even for highly
absorbing media as typically seen in malignant processes of human tissue.

The subsequent section details the mathematical basis for two estimators and we
report on results obtained for a non-structured but scattering and absorbing numerical
phantom and show that both estimators are able to provide low variance estimates of
tissue attenuation.

2.1. Tissue-Mimicking Phantoms

With tissue-mimicking materials it is possible to produce phantoms which mimic
human breast tissue in all acoustic aspects [14,15]. Therefore we focussed on finding a
connection between a material composition and the resulting acoustic properties, providing
the opportunity to later test the estimation algorithms.

The essential ingredients for the production of tissue-mimicking phantoms are water,
agar for the solidification and silicon carbide for the scattering effect, which leads to the
grainy pattern, the so-called speckle exhibited in ultrasound images obtained by clinical
equipment. To prevent the emergence of microbubbles that would lead to the distortion
of the measurements of the phantoms’ acoustic properties, it is important to use distilled
and degassed water. There are additional components to the mixture, which have different
effects on the phantom’s acoustic properties, glycerol for instance increases the speed of
sound, aluminium oxide of different grain sizes on the other hand increases the attenuation
coefficient [14].

As we aim to estimate attenuation coefficients, we used the list of composition of the
International Electrotechnical Commission (IEC) TMM [16], see Table 2, and varied the
concentration of aluminium oxide (grain sizes 0.3 and 3 µm) to determine the effect on the
acoustic properties of the phantoms.

Table 2. Weight composition of the IEC TMM (in % per weight) according to [16] (left) and the
adjusted composition (right), which we used in the course of our research, dividing the proportions
of glycerol and benzalkonium among the rest [15].

Component Weight Component Weight Component
(%) Original (%) Adjusted

Distilled, degassed, deionised water 82.97 93.9
Glycerol 11.21 0
Benzalkonium chloride 0.46 0
Agar 3.0 3.4
Silicon carbide (17 µm) 0.53 0.6
Aluminium oxide (3.0 µm) 0.95 1.1
Aluminium oxide (0.3 µm) 0.88 1.0

For measurements an US setup as shown in Figure 1 is used in transmission mode.
After a pulse generator (here: 5072PR, Olympus Corporation, Shinjuku, Tokyo, Japan)
excites the US transducer and a needle hydrophone measures the sound pressure level
with and without the phantom in place, the attenuation for a given thickness can then
be directly determined using the spectral-log-difference technique (SLD), which will be
discussed in more detail below [9]. A short pulse in the time domain is desired as it results
in a high spatial resolution in imaging applications. The transducer was driven with a
narrow pulse exciting its fc = 5.0 MHz center frequency, large relative bandwidth, resulting
in a single cycle pressure wave emitted into the volume. According to the SLD method,
the attenuation coefficient is calculated from the log-difference between the two spectra,
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α( f ) = −20
d

log10
Sph( f )
Sre f ( f )

, (1)

where d is the thickness of the phantom and Sph( f ) and Sre f ( f ) are the magnitude spectra
of the phantom data and the reference data. The reference data were acquired with the
same settings as were used without the phantom in place.

Figure 1. Setup used for the measurement of tissue-mimicking phantoms. (a) Piston-type US
transducer (ROHE-5604), (b) phantom, (c) needle hydrophone (HNA-0400, ONDA, Sunnyvale, CA,
USA) with amplifier (AH-1100, ONDA, Sunnyvale, CA, USA). The thickness of the phantom is 2 cm.

The setup (Figure 1) was used to estimate the attenuation coefficient α0 for different
aluminium oxide concentrations in tissue mimicking phantoms.

Our studies show that the measurements of the attenuation coefficients of the tissue-
mimicking phantoms produced using 0.3 µm aluminium oxide show less variance, due
to homogeneity resulting from smaller grain size, as compared to the measurements of
the phantoms including aluminium oxide 3 µm. In Figure 2, the measurement results are
displayed, showing that the attenuation coefficient is almost linearly dependent on the
volume concentration of aluminium oxide.

Figure 2. Attenuation coefficient vs. concentration of aluminum oxide (grain size 0.3 µm) for
homogeneously prepared tissue mimicking phantoms (as shown in Figure 1b). Reprinted from
ref. [15].
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2.2. Ultrasound Attenuation

When an ultrasound wave propagates, it generally loses some acoustic energy to
random thermal motion resulting in acoustic absorption. Scattering loss, as a second
component of attenuation, is caused by the partial interception by the receive aperture
of the angular distribution of the backscattered signal of sub-wavelength sized scatterers.
Scattering can be classified depending on the relative size of the scattering inhomogenities
of the tissue relative to the interrogating wavelength λ = c/ f , with c, being the speed of
sound, and f , the excitation frequency. Living cells are sub-wavelength scatterers with
concentrations of more than 25 per resolution cell ([4], Chapter 9) and act diffusive. Larger
inhomogeneities of length scales on the order of λ with concentrations lower than one per
resolution cell are independent and distinguishable by their characteristics.

Absorption and scattering combined effects are summarized as attenuation and can
be modeled as a sound-absorbing fluid in which the absorption follows a frequency power
law of the form

α′ = α′0 ωy or α = α0 f y , (2)

where, α′, is the absorption coefficient in coherent units of Np/m, α′0, is the power law
prefactor in Np (rad/s)−y m−1, y is the power law exponent, ω, is the angular frequency
and the resulting attenuation is measured in the coherent units Np (rad/s)−y m−1.

In medical terms, the attenuation will be referred to the frequency f in Hz, and α be
given in dB/cm as opposed to Np/m, thus further on we will be using α0 in dB/(MHzy cm),
and α in dB/cm. The power law exponent, y, for human tissue is close to unity, as can
be seen from Table 1 [4], so the SLD algorithm will assume y = 1.00, whereas the also
discussed method-of-moments (MoM) will consider y as variable to also be estimated
from the B-mode scan lines. In ultrasonic imaging of human tissue, the propagating wave
cannot be observed directly but its amplitude needs to be estimated from observations of
the backscattered signals as seen at the location of the ultrasound transducer’s receiving
aperture. The estimation of the spatially varying attenuation coefficient α = α(depth) is
thus an ill-posed inverse problem that needs to be solved.

The backscattering occurs due to the cell-based structure of all biological tissues
(except maybe fluid filled cysts that appear to be almost anechoic and thus image dark
in B-mode scans). These scattering centers are very small sized as compared to the US
wavelength λ, thus scatter very weakly but are present at a high scatterer number density
randomly distributed in space. So the overall action of these scatterers can be modeled in
a first order approximation as a spatial white noise process, which, assuming an almost
constant speed of sound c, gives an impulse response-like behavior to the imaging process.
How strongly valid this simplifying assumption is, needs to be thoroughly analyzed,
but this is out of scope of this contribution.

In this paper, we concentrate on the estimation of the attenuation parameter α (in
units of dB/cm). US absorption, as characterized by Equation (2), for soft biological tissues
ranges from α0 = 0.03 dB/(MHz cm) for water up to a maximum α0 = 4.0 dB/(MHz cm)
for certain lesions. Some authors have directed their interest into estimating the backscatter-
coefficient, too, in order to then be able to estimate the attenuation coefficient much more
accurately [17].

Testing of algorithms for estimating absorption parameters from acquired B-mode
images, an example of which is shown in Figure 5, right, requires a well characterized set
of training data that can be obtained by either tissue mimicking phantoms (see Section 2.1),
exhibiting fairly homogeneous properties that can both be directly measured using the
transmission mode or the backscatter mode as in imaging US, respectively.

Another less involved way to obtain calibration data for testing α–estimators is using
simulation software to solve the US wave equation directly for known properties of the
propagation medium, including source terms, absorption and dispersion relations and
potentially also the nonlinear pressure-density relation. An open source time-domain
simulation software package developed for this purpose is k-Wave [8,13] which will be
discussed next.
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2.3. Discussion of Simulation Software

There are several open source software packages available that allow the time-domain
simulation of propagating acoustic waves including various aspects of an ultrasonic imag-
ing system. A good overview is given in [18]. We evaluated two software tools, Field
II [19] and k-Wave [8,13] for their suitability to the problem of estimating tissue properties
(attenuation coefficient in particular) besides simulating the imaging capabilities of an ul-
trasonic scanner. Field II being orders of magnitude faster in execution than the alternative
and finally chosen k-Wave software, soon turned out to be unsuitable, since it relies on
the spatial impulse response method [20] that only allows one to simulate linear wave
propagation, a restriction we could not accept since the simulation results should, in as
many aspects as possible, mimic the real and physical propagation of sound waves in a
medium (breast tissue).

The much more powerful k-Wave simulation environment, on the other hand, is able
to select all possible parameters of the propagation medium on a voxel by voxel basis
and simulates linear and non-linear wave propagation for an arbitrary distribution of
heterogeneous material parameters and power law acoustic absorption although at the
cost of a dramatic increase in necessary processing power.

If a reasonably sized, structured volume is to be simulated, e.g., 30× 30× 10 mm3 at a
spatial resolution of 30 µm as demanded for an f = 5.0 MHz excitation frequency, a data
array size of 333 Mvoxels results and needs to be simulated at time increments of a few ns
up over a total simulation time, allowing the wave to propagate back and forth along the
longest geometrical path in the volume. This results for the example in about 10,000 time
increments @ 5 ns to simulate a single B-mode line. This size can only be handled utilizing
either a supercomputing environment or employing state of the art graphics processing
units (GPU) with several thousand GPU cores programmed to operate concurrently.

For a numerically stable solution, of the non-linear partial differential equations
governing the wave propagation at least 10 grid points per acoustic wavelength λ are
generally required. The problem is confounded further by the requirement for small time
steps to keep the simulation numerically stable and to minimize unwanted numerical
errors to accumulate.

We tested the suitability of an NVIDIA Titan RTX 24 GB GPU (Nvidia, Santa Clara,
CA, USA) that is marginally able to simulate such a huge volume array in an acceptable
simulation time frame of a few days (for 201 B-mode scan lines).

Obtaining numerical stability and keeping the round-off errors small, an IEEE-854
double precision number format should be selected. GPUs, however, typically are restricted
to single-precision arithmetic and, what is not widely known, do not realize the full IEEE-
754 single precision format, that would provide 23 bits for the mantissa (=2−23 ≈ 1.19 · 10−7

in relative resolution resulting in a dynamic range for the sound pressure of approximately
130 dB) but specify for some basic operations just 21 or even only 20 significant bits [21].

In order to check the validity of the simulation in k-Wave, a homogeneous and
isotropic medium was simulated that included five discretely placed scatterers (at depths
of d = {5, 10, 15, 20, 25}mm) and α0 was set at 2.3 dB/(MHz cm) throughout the volume
to generate both large and very small sound pressure levels propagating concurrently
through the volume. The transducer (center frequency f = 5.0 MHz) was focused both in
azimuth and elevation at 35 mm in depth. For such a simple problem an analytic solution
can be given and so allows the validity of the numerical results to be checked. Figure 3
shows the complex envelope of the propagating wave some 17.5 µs after simulation started.
The main pulse located at 28 mm depth had excited all 5 scatterers while propagating
downwards.

The secondary waves emitted from scatterers located at 10, 15, 20, and 25 mm depths
are still clearly visible (the secondary wave from scatterer at 5 mm has already left the
simulated volume), as are all re-scattered waves. Very low spatial frequency waves, as seen
in the very center, are an indication of numerical problems encountered if the very large
dynamic range necessary cannot be met by the GPU arithmetic.
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Figure 3. Ultrasonic wave’s envelope propagating downwards, focused at 35 mm and being scattered
off discretely placed scatterers (indicated as red circles in exaggerated size) . The chosen colormap
for the log-compressed display extends from 100 kPa (orange) to 1 Pa (in blue).

Figure 4, left, shows the sound pressure amplitude vs. depth in blue on a linear scale
and the expected decrease in amplitude (according to the selected medium parameters
of 2.3 dB/(MHz cm)) in red. The deviation between the two graphs is attributed to the
focusing action of the phased-array transducer which is focusing at a depth of 35 mm.

Figure 4. Left diagram: decrease of sound pressure amplitude vs. depth along the center line within the volume in blue
and the expected decrease in sound pressure for the assumed attenuation coefficient of 2.3 dB/(MHz cm) in red. Right
diagram decrease of sound pressure level vs. depth estimated from a B-mode line (in dB ref. 100 kPa). Indicated in red is
the expected decrease in amplitude vs. depth for the chosen attenuation of 2.3 dB/(MHz cm).

Clearly visible also is the effect of the scatterers at d = {5, 10, 15, 20, 25} mm. Figure 4,
right, on the other hand, shows on a logarithmic scale in blue the sound pressure level (in
dB ref. 100 kPa) and in red the expected decrease due to the chosen attenuation coefficient
as derived from a single B-mode line. Simulation artifacts at low sound pressure values
increase the noise floor beyond 17 mm in depth and those artifacts raise the noise floor at
greater depths.
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Concluding this section, k-Wave run on a GPU gives numerical stable results for
attenuation coefficients up to and including 2.5 dB/(MHz cm) for a typical volume size,
which is sufficient for simulating most breast tissue types.

2.4. Estimators of Tissue Attenuation

Of all fluid properties, quantities that describe loss are among the most challenging to
estimate. In part, this is due to superimposed dissipative mechanisms, as described above,
and diffraction effects from sub-wavelength scatterers. Inherent to these phenomena is a
specific frequency dependence as given by Equation (2). According to Table 1 the power law
exponent y varies with the respective absorption mechanism. Liquid-filled cysts behave
similar to like pure water and thus have an exponent close to y = 2.0, combined with
an attenuation of α0 = 0.2 dB/(MHz cm), whereas solid masses have an exponent closer
to y = 1.0 combined with α0 of 2.50 dB/(MHz cm). In order to improve the diagnostic
accuracy, both parameters y and α0 are of interest and shall be estimated.

Several authors have elaborated on the estimation of α, or α0, respectively, and y but
conclude that it is an ill-posed mathematical problem [4,9]. This difficulty arises in part
from the demand to spatially map these parameters in order to detect small to very small
lesions. The severe tradeoff between estimator’s variance and spatial resolution impacts
both methods analyzed in this work.

Figure 5 shows a cropped B-mode scan exhibiting the typical US speckles that are
detrimental in the estimation process. Furthermore, the distal and proximal data windows
over which both estimation algorithms operate are indicated. Note that here a phased array
transducer was used with a steering angle of ±15◦. The sketch in Figure 5, left, defines
all indices used in both algorithms. Index 1 ≤ ` ≤ L is indicating the lateral sector scan
line (typically going up to and beyond L = 200), and index 0 ≤ n < N − 1 is indicating
the depth dimension (typically being sampled at and beyond an fs = 200 MHz sampling
rate). Given that the speed of sound, c ≈ 1540 m/s, on the order of N = 104 samples are
acquired for each scan line for a typical ≈ 5 cm depth range.

Figure 5. (Left): To define locations and indices within a sector scan used in the estimation algorithms. At the top the US
transducer is assumed operating as a phased array. (Right): Simulated US B-mode image, exhibiting typical US speckles
and shadowing behind a strongly absorbing region (a simulated lesion). Distal (bottom, subscript (...)d) and proximal (top,
subscript (...)p) windows are indicated.

In our work, we compare results obtained by the spectral-log-difference (SLD)
method [3,9,22] and the statistical moments (MoM) based approach [10,11] for three nu-
merical phantoms.

The first phantom is a homogeneous medium with α0 = 1.00 dB/(MHz cm) used to
obtain statistical properties of the estimators. The second and third phantoms mimic a
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liquid filled cyst with lower than average attenuation but a power-law exponent of y = 1.2,
and a dense lesion with α0 = 2.5 dB/(MHz cm) embedded in fat as medium. The SLD
allows to estimate the attenuation coefficient only, the MoM also allows to estimate higher
order terms of the frequency dependency of α that might help to differentiate between
normal tissue (y ≈ 1.0), and fluid filled cysts (y > 1.0).

2.4.1. Spectral-Log-Difference Method

In order to estimate α0 over a region of interest (ROI) set by range-gated proximal and
distal windows within a B-mode scan of a breast, the same time-gain-compensation (TGC),
and the same power settings are used to obtain backscattered signals from different depths
over a lateral range of B-mode scan lines `l ≤ ` < `r (see Figure 5) to then be averaged.
The authors in [23] report results using block sizes of 22.5 · λ axially by 43 · λ laterally so
considering an f = 5.0 MHz transducer this results in a block size of 6.93× 13 mm2.

We define Sw( fk), the power spectral density of the appropriately time-windowed
(subscript (...)w) sequence sw(n) evaluated at frequencies fs · k/M; 0 ≤ k ≤ (M− 1), with k,
the frequency index, fs the sampling frequency in Hz, and M = (npm − np1 + 1)/2 =
(ndm − nd1 + 1)/2, the lengths of the time windowed sequences. Please note, this window
or tapering function used to suppress spectral side lobes is to be distinguished from the
above mentioned depth windows that allow to select spectra from different depths.

Sw( fk) = Sw

(
fs · k
M

)
=

M
2π fs

· |F{sw(m)}|2 =

=
M

2π fs

∣∣∣∣∣ 1
M
·

M−1

∑
m=0

sw(m) · e−j· 2π
M mk

∣∣∣∣∣
2

Now define B(`, n) the transducer’s output signal representing the TGC-compensated
B-mode image with ` being the scan line index of the sector scan, and n being the time index
representing the depth dimension. Depth d(n) = n · c/(2 fs) (assuming an approximately
constant over depth speed of sound c).

Both windows are limited laterally by `l ≤ ` ≤ `r, thus in total Le = `r − `l + 1 scan
lines are averaged over (denoted by 〈. . . 〉) in the following spectral estimation process.
The proximal window extends between np1 ≤ n ≤ npm, and the distal window between
nd1 ≤ n ≤ ndm samples.

Using the above definitions, the power spectral density of a depth-windowed region
(mean depth for the proximal window dp, and for the distal window dd) in a statistically
homogeneous tissue, varying only in the attenuation coefficient, and averaged over all
Le = `r − `l + 1 selected scan lines is given by (subscripts p and d indicate the proximal
and distal ROIs). 〈

Sp( f , dp)
〉
= P( f )D( f )A( f , d)B( f , d)e−4α( f )dp

for the proximal window, and

〈Sd( f , dd)〉 = P( f )D( f )A( f , d)B( f , d)e−4α( f )dd

for the distal window, where P( f ) represents the combined effect of the transmit pulse and
the sensitivity (electro-acoustic and acousto-electric transfer functions) of the transducer,
D( f ) = D( f , d) denotes the effects of focusing and diffraction that are related to the
transducer geometry and its numerical aperture NA at average depth d = (dp + dd)/2,
A( f ) = A( f , d) is the cumulative attenuation along the propagation path from the surface
of the transducer to depth d of the respective depth window which corresponds to the
centers dp and dd, respectively, of the ROIs, α( f ) is the attenuation coefficient within the
considered ROIs, B( f ) = B( f , d) is a result of the scattering properties of the tissue within
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the ROIs, namely the effective scatterer size, the scatterer number density, and the mean
square variation in acoustic impedance between the scatterers and the background.

Dividing the power spectra obtained from different average depths dp and dd and
assuming that the tissue within these depth ranges is homogeneous and isotropic, i.e., the
scattering term B( f ) does not vary with depth, yields (for depths parameters in cm):

Y( f ) =
Sp( f )
Sd( f )

=
A( f , dp)B( f , dp)

A( f , dd)B( f , dd)
· e4(dd−dp)α( f ) .

Taking the logarithm (to the base 10 to express the spectra in dB/Hz, and thus the
attenuation coefficient in dB/(MHz cm)) yields:

log(Y( f )) =
1

20
ln(10) · 4(dd − dp)α( f )·

·
A( f , dp)B( f , dp)

A( f , dd)B( f , dd)
,

≈ 1
20

ln(10) · 4(dd − dp)α( f )

=
1

10
ln(10) · 2(dd − dp)α( f ) .

In Equation (3) [24] the factor 4 stems from the fact that the attenuation ratio as mea-
sured in Np is referring to the attenuation of field quantities (as opposed to dB which
gauges power quantities) combined with the round-trip propagation that effectively dou-
bles the associated path lengths. The attenuation coefficient of the sample (in dB/(MHz
cm)) can be estimated at each frequency component fk (see Equation (3)) by calculating γ,
the slope of the straight line that fits the log-ratio of the two spectra Y( f ), i.e., the slope of
the straight line that fits Equation (3) versus depth. If the attenuation as measured in dB is
assumed to increase linearly with frequency, then the attenuation coefficient’s slope is used
as a measure for the attenuation in the tissue of interest. The attenuation coefficient can
then be simplified to

α( f ) = α0 · f (3)

where the parameter α0 is the attenuation coefficient’s slope in dB/(MHz cm) that can be
estimated by finding the slope that fits Equation (3).

Figure 6 shows measurement data acquired for the tissue mimicking phantom shown
in Figure 1. The blue graph represents the power spectral density for the ultrasound
propagation in pure water, the red line is the measured spectrum with the phantom
inserted, and the green line is the spectral-log-difference to which a straight line could be
fitted to obtain α0 (in this case α̂0|SLD = 0.5663 dB/(MHz cm)).
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Figure 6. The blue graph represents the power spectral density for the ultrasound propagation in
pure water, the red line is the measured spectrum obtained over the thickness of 2 cm of the tissue
mimicking phantom depicted in Figure 1 which was designed to result in an α0 of 0.6 dB/(MHz cm),
and the green line is the spectral-log-difference. The two estimators used, led to an estimated
attenuation of: α̂0|SLD = 0.5663 dB/(MHz cm) and α̂0|MoM = 0.5759 dB/(MHz cm).

2.4.2. Method-of-Moments (MoM)

Another method for estimating the attenuation coefficient as discussed in the litera-
ture [10,11] is again based on the power spectral densities Sp( f ) and Sd( f ) averaged over
two spatially limited regions of interest (cf. Figure 5) from `l to `r laterally and from
c · dt · ndm/2 to c · dt · nd1/2 for the distal, and from c · dt · npm/2 to c · dt · npm/2 for the
proximal window, respectively, radially.

Sp( f ) = S( f )︸︷︷︸
P( f )D( f )A( f ,dp)B( f ,dp)

·e−α( f )·2·dp

Sd( f ) = S( f )︸︷︷︸
P( f )D( f )A( f ,dd)B( f ,dd)

·e−α( f )·2·dd
(4)

By taking their zeroth m0,S(d) to second order m2,S(d) moments according to

mi,S(d) =
+∞∫
0

f i · S( f , d) d f =

+∞∫
0

f i · S( f ) · e−α( f )·2·d d f ; (5)

i being the moment order, and expanding α( f ) into a power series:

α( f ) = ∑
n

an · f n (6)
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and noting that the derivative ∂dmi,S(d) can be written as:

∂dmi,S(d) =
+∞∫
0

f i

(
−∑

n
an · f n

)
S( f ) · e

−d·∑
n

an · f n

d f =

= −∑
n

an ·
+∞∫
0

f (i+n) · S( f ) · e
−d·∑

n
an · f n

d f =

= −∑
n

an ·mi+n,S(d)

(7)

and expressed via the (i + n)th moment of the spectrum S( f ).
The parameter a1, which is equivalent to α0( f ), and a2, which is equivalent to y of

Equation (2) can then be expressed as:

a1 = α̂0( f ) =
1

dd − dp
·

m0,S(dp)

m1,S(dp)
· ln
(

m0,S(dp)

m0,S(dd)

)
,

a2 → â2 =
1

dd − dp
·

m0,S(dp)

m2,S(dp)
· ln
(

m0,S(dp)

m0,S(dd)

)
.

(8)

As a note: in estimating the ultrasound’s attenuation the method-of-moments not
only utilizes the decline in amplitude with increasing depth d but in addition takes into
account that the frequency dependent attenuation also reduces the center frequency fc of
the propagating wave. It thus should allow for smaller variances of the estimators. Our
analysis, however, does not seem to support that assumption, as can be seen by observing
the estimation results shown in the following section.

3. Results

Both algorithms were tested by analyzing simulated phantoms with parameters
listed in Table 3. To guarantee numerical stability and valid results over an extended
dynamic range, the k-Wave simulation environment, utilizing the so-called pseudospectral
method [13], requires a spatial discretization to be reduced to less than λ/10.

Table 3. Parameters of the k-Wave simulations.

Phantom, Simulation, and Homogeneous Cyst Lesion
Estimation Parameters Phantom Phantom Phantom

grid spacing 30× 30× 30 µm3 30× 30× 30 µm3 30× 30× 30 µm3

grid points 994× 482× 28 994× 482× 28 994× 482× 28
time step in ns 5.844 5.844 5.844
speed of sound c in m/s 1540 1540 1540
mass density ρ in kg/m3 1000 1000 1000
α0 in dB/(MHz cm) 1.00 1.00 1.00
α0 inclusion in dB/(MHz cm) – 0.2 2.5
α-power 1.20 1.05 1.05
depth of inclusion in mm – 20 20
radius of inclusion in mm – 7.5 7.5
steering angle range ±15◦ ±15◦ ±15◦

number of lines-of-sight (LOS) 201 201 201
transducer excitation frequency fc in MHz 5.0 5.0 5.0
transducer’s relative bandwidth 0.7 0.7 0.7
focal distance (azimuth) Fa in mm 25 25 25
focal distance (elevation) Fe in mm 400 400 400
Nazi in LOS/in mrad/in mm @ d = 20 mm 25/65/1.30 25/65/1.30 25/65/1.30
Nrad in mm 1.35 1.35 1.35
∆d = dd − dp in mm 4.50 4.50 4.50
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A randomly structured macroscopically homogeneous phantom allows to show the
unbiasedness of both algorithms even over a large dynamic range of the ultrasound returns.
Subsequently a low-attenuation cyst and a high attenuating lesion embedded in this
homogeneous medium were simulated and analyzed.

3.1. Homogeneous Phantom

Initially this phantom was designed and analyzed to characterize the estimator per-
formance. For a fair comparison all B-mode scans were analyzed with equal settings for
the power spectral estimator’s analysis window sizes and their respective depth for all
subsequently characterized phantoms, with typical sizes as recommended in the litera-
ture [22,23]. The homogeneous phantom’s attenuation coefficient and the background
of the other two phantoms were selected to lie above any value for benign breast tissue
(fat, glandular tissue, etc.) at 1.0 dB/(MHz cm). For the homogeneous phantom both
estimator’s performances are displayed in Figure 7 for visual comparison. Figure 7 shows
the results obtained for the homogeneous phantom and by analyzing the middle row one
can observe that both algorithms give visually similar results. The spread of the estimation
can be seen in the bottom row, where the probability density functions, the histgrams are
shown. In the left column the spectral-log-difference algorithm’s and in the right column
results obtained for the MoM are shown. The spatially averaged mean over the complete
sector scan gives α̂0|SLD = 0.9985 dB/(MHz cm), for a true value α0 = 1.00. The standard
deviation, obtained by again analyzing the complete sector scan was determined to be
σ̂(α0)|SLD = 0.3245 dB/(MHz cm).

The method-of-moments gives an α̂0|MoM = 1.0169 dB/(MHz cm). The standard
deviation, obtained by again analyzing the complete sector scan was determined to be
σ̂(α0)|MoM = 0.3785 dB/(MHz cm). The strength of the MoM, however, lies in the fact, that
in addition to facilitating an estimate of the linear attenuation coefficient, it is also possible
to estimate the power law exponent y, thus providing additional diagnostic cues.

Figure 8 shows the result of estimating the coefficient â2 from Equation (6) for the
homogeneous phantom. As can be observed the overall structure of the color-coded
estimation result follows the results displayed for α0 in Figure 7. This resemblance is
probably due to the fact that all presented results were generated using the same randomly
structured medium for all simulation runs. The spatially averaged mean over the complete
sector scan gives â2|MoM = 0.2648 dB/(MHz2 cm), for the true value a2 = 0.20. The
standard deviation, obtained by again analyzing the complete sector scan was determined
to be σ̂(a2)|MoM = 0.1042 dB/(MHz2 cm).
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Comparison of the performance of both estimators. (a) The imaging geometry and the spectral density analysis
windows. As a steering angle of ±15◦ would appear very slim, the image was stretched to square, leading to speckles that
appear wider than those seen in real ultrasound images. Furthermore, the distal and proximal windows are displayed larger
than they actually are, to give an idea of what is done here, meaning there is not as much averaging done than could be
assumed by inspecting the graphic. (b) Shows the simulated B-mode image rendered with correct time-gain-compensation.
This raw data is analyzed by both attenuation estimating algorithms. (c) The color-coded overlaid estimation result for the
spectral-log-difference algorithm. (d) Estimation result for the method-of-moments. (e) Probability density function for the
spectral-log-difference algorithm. (f) Probability density function for the method-of-moments.
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Figure 8. Result of estimating â2 from simulations of the homogeneous phantom (left). The true value is a2 = 0.2, and the
histogram for â2 (right). One can observe a rather large spread thus rendering the estimate to be of limited use in diagnosis.

3.2. Cyst and Lesion Phantoms

The following results presented are for simulated phantoms designed to mimic either
a cyst (with an attenuation coefficient close to that of water α0 = 0.2 dB/(MHz cm)),
or a dense and highly attenuating lesion (α0 = 2.5 dB/(MHz cm)) located in a simulated
breast tissue (α0 = 1.0 dB/(MHz cm)). Again, the power spectral density necessary
as intermediate result is averaged over a rather small (approximately over an area of
Nazi × Nrad ≈ 1.30× 1.35 mm2) analysis window sized for sufficient spatial resolution to
detect small structures.

The top row in Figure 9 shows the two B-mode images obtained from the simulated
cyst phantom (left) and the lesion phantom (right) TGC-corrected for 1.0 dB/(MHz cm).
In the middle row the resultant estimates are displayed color-coded via the spectral-log-
difference method of the local attenuation coefficients. As can be seen from Table 3 the
background attenuation is 1.00 dB/(MHz cm), the cyst and the lesion both with radii of
7.5 mm located centrally and at depths of 20 mm have attenuations of 0.2 dB/(MHz cm)
and 2.5 dB/(MHz cm), respectively. It can be observed that the variance of the estimates
for the structured media are visually similar to the homogeneous case. In the bottom row
the resultant estimates via the method-of-moments of the local attenuation coefficients
are displayed color-coded. Although, again visually appearing similar, the method-of-
moments resulted in a larger variance.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. (a) B-mode images of an inclusion with a radius of 7.5 mm positioned centered at a depth of 20 mm, left,
the inclusion is mimicking a cyst (α0 = 0.2 dB/(MHz cm)). (b) B-mode images of an inclusion with a radius of 7.5 mm
positioned centered at a depth of 20 mm, the inclusion is mimicking a malignant lesion (α0 = 2.5 dB/(MHz cm)). (c,d)
Estimation results obtained from the application of the spectral-log-difference algorithm. (e,f) Estimation results obtained
from the method-of-moments.
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3.3. Analysis of the Estimator’s Performance

Table 4 allows to compare both algorithms’ performances. The SLD-algorithm pro-
vides better results than the MoM in estimating α0 as indicated by the estimators’ standard
deviation and is thus to be preferred over the MoM. If one were also interested in the
power law exponent y as another cue on tissue type, the MoM is the only algorithm to
also provide this information, albeit with a very large variance, that renders this capability
rather useless.

Table 4. Estimation results for all analyzed numerical phantoms.

Homogeneous Cyst Lesion
Phantom Phantom Phantom

true SLD MoM true SLD MoM true SLD MoM
α̂0 1.00 0.9985 1.0169 0.20 0.3116 0.2575 2.50 2.5368 2.8363

σ̂(α0) 0.00 0.3245 0.3785 0.00 0.3405 0.4390 0.00 0.5634 0.6151

â2 0.20 n.a. 0.2648 0.05 n.a. 0.0732 0.05 n.a. 0.8904
σ̂(a2) 0.00 n.a. 0.1042 0.00 n.a. 0.1239 0.00 n.a. 0.2067

In calculating the listed parameters for the cyst and the lesion numerical phantom
the evaluated area was restricted to a rectangular shape lying completely within these
structures (depth d = 15 to 25 mm and azimuth covering ±7.5◦ only). Thus, a larger
parameter variance is to be expected, as compared to the homogeneous case.

4. Discussion

As statistics show that one in eight women will develop invasive breast cancer in their
lifetime and the key for a full recovery is early detection, it is of significant interest, to find a
screening method that is cost effective, fast, risk-free and of highest accuracy, detecting even
the onset of small lesions. This work was therefore initiated to help in the improvement of
the diagnostic accuracy of breast cancer using noninvasive ultrasonic imaging.

Improvements are expected, if in addition to presenting an ultrasound image, an over-
lay of (color-coded) estimates of the acoustic properties of the different tissue types is
possible. Since it is well documented that the attenuation coefficient significantly di-
verges between normal tissue and malignant lesions, we focused on the estimation of this
parameter.

In our contribution we compared estimation results from two algorithms, the spectral-
log-difference method and the method-of-moments and could show that, although the
method-of-moments is able to provide the power law exponent as a second parameter for
tissue characterization the spectral-log-difference method seems to provide results with
lower estimation variance.

To verify that these methods are providing unbiased estimates with a variance close to
the Cramér-Rao Lower Bound (CRLB), the estimator had to be applied to known properties
and the results needed to be compared with measured values. Therefore part of this work
was the investigation of different tissue-mimicking materials, for the production of tissue-
mimicking phantoms with a set of desired acoustic properties and the investigation of
suitable simulation software. Giving an insight of the k-Wave simulation environment, that,
although requiring a high power computing environment, is well suited for 3D ultrasound
simulations required in medical imaging.

As further steps in the research of this topic a closer analysis of the algorithms and the
transition to data, i.e., to real US scanners, are scheduled.

5. Conclusions

Estimating tissue attenuation from ultrasonic B-mode scans especially if greater isoni-
fied depths need to be covered is a very involved problem resulting in a comparibly large
estimator’s variance which to a good part is due to the unavoidable and also information
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conveying ultrasonic speckles. Since comparing two algorithms that have a very different
mathematical basis and still seem to result in numerically very similar estimates hint on the
cause of the variance not so much being due to the estimator but rather on the statistical
properties of the analyzed medium.

We conclude that both algorithms deliver diagnostic cues for strongly deviating from
normal tissue attenuation and both allow for a spatial resolution on the order of a few
millimeters in azimuthal and radial directions.
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